Lecture 30

22 On the strength and degree of a ()-polynomial as-
sociation scheme

We continue to discuss a symmetric association scheme X = (X, {R;}%,). Throughout this
section we assume that the ordering {F;}L, is Q-polynomial. Abbreviate 67 = Q1(i) for
0 <1 < d. Recall that 85 = m; and

d
By =X 01 A
i=0 -
Let Y denote a nonempty subset of X. Recall the inner distribution {a;}¢, and dual
distribution {a?}%,. Recall the degreee
s=|{ill <i<d, a; # 0}
and the strength

t=max{i|l <i<d, af =a; = =aj =0}.

Abbreviate e = [t/2]. We saw earlier that s > e and

Y] > mo+mi+ -+ me. (86)

Our next goal is to show that
Y| <mg+mqg+ - +ms. (87)

We will show that the following are equivalent: (i) equality holds in (86); (ii) equality holds
in (87); (iii) s =e.

As a warmup, first assume that s = 0. Then |Y]| =1 = mg. In this case af = m; # 0 for
0<i<d Sot="0and e =0.

To continue the warmup, assume that s = 1. Recall ¢t < 2s = 2, s0 ¢t € {0,1,2}. We have
[Y| > 2. There exists a unique integer 7 (1 < ¢ < d) such that a; # 0. For distinct y,z € ¥V
we have (y, 2) € R;. We have a; = |Y|—1. Let M denote | X| times the inner product matrix
for { E1§}yey. The entries of M are

o5 if y=z
M,, =40 BUV=5 y,z€Y.
’ gr if y#=z

The matrix M is positive semidefinite, so its eigenvalues are nonnegative. These eigenvalues
are 05 + (|Y| — 1)8F (with multiplicity 1) and 3 — 0; (with multiplicity [Y'| — 1). We have
0% > 0. We have 6} + (|Y| — 1)0; = a} > 0, with equality if and only if ¢ > 1. Assume for
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the moment that ¢ = 0. The matrix M has all eigenvalues positive, so M is invertible. The
vectors {E1§}yey are linearly independent. Therefore |Y| < mq, so |Y| < mo + my.

Next assume that ¢ > 1. We have o} = 0. The matrix M has rank |Y| — 1. We have
[Y]—1 < msso|Y| < me+ mq. Wehave 65+ (|Y| —1)8F =0so

0 = g1y

We now consider a5 = @Q2(0) + (|Y| — 1)Q2(i). Recall that Q2(j) = v5(0;) for 0 < j < 4,
where

2 1 *
27— 2 — 05

v(2) = Q%,l
We have
Q%,ﬂ; = (65)* - ‘J} 106 — (|Y| - 1)( qil@f - 93)
= (65) - (lYI —1)((6;) - *)
= (65)" + (IYI — 1)) Y165

(IY1-1)gta3 = (IY] = 1)(65)* + (JY] = 1)°(6,) = ([Y] = 1)|V|6;
= (V1= 1)(6:)* + (65)* — (Y| - 1) [Y|0;
= [Y|(@)* = (V|- 1)[¥16
= [Y|6;(05 +1— Y1)
= Y6 (mo -+ mq — [Y]).

Therefore |Y| < mg + mq, with equality if and only if a} = 0 if and only if ¢ = 2.
In summary, for s = 1 we have |Y| < mg + my, with equality if and only if t = 2.

We now consider the case of general s.

Theorem 22.1. Let Y denote a nonempty subset of X with degree s. Then
Y] <mg+mqy+-- +ms. (88)

Proof. Recall the standard module V' = R¥. The subspace Y ;_, E;V has dimension ) ;_, m;.
Define

E= i L;.
=0

For y € Y we have

Ej € Z EiV.
i=0
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It suffices to show that the vectors {EJ}yey are linearly independent.
Define the set
S ={i|]l <i<d, a; #0}.
We have s = |S|. Define the polynomial
—6*
f(Z) - H * Z* ‘
ies 0% — 0,

We have f(65) =1. Also for 1 < j < d, f(6f) = 0if and only if j € S. The polynomial f(z)
has degree s. Write

F(2) = i (2) 7 €R,
i=0

where each v} (z) has degree i and Q;(j) = v;(¢}) for 0 < j < d. Define

F=|X|)_ %Ei
i=0

For y € Y we have

Fje> EV.

=0

For y,z € Y we show that

(B9, FZ) = 6y,q. (89)
Write (y, 2) € Ry. We have

(B, F2) = 1X| YD (B, Bi) = 1X| Y vl Big), i)
i=0

=0 j=0
= > uQi(k) =Y wvi(6i) = f(6).
i=0 =0
If y = 2, then k = 0 and f(6;) = 1. If y # 2, then k € S and f(f}) = 0. By these comments
we obtain (89).

We can now easily show that {E{},ey are linearly independent. Suppose we are given real
numbers {oy}yey such that
0=> a,FEj.

yeY
We show that a, =0forye Y. Fory €Y,
0=> (B2 Fj) =) aby. = a
z€Y zEY

We have shown the vectors { Ej} ey are linearly independent. This implies the inequality
(88). |
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Theorem 22.2. Let Y denote a nonempty subset of X with degree s and stength t. Write
e = |t/2|. Then the following are equivalent:

Y] = Z::o My

]
3
£
=
=
J

(iii) This is Theorem 20.2(iii).
ii) We have
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ot
jowrpy
iy
—
—~
[
~—
~~

mg+m1+-~+me§|Y]§mo+m1+~-+me

and hence equality thoughout.

(i) = (iii). It suffices to show that ¢t = 2s. We adopt the notation from the proof of Theorem
22.1.

The vectors {E§} ey form a basis for 7 _, E;V. Recall that
(EQ, Fé) = 5y,z (y>z € Y)

Therefore, the vectors { F'§} ey form a basis for Y;_, F;V that is dual to the basis {Ef}yey-
Let H € My(R) denote the transition matrix from the basis {E§}yey to the basis {Fij} ey.
Forz eV,

Fz=" H,.Ej.
yey
For y,z € Y we compute the (y, z)-entry of H. Write (y, z) € R. We have
(Fij, F2) =Y Hyo{Fj, Bd) = Y Hylyw = Hys.
weY weY
Therefore

Hy. = (F§, F2) = |XIP> > vy Bif, Bi%)

=0 j=0
= XY M EG, Big) = XY 9Qu(k) = 1X| > 7ivi (65).
=0 3=0 =0

The matrix H ! is the transition matrix from the basis {F§},ey to the basis {Ej}yey. For
zeY,

Ez =S (H™),.Fj.
y!

yeY

For y, 2z € Y we compute the (y, z)-entry of H™1. Write (y, 2) € Ry. We have

(B, B2) = (H uo{Bf, Fi) = > (H N oby = (H )y

weY weY
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