The vectors $\{E_j\hat{x}\}_{j=0}^d$ form a basis for the primary T-module, so $E_{e+1}\hat{x} \neq 0$. Also $K_e^* \neq 0$. Therefore

$$E_{e+1}\Psi_e^*(A^*)\psi_Y \neq 0.$$

On the other hand,

$$E_{e+1}\Psi_e^*(A^*)\psi_Y = E_{e+1}\Psi_e^*(A^*)I\psi_Y$$

$$= E_{e+1}\Psi_e^*(A^*)\left(\sum_{j=0}^d E_j\right)\psi_Y$$

$$= E_{e+1}\Psi_e^*(A^*)E_0\psi_Y + \sum_{j=t+1}^d E_{e+1}\Psi_e^*(A^*)E_j\psi_Y.$$

The polynomial $\Psi_e^*(z)$ has degree e, so by the triple product relations,

$$E_i\Psi_e^*(A^*)E_j=0 \quad \text{if} \quad |i-j|>e \qquad \qquad (0\leq i,j\leq d).$$

Consequently

$$E_{e+1}\Psi_e^*(A^*)E_0=0.$$

Also for $t+1 \le j \le d$,

$$E_{e+1}\Psi_{e}^{*}(A^{*})E_{i}=0$$

because

$$j-e-1\geq t+1-e-1=t-e=e+1.$$

By these comments

$$E_{e+1}\Psi_e^*(A^*)\psi_Y=0.$$

This is a contradiction, so $t \neq 2e + 1$. We have shown that t = 2e is even.

Lecture 29

Until further notice, we assume that our association scheme X is the Hamming scheme H(d,q). Let Y denote a nonempty subset of X. Recall the inner distribution $\{a_i\}_{i=0}^d$ and the dual distribution $\{a_i\}_{j=0}^d$. Recall that

$$a_j^* = \sum_{i=0}^d a_i Q_j(i)$$
 $(0 \le j \le d).$ (83)

We bring in some generating functions. Let x, y denote commuting indeterminates. Define

$$W(x,y) = \sum_{i=0}^{d} a_i x^{d-i} y^i,$$
 $W^*(x,y) = \sum_{i=0}^{d} a_i^* x^{d-i} y^i.$

We are going to show that

$$W^*(x,y) = W(x + (q-1)y, x - y).$$

As we will see, this identity depends only on (83). So let us state the result a bit abstractly. Consider any vectors $\{\alpha_i\}_{i=0}^d$ and $\{\alpha_j^*\}_{j=0}^d$ such that

$$\alpha_j^* = \sum_{i=0}^{d} \alpha_i Q_j(i) \qquad (0 \le j \le d). \tag{84}$$

Define

$$W(x,y) = \sum_{i=0}^{d} \alpha_i x^{d-i} y^i, \qquad W^*(x,y) = \sum_{i=0}^{d} \alpha_i^* x^{d-i} y^i.$$
 (85)

Proposition 20.3. Referring to (84), (85) we have

$$W^*(x,y) = W(x + (q-1)y, x - y).$$

Proof. Recall the Krawtchouk polynomials $\{K_i(z)\}_{i=0}^d$. Recall that $Q_i(j) = K_i(j)$ for $0 \le i, j \le d$. Recall that for $0 \le j \le d$,

$$\sum_{i=0}^{d} K_i(j)z^i = (1-z)^j (1+(q-1)z)^{d-j}.$$

Observe that

$$W^{*}(x,y) = \sum_{j=0}^{d} \alpha_{j}^{*} x^{d-j} y^{j}$$

$$= \sum_{j=0}^{d} x^{d-j} y^{j} \sum_{i=0}^{d} \alpha_{i} K_{j}(i)$$

$$= \sum_{i=0}^{d} \alpha_{i} \sum_{j=0}^{d} K_{j}(i) x^{d-j} y^{j}$$

$$= x^{d} \sum_{i=0}^{d} \alpha_{i} \sum_{j=0}^{d} K_{j}(i) z^{j} \qquad z = y/x$$

$$= x^{d} \sum_{i=0}^{d} \alpha_{i} (1-z)^{i} (1+(q-1)z)^{d-i}$$

$$= \sum_{i=0}^{d} \alpha_{i} (x-y)^{i} (x+(q-1)y)^{d-i}$$

$$= W(x+(q-1)y, x-y).$$

21 Some constraints on the inner distribution and dual distribution

In this section, we discuss a symmetric association scheme $\mathfrak{X} = (X, \{R_i\}_{i=0}^d)$.

