Equality is attained in (80) if and only if $g = \gamma$ if and only if $\{a_i\}_{i \in M}$ is a maximal program for (Q, M) and $\{\alpha_j\}_{j=0}^d$ is a minimal program for (Q, M)'. Assume this is the case. The code Y is perfect, so $\delta = 2e + 1$ is odd. We have

$$lpha_j\Biggl(\sum_{i\in M}a_iQ_j(i)\Biggr)=0 \qquad \qquad (1\leq j\leq d).$$

Thus for $1 \leq j \leq d$ such that $\sum_{i \in M} a_i Q_j(i) \neq 0$, we have $\alpha_j = 0$ and hence $\Psi_e(\theta_j) = 0$. The number of such j is equal to the dual degree s^* of Y, and the degree of $\Psi_e(z)$ is equal to e, so $s^* \leq e$. We have $s^* \geq e$ by the MacWilliams inequality, so $s^* = e$. For the polynomial $\Psi_e(z)$ the set of roots is $\{\theta_j | 1 \leq j \leq d, \sum_{i \in M} a_i Q_j(i) \neq 0\}$. Recall that for $1 \leq j \leq d, E_j \psi_Y \neq 0$ if and only if $\sum_{i \in M} a_i Q_j(i) \neq 0$. So for $\Psi_e(z)$ the set of roots is $\{\theta_j | 1 \leq j \leq d, E_j \psi_Y \neq 0\}$.

Lecture 28

20 Designs in a Q-polynomial association scheme

We continue to discuss a symmetric association scheme $\mathcal{X} = (X, \{R_i\}_{i=0}^d)$. Throughout this section we assume that the ordering $\{E_i\}_{i=0}^d$ is Q-polynomial. Abbreviate $\theta_i^* = Q_1(i)$ for $0 \le i \le d$.

Let Y denote a nonempty subset of X. Recall the inner distribution $\{a_i\}_{i=0}^d$ and dual distribution $\{a_i^*\}_{i=0}^d$ of Y.

Definition 20.1. For an integer t $(0 \le t \le d)$, we call Y a t-design whenever $a_i^* = 0$ for $1 \le i \le t$.

Assume that Y is a t-design, and write $e = \lfloor t/2 \rfloor$. Recall the degree

$$s = |\{i | 1 \le i \le d, \ a_i \ne 0\}|.$$

By Corollary 18.14,

$$s > e$$
.

Recall the multiplicities $\{m_i\}_{i=0}^d$ of \mathcal{X} . The Lloyd theorem has the following dual.

Theorem 20.2. Assume that Y is a t-design, and write $e = \lfloor t/2 \rfloor$.

(i) We have

$$|Y| \ge m_0 + m_1 + \dots + m_e.$$
 (81)

- (ii) Assume that equality holds in (81). Then t = 2e is even.
- (iii) Assume that equality holds in (81). Then s = e.

(iv) Assume that equality holds in (81). Define a polynomial

$$\Psi_e^*(z) = \sum_{i=0}^e v_i^*(z),$$

where the polynomial $v_i^*(z)$ has degree i and $Q_i(j) = v_i^*(\theta_j^*)$ for $0 \le j \le d$. Then the roots of $\Psi_e^*(z)$ are

$$\{\theta_j^* | 1 \le j \le d, \ a_j \ne 0\}.$$

Proof. We use the linear programming method. Let us take $M = \{0, 2e+1, 2e+2, \ldots, d\}$ and C = P. Recall the dual distribution vector $\{a_i^*\}_{i=0}^d$ of Y. We have $a_0^* = |Y|$ and $a_i^* = 0$ for $1 \le i \le 2e$. For $0 \le j \le d$ we have

$$a_j = |X|^{-1} \sum_{i=0}^d a_i^* P_j(i).$$

Define

$$b_i = \frac{a_i^*}{|Y|} \qquad (0 \le i \le d).$$

We have $b_0 = 1$ and $b_i = 0$ for $1 \le i \le 2e$. Moreover for $0 \le j \le d$,

$$\sum_{i=0}^{d} b_i P_j(i) = \frac{|X|}{|Y|} a_j \ge 0.$$

By these comments, the vector $\{b_i\}_{i\in M}$ is a program for (P, M). Next we display a program $\{\beta_j\}_{j=0}^d$ for (P, M)'. Define

$$K_e^* = \sum_{i=0}^e m_i.$$

Note that

$$K_e^* = \sum_{i=0}^e Q_i(0) = \sum_{i=0}^e v_i^*(\theta_0^*) = \Psi_e^*(\theta_0^*).$$

