The scheme X is commutative if and only if
AiA; = A A (0<i<d).
The scheme X is symmetric if and only if
Al = Ay (0<i<ad).

By the above conditions (i)—(iv), the matrices {A;}%, form a basis for a subalgebra M
of Mx(C) that contains J and is closed under transpose. Note that M is closed under
Hadamard multiplication, because

Ajo Ay = 8154 (0 <4, <d).

We call M the adjacency algebra of X. If X is commutative, then we call M the Bose-Mesner
algebra of X.

Lecture 3

Our next goal is to define adjacency algebras in a more abstract way.

Lemma 2.1. Let M denote a nonzero subspace of the vector space Mx(C). Assume that M is
closed under Hadamard multiplication. Then M has a basis {A;}d ¢ such that Ajo Aj = 6;;A;
for 0 <1i4,5 <d. This basis is unique up to permutation of Ag, Ay, ..., Ag.

Proof. For A € M define the support set
Sup(A) = {(, 1),y € X, Auy # 0}
For nonzero o € C we have
Sup{aA) = Sup(A).
For A, B € M we have
Sup(4 o B) = Sup(4) N Sup{B).
In particular,
Sup(A o A) = Sup(A).

For A € M, we say that A is minimal whenever (i} A % 0; and (i) there does not exist a
nonzero B € M such that Sup(B) G Sup(A). Assume that A € M is minimal. Then for all
B € M, either Sup{A) C Sup(B) or Sup(A) NSup(B) = §. For minimal elements A, B &€ M,
either Sup(A) = Sup(B) or Sup(A4) N Sup(B) = @. For minimal elements A, B € M such
that Sup(A) = Sup(B), there exists a nonzero a € C such that B = aA; otherwise there
exists a linear combination of A, B that is nonzero and has its support properly contained in
the common support of A and B. For a minimal element A € M the nonzero entries of A are
all the same; otherwise the previous assertion is contradicted with B = Ao A. A minimal
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element A € M is called normalized whenever its nonzero entries are equal to 1. Hvery
minimal element of M is a scalar multiple of a normalized minimal element. Let {4;}%,
denote an ordering of the normalized minimal elements of M. By construction A;04; = §;;A;
for 0 < i,j < d. Consequently {A4;}, are linearly independent. For A € M we have

A € Span{A;|0 <14 <d, Sup(A4;) € Sup(A)}.

By these comments {A}{ , is a basis for the vector space M. The uniqueness assertion is
clear. L

Lemma 2.2. For A € Mx(C) the following are equivalent:

(i) the diagonal eniries of A are all the same;

(i) 1o A is a scalar multiple of I.
Proof. Routine. Ol

Definition 2.3. A subspace M of Mx(C) is homogeneous whenever each A € M satisfies
the equivalent conditions (i), (i} in Lemma 2.2.

Proposition 2.4. Let M denote o subspace of the vector space Mx(C) that satisfies (i)~(v)
below:

(i) I,J e M;

(i) M is closed under matriz multiplication,
(iil) M s closed under Hadamard multiplication,
(iv) M is closed under the transpose map;

(v) M is homogeneous.

Then there exists an association scheme X = (X,{R;}L,) that has adjacency algebra M.
Also, X is commutative if and only if AB = BA for all A, B € M. Moreover, X is symmetric
if and only if A* = A for all A € M.

Proof. Since M is closed under Hadamard multiplication, by Lemma 2.1 there exists a basis
{A;}e, for M such that A; 0 A; = §;;4; for 0 < 4,7 < d. Since M contains J, we have
J = Z?:o A;. Since M is homogeneous and contains I, we see that one of the matrices
{A;}L., must equal I; without loss we many assume that Ay = I. Since M is closed under
the transpose map, M contains the matrices {A!}% . Observe that the matrices {A!}%,
form a basis for M, and satisfy Afo A% = §;;A¢ for 0 <4,j < d. By the uniqueness assertion
in Lenmma 2.1, the sequence {A¢}L, is a permutation of the sequence {4;}¢,. In other
words, for 0 < i < d there exists i/ € {0,1,...,d} such that A} = Ay. Since M is closed
under matrix multiplication, for 0 < 4,5 < d there exist scalars pﬁfj € C (0 <k <d)such
that

d
AAy =" pli A
k=0




For 0 < k < d we have pﬁ-",j € N because the nonzero entries of A;, A;, A are equal to 1. For
0 <14 < d define

Ry = {(w,9){Ailw,y) = 1}.

By the above comments, the sequence (X, {R;}¢,) is an association scheme, with asso-
ciate matrices {A4;}&, and adjacency algebra M. The assertions about commutativity and
symmetry are clear. 0

We mention some concepts for later use. Let R denote the field of real numbers.

Let X denote a nonempty finite set. Let V = CX denote the C-vector space consisting of the
column vectors that have coordinates indexed by X and entries in C. Note that My (C) acts
on V by left multiplication. We call V' the standard module. We endow V with a bilinear
form (, ) such that {u,v) = u'¥ for all u,v € V. Abbreviate [|ul|* = (u,u). For u,v,w €V
and o € C, we have

(‘U, ’LL) = ma (a'ua 'U) = O:(’U,, U))
(w4 v,w) = (u,w) + (v, w), ls]|* € R,
llui]? > 0, | =0 iff w=0.

For u,v € V and 4 € Mx(C) we have
(Au,v) == (u, A'0). (6)
For a subspace U C V define
UL — {v € V|{u,0) = 0V ue U},
Note that
V=U+Ut (orthogonal divect sum).

We call UL the orthgonal complement of U.

3 Commutative association schemes

Throughout this section, we assume that X = (X{R;}L,} is a commutative association
scheme. By assumption,

pf; = pl; (0 <i,4,k <d).
Recall that for z,y € X and 0 <17 <d,
{z,y) € R; iff (y,x) € Ry.
For z € X and 0 < i < d define

Ii(z) = {y € X|(z,y) € Ri}.




For 0 <+4,7,k <d and (z,vy) € Ry,

Define
ki =iy (0<i<a). (7)
For z € X,
ki = |Ty(z)] (0<1<d)
Lemma 3.1. We have
(1) ko=1;

(it) k; = ks 0<i<d);

(iif) [X] = Z?:o ki

(iv) k; #£0 (0 <i<d).
Proof. Routine. 0

Proposition 3.2. We have
() pfo = din (0 <4,k <d);
() iy =0 (05 k<)
(i) pY; =digks  (0< 4,7 <d)
(v) pby=pby  (0<ijk<d)
(V) ki=Y50pl;  (0<4k<d)
(Vi) kept; =kiph, = kpl,  (0<4,5,£<d);
{vii) Zizo pifszﬂi,a = Zi:o pg,ipfx,j (0<4,jkt<d).

Proof. (i)~(iv) Routine.
(v} Fix (z,y) € Ry, Partition I';(x) according to how its elements are related to y. This
gives

i) = U‘;:O (Ti(z) N Ty (y)) (disjoint union).

In this equation, take the cardinality of each side,

(vi) The three common values are equal to | X[ times the number of 3-tuples (z,y, z) such
that (x,y) € R and (z,2) € R; and (z,y) € R;.

(vii) In the equation Ap(A;A;) = (Apd;)A;, write each side as a linear combination of
{A}e,, and compare coefficients. [
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