Let Y denote a nonempty subset of X. Recall the inner distribution vector $\{a_i\}_{i=0}^d$ of Y and the dual distribution vector $\{a_i^*\}_{i=0}^d$ of Y.

Theorem 21.1. Assume that the ordering $\{E_i\}_{i=0}^d$ is Q-polynomial. Then in the vector $\{a_i^*\}_{i=0}^d$, the number of consecutive zero entries is at most 2s, where s is the degree of Y. In particular, the strength t of Y is at most 2s.

Proof. We assume that there exists an integer ξ ($0 \le \xi \le d - 2s$) such that $a_j^* = 0$ for $\xi \le j \le \xi + 2s$. We will get a contradiction. For Y we have the inner distribution vector $\{a_i\}_{i=0}^d$. Define the set

$$S = \{i | 1 \le i \le d, \ a_i \ne 0\}.$$

Note that s = |S|. Abbreviate $\theta_i^* = Q_1(i)$ for $0 \le i \le d$. Define a polynomial

$$f(z) = \prod_{i \in S} (z - \theta_i^*).$$

The polynomial f(z) has degree s. Note that

$$f(\theta_0^*) = \prod_{i \in S} (\theta_0^* - \theta_i^*) \neq 0.$$

Fix a vertex $x \in Y$ and consider the subconstituent algebra T = T(x). Recall the dual adjacency matrix $A^* = A_1^*(x)$. Recall the characteristic vector ψ_Y . We have

$$\psi_Y = I \psi_Y = \sum_{j=0}^d E_j^* \psi_Y = \hat{x} + \sum_{j=1}^d E_j^* \psi_Y.$$

Therefore

$$f(A^*)\psi_Y = f(\theta_0^*)\hat{x} + \sum_{j=1}^d f(\theta_j^*)E_j^*\psi_Y.$$

For $1 \leq j \leq d$ we have $f(\theta_j^*)E_j^*\psi_Y = 0$, because $E_j^*\psi_Y = 0$ (if $a_j = 0$) and $f(\theta_j^*) = 0$ (if $a_j \neq 0$). By these comments,

$$f(A^*)\psi_Y = f(\theta_0^*)\hat{x}.$$

We consider the vector

$$E_{\xi+s}f(A^*)\psi_Y$$

from two points of view. On one hand,

$$E_{\xi+s}f(A^*)\psi_Y = f(\theta_0^*)E_{\xi+s}\hat{x}.$$

The vectors $\{E_j\hat{x}\}_{j=0}^d$ form a basis for the primary T-module, so $E_{\xi+s}\hat{x} \neq 0$. Also $f(\theta_0^*) \neq 0$. Therefore

$$E_{\xi+s}f(A^*)\psi_Y\neq 0.$$

On the other hand, for $\xi \leq j \leq \xi + 2s$ we have $E_j \psi_Y = 0$ because $a_j^* = 0$. Therefore,

$$E_{\xi+s}f(A^*)\psi_Y = E_{\xi+s}f(A^*)I\psi_Y$$

$$= E_{\xi+s}f(A^*)\left(\sum_{j=0}^d E_j\right)\psi_Y$$

$$= \sum_{j=0}^{\xi-1} E_{\xi+s}f(A^*)E_j\psi_Y + \sum_{j=\xi+2s+1}^d E_{\xi+s}f(A^*)E_j\psi_Y.$$

The polynomial f(z) has degree s, so by the triple product relations,

$$E_i f(A^*) E_j = 0 \quad \text{if} \quad |i - j| > s \qquad (0 \le i, j \le d).$$

For $0 \le j \le \xi - 1$ we have

$$E_{\ell+s}f(A^*)E_i=0$$

because

$$\xi + s - j \ge \xi + s - (\xi - 1) = s + 1.$$

For $\xi + 2s + 1 \le j \le d$ we have

$$E_{\xi+s}f(A^*)E_j=0$$

because

$$j-\xi-s\geq \xi+2s+1-\xi-s=s+1.$$

By these comments

$$E_{\xi+s}f(A^*)\psi_Y=0.$$

This is a contradiction, and the result follows.

