Lecture 31

(Adjusting the notes from Lecture 30 by inserting a few results) Our next general goal is to
* treat the case of equality in Theorem 22.1. We will make use of the following concepts.

. Recall the standard module V.,

Definition 22.2. We turn the vector space V into a commutative, associative, R-algebra
with multiplication o defined as follows:

foz=20,,7 y,z € X. (90)

The algebra V is isomorphic to the algebra of functions X — R. Motivated by this, we call
the algebra V the funclion algebra.

In order to illustrate the multiplication o, let v,w € V and write

v = Zvyg}, W == Zwy@ vy, Wy € R.

yeX yeX

" Then

vouw = E Uy Wy Y.
yeX

Lemma 22.3. For the functz’on‘ algebra V', the multiplicative identity is 1 = Zye x ¥
Proof. Routine. ]
Lemma 22.4. Fizz e X and write T =T(x). ForveV and 0 <1 < d,

Ajv = | X|EZ ov.

Proof. Write v =73 v Pick y € X. The y-coordinate of Ajv is

ye
(Ajv)y = (A])yvy = | X[(Ei)ayvy.
The y-coordinate of E;Z o v is
(Eiﬁ: © U)y = (Eifi')y”y = (E)yavy = (Ei)ayvy.
The result follows. O
Proposition 22.5. For 0 <4,5 <d,

Span(EV o B;V) = S BV, (91)
0<k<d
a5 7#0
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Proof. We fivst establish the inclusion C. By construction E;V = Span{E;gly € X}. We
show that for z € X,

E,’?S o EjV Q E EkV.
O<k<d
45570

Write T = T'(z). We have

Eifio BV = AfE,V C > BV,

ogh<d
Gf,ﬁm

Next we establish the inclusion 2. For 0 < k& < d such that q,ﬁfj # 0, we show that
Span(E;V o E;V) 2 EV. We have

Span(F;V o E;V) = Span{E;f o F;&ly,z ¢ X}
D Span{E;j o E;fjly € X}
= Span{(E; o E;)g|y € X}
= (B; 0 B}V
o (Et ) EJ)EAV
d

(s

=0
= | X| "'}, BV
= BV,

We now consider the case of equality in Theorem 22.1.

Theorem 22.6. Let Y denote a nonempty subset of X with degree s and stength t. Write
e == {t/2]|. Then the following are equivalent:

(@) Y| =g
(i) Y| =221 omu;
(ili) s=e.

Assume (i)~(iii) holds, and write E = 0 E;. Then the vectors {E§}yey form a basis for
Yo FiV such that

Yl

Ej, Ez) =5,

(y,2€Y).
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Proof. (1) = (iii) This is Theorem 20.2(iii).
(iii) = (i), (ii) We have

mg+myt e me <|Y| <mg+my+ e

and hence equality thoughout.

(ii) = (iii) It suffices to show that t = 2s. We adopt the notation from the proof of Theorem
22.1.

By the proof of Theorem 22.1, the vectors { Efj},ey are linearly independent and contained
in Y. o E;V. The subspace E o BiV has dimension Y ,m; = |[Y|." Therefore {Ej} ey is
a basis for > 7, F;V. Recall that

(Bg, F2) =0,, (y,z€Y).

Therefore, the vectors {F'§}yey form a basis for °;_, F;V that is dual to the basis {E§}yey.
Let H € My (R) denote the transition matrix from the basis {Ef}yev to the basis {F§}yey.
For z €Y,

Fz=> H,.Ej.
yeY
For y,z € Y we compute the (y, z)-entry of H. Write (y, z) € Ky, We have
<F(§‘: Fﬁ) = Z Hw,z<F§'1 E’L@') = Z Hw,zéy,w = Ay
weY wey
Therefore

Hy, = (F§,F2) = XY > " vy Bid), By5)

i=0 j=0
E 8

= XY AN ED, Eig) = | X1 7Qu(k) = | X| Z% v
i=0 =0

The matrix H* is the transition matrix from the basis {F'§},ey to the basis { Ej},ey. For
zeY, '