Define

$$\beta_j = \left(\frac{\Psi_e^*(\theta_j^*)}{K_e^*}\right)^2 \qquad (0 \le j \le d).$$

By construction, $\beta_0 = 1$ and $\beta_j \geq 0$ for $1 \leq j \leq d$. Recall that

$$P_j(i) = \frac{Q_i(j)k_j}{m_i} = \frac{v_i^*(\theta_j^*)k_j}{m_i} \qquad (0 \le i, j \le d).$$

So for $i \in M^{\times}$,

$$\sum_{j=0}^{d} \beta_j P_j(i) = \sum_{j=0}^{d} \left(\frac{\Psi_e^*(\theta_j^*)}{K_e^*}\right)^2 \frac{v_i^*(\theta_j^*) k_j}{m_i}$$
$$= \frac{1}{(K_e^*)^2 m_i} \sum_{j=0}^{d} \left(\Psi_e^*(\theta_j^*)\right)^2 v_i^*(\theta_j^*) k_j.$$

By construction, the polynomial $\Psi_e^*(z)$ has degree e. Write

$$(\Psi_e^*(z))^2 = \sum_{\ell=0}^{2e} c_\ell^* v_\ell^*(z).$$
 $c_\ell^* \in \mathbb{R}.$

We state the orthogonality relation for Q. For $0 \le i, j \le d$ we have

$$\delta_{i,j}|X|m_i=\sum_{\ell=0}^dQ_i(\ell)Q_j(\ell)k_\ell=\sum_{\ell=0}^dv_i^*(heta_\ell^*)v_j^*(heta_\ell^*)k_\ell.$$

For $i \in M^{\times}$,

$$\sum_{j=0}^{d} \beta_{j} P_{j}(i) = \frac{1}{(K_{e}^{*})^{2} m_{i}} \sum_{j=0}^{d} (\Psi_{e}^{*}(\theta_{j}^{*}))^{2} v_{i}^{*}(\theta_{j}^{*}) k_{j}$$

$$= \frac{1}{(K_{e}^{*})^{2} m_{i}} \sum_{j=0}^{d} \sum_{\ell=0}^{2e} c_{\ell}^{*} v_{\ell}^{*}(\theta_{j}^{*}) v_{i}^{*}(\theta_{j}^{*}) k_{j}$$

$$= \frac{1}{(K_{e}^{*})^{2} m_{i}} \sum_{\ell=0}^{2e} c_{\ell}^{*} \sum_{j=0}^{d} v_{\ell}^{*}(\theta_{j}^{*}) v_{i}^{*}(\theta_{j}^{*}) k_{j}$$

$$= \frac{1}{(K_{e}^{*})^{2} m_{i}} \sum_{\ell=0}^{2e} c_{\ell}^{*} |X| \delta_{\ell,i} m_{i}$$

$$= 0.$$

We have shown that the vector $\{\beta_j\}_{j=0}^d$ is a program for (P, M)'. Next, we compute the objective function γ for the program $\{\beta_j\}_{j=0}^d$. We have

$$\gamma = \sum_{\ell=0}^{d} \beta_{\ell} P_{\ell}(0) = \frac{1}{(K_{e}^{*})^{2}} \sum_{\ell=0}^{d} (\Psi_{e}^{*}(\theta_{\ell}^{*}))^{2} k_{\ell}$$

$$= \frac{1}{(K_{e}^{*})^{2}} \sum_{\ell=0}^{d} \sum_{i=0}^{e} \sum_{j=0}^{e} v_{i}^{*}(\theta_{\ell}^{*}) v_{j}^{*}(\theta_{\ell}^{*}) k_{\ell} = \frac{1}{(K_{e}^{*})^{2}} \sum_{i=0}^{e} \sum_{j=0}^{e} \sum_{\ell=0}^{d} v_{i}^{*}(\theta_{\ell}^{*}) v_{j}^{*}(\theta_{\ell}^{*}) k_{\ell}$$

$$= \frac{1}{(K_{e}^{*})^{2}} \sum_{i=0}^{e} \sum_{j=0}^{e} |X| \delta_{i,j} m_{i} = \frac{|X|}{(K_{e}^{*})^{2}} \sum_{i=0}^{e} m_{i} = \frac{|X|}{K_{e}^{*}}.$$