Theorem 21.2. Assume that the ordering $\{R_i\}_{i=0}^d$ is P-polynomial. Then in the vector $\{a_i\}_{i=0}^d$, the number of consecutive zero entries is at most $2s^*$, where s^* is the dual degree of Y. In particular, the minimum distance of Y is at most $2s^* + 1$.

Proof. We assume that there exists an integer ξ ($0 \le \xi \le d - 2s^*$) such that $a_i = 0$ for $\xi \le i \le \xi + 2s^*$. We will get a contradiction. For Y we have the dual distribution vector $\{a_j^*\}_{j=0}^d$. Define the set

$$S^* = \{j | 1 \le j \le d, \ a_j^* \ne 0\}.$$

Note that $s^* = |S^*|$. Abbreviate $\theta_i = P_1(i)$ for $0 \le i \le d$. Define a polynomial

$$f^*(z) = \prod_{j \in S^*} (z - \theta_j).$$

The polynomial $f^*(z)$ has degree s^* . Note that

$$f^*(\theta_0) = \prod_{j \in S^*} (\theta_0 - \theta_j) \neq 0.$$

Recall the adjacency matrix $A = A_1$. Recall the characteristic vector ψ_Y and the vector $1 = \sum_{y \in X} \hat{y}$. Note that

$$E_0 \psi_Y = |X|^{-1} J \psi_Y = \frac{|Y|}{|X|} \mathbf{1}.$$

We have

$$\psi_Y = I\psi_Y = \sum_{j=0}^d E_j \psi_Y = \frac{|Y|}{|X|} \mathbf{1} + \sum_{j=1}^d E_j \psi_Y.$$

Therefore

$$f^*(A)\psi_Y = \frac{|Y|}{|X|} f^*(\theta_0) \mathbf{1} + \sum_{j=1}^d f^*(\theta_j) E_j \psi_Y.$$

For $1 \leq j \leq d$ we have $f^*(\theta_j)E_j\psi_Y = 0$, because $E_j\psi_Y = 0$ (if $a_j^* = 0$) and $f^*(\theta_j) = 0$ (if $a_j^* \neq 0$). By these comments,

$$f^*(A)\psi_Y = \frac{|Y|}{|X|}f^*(\theta_0)1.$$

Fix a vertex $x \in Y$ and consider the subconstituent algebra T = T(x). We consider the vector

$$E_{\xi+s^*}^*f^*(A)\psi_Y$$

from two points of view. On one hand,

$$E_{\xi+s^*}^* f^*(A) \psi_Y = \frac{|Y|}{|X|} f^*(\theta_0) E_{\xi+s^*}^* \mathbf{1}.$$

The vectors $\{E_i^*\mathbf{1}\}_{i=0}^d$ form a basis for the primary T-module, so $E_{\xi+s^*}^*\mathbf{1}\neq 0$. Also $f^*(\theta_0)\neq 0$. Therefore

$$E_{\xi+s^*}^* f^*(A) \psi_Y \neq 0.$$

On the other hand, for $\xi \leq i \leq \xi + 2s^*$ we have $E_i^* \psi_Y = 0$ because $a_i = 0$. Therefore,

$$E_{\xi+s^*}^* f^*(A) \psi_Y = E_{\xi+s^*}^* f^*(A) I \psi_Y$$

$$= E_{\xi+s^*}^* f^*(A) \left(\sum_{i=0}^d E_i^* \right) \psi_Y$$

$$= \sum_{i=0}^{\xi-1} E_{\xi+s^*}^* f^*(A) E_i^* \psi_Y + \sum_{i=\xi+2s^*+1}^d E_{\xi+s^*}^* f^*(A) E_i^* \psi_Y.$$

The polynomial $f^*(z)$ has degree s^* , so by the triple product relations,

$$E_i^* f^*(A) E_j^* = 0$$
 if $|i - j| > s^*$ $(0 \le i, j \le d)$.

For $0 \le i \le \xi - 1$ we have

$$E_{\xi+s^*}^* f^*(A) E_i^* = 0$$

because

$$\xi + s^* - i > \xi + s^* - (\xi - 1) = s^* + 1.$$

For $\xi + 2s^* + 1 \le i \le d$ we have

$$E_{\xi+s^*}^* f^*(A) E_i^* = 0$$

because

$$i - \xi - s^* \ge \xi + 2s^* + 1 - \xi - s^* = s^* + 1.$$

By these comments

$$E_{\xi+s^*}^* f^*(A) \psi_Y = 0.$$

This is a contradiction, and the result follows.