Eg =Y (H™),.F.
yey
For 4,2 € Y we compute the (y, 2)-entry of H 1. Write (y, 2) € R;,. We have

{Eﬁ,Eﬁ) = Z(Hml)w,AE@aFﬁ)) = Z(H—l) y.w (H )y@‘

weY weY
Therefore
(H )y = (BY, B2) = (B30, B;£)
i=0 5=0

s 8
=S (B, E2) = X 12@ )= X7 ) _ui ().
i—0 =0
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Recall the vector ty. Note that

Pr 4215% = Eo%by"i"ZEﬂJ)} = :}'HZEW

i=0

QOur goal is to show that ¢ = 2s. It suffices to show that af = 0 for 1 < ¢ < 2s. It suffices to
show that Fjpy = 0 for 1 < ¢ < 2s, It suffices to show that

'1/'
<¢Y - ;X|| 1L, EV +EV 4+ BV > = 0, (92)

By Proposition 22.5 and since the ordering {#;}¢_, is J-polynomial,

EoV + By + -+ BV = Spa.n{u ovju,v € FgV + EZV +.- -+ ESV}
= Spa.n{Egjr o Fily,z € Y}.

By these comments, the requirement (92) becomes

P
<q,by — &_5 1, Ejo Fz> = (, y,z€Y. (93)

We will show (93). For y,z € Y we have
(L,Ejo Fz) = (F§, Fz) =d,,

For 4,2 € Y we also have

(y, Efjo F3) =Y (i, Bjo F2) = Y " (Ef,D)(F2,0)

weY weY
= (B9, Bo)(Fz, Ed) = > (Ej, Bd)6,. = (B9, B2)
weY weY
8
= X7 o6, (v,2) € Ry.

With these comments in mind, we verily (93). Pick y, z € Y. First assume that ¢ = 2. Then
y, z satisfy (93) because

K _ vl

{(¢y, B o F2) = | X| ‘lZU (65} = |X| “121713 =X x|

i=0

(1, Ejjo F'%).
Next assume that y # 2. Write (y, 2) € Ry. In equation (93), the left-hand side is equal to

(v, By o Fz)y = X7y v} (6)).
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Therefore, the vertices y, z satisfy (93) provided that 8} is a root of the polynomial >_;_ vf(2).
By these comments, ¢ = 2s provided that 8} is a root of > i oui{z) for all k € S. The poly-
nomial Y7, vf(#) has degree s = |.5]. Recall that the polynomial f(z) = >7; ;vvf(#) has
roots {0} }res. Therefore, t = 2s provided that f(z) and > _,vi(2) agree up to a scalar
factor. In other words, t = 2s provided that -y; is independent of ¢ for 0 < 4 < s. We now
compute {7v;}i_,. We have

1= Z Vit (94)
i=0

because
5 ]
1= f(6) = Z%‘U;‘(@S) = Z%‘mi-
i=0 =0

If ~; is independent of ¢ for 0 <4 < s, then the common value must be |Y |”1. Our next poal

is to show
/

v Y] (0<i<s). (95)
For 0 < 4 < s we have «y; > (; otherwise the vectors { E'j} ey remain linearly independent,
where £/ = F — E;. But f:hese vectors are contained in the subspace foV -+ Iy V +

B V4 -+ BV of dimension |Y| — m;, a contradiction. For notational convenience, define
vi=0for s+1<i<d. For0<i<swehave

d
m{1 — Y|y = Z Zyjqﬁjaﬁ, (96)

which is obtained using the definition of the a}. By (96) we obtain v; < |V~ for 0 <4 < s.
Combining this with (94) we obtain (95). We have shown (95), so t = 2s. We have

(N |Xl X1 5
B = lA|Z%E¢x Y] ZE |Y
i=0

Recall that (E4, F'2) = &, , for y,z € Y. By these comments

1/
(B, B2 = 6,, 0]

y'zﬁ;_l ly,z€Y).
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