Equality is attained in (80) if and only if g = +y if and only if {a; }ear is & maximal program
for (Q, M) and {afj}?:g is a minimal program for (@), M)’. Assume this is the case. The
code Y is perfect, so § = 2e + 1 is odd. We have

Thus for 1 < § < d such that >~ ., :Q;(¢) # 0, we have a; = 0 and hence ¥.(d;) = 0. The
number of such j is equal to the dual degree ¢* of ¥, and the degree of U,.(z) is equal to ¢, so
s* < e. We have s* > ¢ by the MacWilliams inequality, so s* = e. For the polynomial ¥,(#)
the set of roots is {851 < 7 < d, >4 0:@5(4) # 0}. Recall that for 1 < j < d, Epby # 0
if and only if 3", 5, :@Q;(2) # 0. So for W.(z) the set of roots is {6;11 < j < d, Eppy # 0},

Lecture 28

20 Designs in a ()-polynomial association scheme

We continue to discuss a symmetric association scheme X = (X, {R;}%.,). Throughout this
section we assume that the ordering {E;}¢., is Q-polynomial. Abbreviate &f = Q, (¢} for
0<i<d

Let Y denote a nonempty subset of X. Recall the inner distribution {a;}{, and dual
distribution {a}}{, of Y.

Definition 20.1. For an integer ¢ (0 < ¢t < d), we call Y a t-design whenever af = 0 for
1<i<H.

Assume that ¥ is a t;desigll, and write e = |£/2]. Recall the degree
s=|{i|]l <i<d, a; #0}|.
By Coroliary 18.14,
s8> e.
Recall the multiplicities {m;}&, of X. The Lloyd theorem has the following dual.
Theorem 20.2. Assume that Y is a t-design, and write e = {1/2].
(i) We have

Y| = mo+my + - 4 1m.. (81)

(ii) Assume that equality holds in {81). Thent = 2e is even.

(iii) Assume that equality holds in (81). Then s =-e,
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(iv) Assume that equality holds in (81). Define a polynomial

SIS

where the polynomial vi(z) has degree i and Q;(5) = vi(67) for 0 < j < d. Then the
roots of Ui(z) are

{611 <5 < d, a; # 0}

Proof. We use the linear programming method. Let us take M = {0,2e +1,2e+2,...,d}
and C = P. Recall the dual distribution vector {a}}¢, of ¥. We have a§ = iY | and af =0
for 1 <14 < 2e. For 0 < 5 < d we have

d
= X7 ) aiPi(0)
fe=0)

Define

*

a.
. < 4 < ).
] (O=izd)

We have by = 1 and b; = 0 for 1 <14 < 2e. Moreover for 0 < 5 <d,

by =

d
S 4p X]

bLJPS,(’L) = Ili_/|a}j 2 0.
=0

By these comments, the vector {b;}ieas is a program for (P, M). Next we display a program
{8;}{-p for (P, MY. Define

= Z?ﬂi.
=0
Note that
Kp = @Qi0)="> ui{0}) = Vi(65).
i=0 =0
Define
W% 2
ﬂjm(—%(,%) 0<i<a)

By construction, Sy = 1 and B; > 0 for 1 < j < d. Recall that

Qil7)k; . vy (03)k;

my my

Pi(i) = (0 <4,7 <d).
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So for 4 € M,

N & A AW
;ﬁjﬁ'(z)=2( I{;‘j) —

pr my
- S ) e
(I(*)2m; 4 e\t AT
j=0
By construction, the polynomial U*(2z) has degree e. Write

2e

(W:(2)" =S cwilz). G eR.
£=0

We state the orthogonality relation for ). For 0 < 4,7 < d we have

,3,|meZQz(eQ3 (O)ky = Z?) AL

For i € M*,

d
Z BiPi) = ¢ Kx)zml > (W) i (05)k;

We have shown that the vector {ﬁj}J o is a program for (P, M)". Next, we compute the
objective function « for the program {f; }J o We have

d d
1 .
v= ) BeFe(0) = W Z(\Pé(ﬁg)fkg
=0
1 1 e e d
= Ty Z Z Zv (0)v; = I PACAA(AL
e EOLOJO ¢ @':{}ijIZ:G
K*)2 }:0 Z@ | X |6 jmy = K* Zm; K"‘ .
== J e
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Using the linear programming bound,

X X
‘Iyllzzb@':gg"’zlffj'
teM ¢

In other words,
V] = mo+mi+ - 4 e (82)

Equality is attained in (82} if and only if g = -y if and only if {b;}sens is & maximal program
for (P, M) and {8;}% is a minimal program for (P, M)'. Assume this is the case. We have

By (Z bin(z')) =0 (1<j<d).

ieM

Thus for 1 < § < d such that 3, ,, b:P;(¢) # 0, we have f; = 0 and hence W) = 0. The
number of such § is equal to the degree s of Y, and the degree of U#(2) is equal to e, so
s < e. We mentioned earlier that s > e, so s = e. For the polynomial U*(z} the set of roots
is equal to {0511 < J <d, > iem b;P;(4) # 0}, which is equal to {05]1 < j <d, a; # 0}.

It remains to show that £ = 2e is even. We suppose not, and get a contradiction. We have
+ = 2¢ + 1. For the rest of this proof, fix a vertex # € ¥ and consider the subconstituent
algebra T = T'(z). For 0 <4 < d, T contains the dual primitive idempotent B = Ei{x) and
the dual associate matrix AT = A¥(z). Recall that A} = vf(A*), where A* = A] is the dual
adjacency matrix. Recall the characteristic vector 1y. We have

d d
gy = Iy =y Bjpy =&+ ) Ejr.
j=0 3=1
Therefore
d
WAy = Ta(0)E + > Vel iy
i=1

Recall that U2 (6;) = K*. Also for 1 < j < d we have U} (8;) Ejgy = 0, because Ejpy =0
(if a; = 0) and ¥3(8}) = 0 (if a; # 0). By these comments,

To(A Wy = K73,
We consider the vector
Eopt W (A Wy
from two points of view. On one hand,

Bt WAy = K Foyy 2.
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The vectors {E;&}9_y form a basis for the primary T-module, so Eer1& # 0. Also K7 # 0.
Therefore

Eer1 Vo (A Wy # 0.
On the other hand,

Eo WA Wy = B V(A" Yy

d
= Fey. W (A7) (Z Ej) Py

3=0

d
= Doy UL (A" Eoty + Z Eoa Vg (A™) Bty

J=t41
The polynomial ¥(z) has degree e, so by the triple product relations,
BV (AYE; =0 if |i—4d|>e (0<i,7<d).

Consequently

B V{AYEy = 0.
Alsofort+1 < 5 < d,

BV, (ANYE; =0
because

j—e—12t+l—e—1=t—e=e+1.

By these comments

B V(A )y = 0.

This is a contradiction, so ¢ # 2e + 1. We have shown that { = 2e is even. H
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