Using the linear programming bound,

$$\frac{|X|}{|Y|} = \sum_{i \in M} b_i = g \le \gamma = \frac{|X|}{K_e^*}.$$

In other words,

$$|Y| \ge m_0 + m_1 + \dots + m_e. \tag{82}$$

Equality is attained in (82) if and only if $g = \gamma$ if and only if $\{b_i\}_{i \in M}$ is a maximal program for (P, M) and $\{\beta_j\}_{j=0}^d$ is a minimal program for (P, M)'. Assume this is the case. We have

$$\beta_j \left(\sum_{i \in M} b_i P_j(i) \right) = 0$$
 $(1 \le j \le d).$

Thus for $1 \leq j \leq d$ such that $\sum_{i \in M} b_i P_j(i) \neq 0$, we have $\beta_j = 0$ and hence $\Psi_e^*(\theta_j^*) = 0$. The number of such j is equal to the degree s of Y, and the degree of $\Psi_e^*(z)$ is equal to e, so $s \leq e$. We mentioned earlier that $s \geq e$, so s = e. For the polynomial $\Psi_e^*(z)$ the set of roots is equal to $\{\theta_j^*|1 \leq j \leq d, \sum_{i \in M} b_i P_j(i) \neq 0\}$, which is equal to $\{\theta_j^*|1 \leq j \leq d, a_j \neq 0\}$.

It remains to show that t=2e is even. We suppose not, and get a contradiction. We have t=2e+1. For the rest of this proof, fix a vertex $x\in Y$ and consider the subconstituent algebra T=T(x). For $0\leq i\leq d$, T contains the dual primitive idempotent $E_i^*=E_i^*(x)$ and the dual associate matrix $A_i^*=A_i^*(x)$. Recall that $A_i^*=v_i^*(A^*)$, where $A^*=A_1^*$ is the dual adjacency matrix. Recall the characteristic vector ψ_Y . We have

$$\psi_Y = I\psi_Y = \sum_{j=0}^d E_j^* \psi_Y = \hat{x} + \sum_{j=1}^d E_j^* \psi_Y.$$

Therefore

$$\Psi_e^*(A^*)\psi_Y = \Psi_e^*(heta_0^*)\hat{x} + \sum_{j=1}^d \Psi_e^*(heta_j^*)E_j^*\psi_Y.$$

Recall that $\Psi_e^*(\theta_0^*) = K_e^*$. Also for $1 \leq j \leq d$ we have $\Psi_e^*(\theta_j^*)E_j^*\psi_Y = 0$, because $E_j^*\psi_Y = 0$ (if $a_j = 0$) and $\Psi_e^*(\theta_j^*) = 0$ (if $a_j \neq 0$). By these comments,

$$\Psi_e^*(A^*)\psi_Y = K_e^*\hat{x}.$$

We consider the vector

$$E_{e+1}\Psi_e^*(A^*)\psi_Y$$

from two points of view. On one hand,

$$E_{e+1}\Psi_e^*(A^*)\psi_Y = K_e^* E_{e+1}\hat{x}.$$

The vectors $\{E_j\hat{x}\}_{j=0}^d$ form a basis for the primary T-module, so $E_{e+1}\hat{x} \neq 0$. Also $K_e^* \neq 0$. Therefore

$$E_{e+1}\Psi_e^*(A^*)\psi_Y \neq 0.$$

On the other hand,

$$\begin{split} E_{e+1}\Psi_e^*(A^*)\psi_Y &= E_{e+1}\Psi_e^*(A^*)I\psi_Y \\ &= E_{e+1}\Psi_e^*(A^*) \left(\sum_{j=0}^d E_j\right)\psi_Y \\ &= E_{e+1}\Psi_e^*(A^*)E_0\psi_Y + \sum_{j=t+1}^d E_{e+1}\Psi_e^*(A^*)E_j\psi_Y. \end{split}$$

The polynomial $\Psi_e^*(z)$ has degree e, so by the triple product relations,

$$E_i \Psi_e^*(A^*) E_j = 0 \quad \text{if} \quad |i - j| > e \qquad (0 \le i, j \le d).$$

Consequently

$$E_{e+1}\Psi_e^*(A^*)E_0=0.$$

Also for $t+1 \le j \le d$,

$$E_{e+1}\Psi_{e}^{*}(A^{*})E_{i}=0$$

because

$$j - e - 1 \ge t + 1 - e - 1 = t - e = e + 1.$$

By these comments

$$E_{e+1}\Psi_e^*(A^*)\psi_Y = 0.$$

This is a contradiction, so $t \neq 2e + 1$. We have shown that t = 2e is even.