Proof. (i)–(iii) By our above comments.

(iv) Suppose not. Then $\delta = 2e + 2$ is even. Pick $y \in Y$. Pick $z \in X$ such that $\partial(y, z) = e + 1$. The vertex z is not contained in any of the subsets (78). Therefore the subsets (78) do not partition X, a contradiction.

Definition 19.5. The code Y is called *perfect* whenever equality holds in (79).

Recall the characteristic vector ψ_Y . Recall the Bose-Mesner algebra \mathcal{M} and the vector $\mathbf{1} = \sum_{x \in X} \hat{x}$.

Theorem 19.6. (Lloyd type theorem, I). Assume that Y is perfect, and write $\delta = 2e + 1$.

- (i) The vectors $\{A_i\psi_Y\}_{i=0}^e$ are linearly independent;
- (ii) $(A_0 + A_1 + \cdots + A_e)\psi_Y = 1$;
- (iii) $(A kI)(A_0 + A_1 + \dots + A_e)\psi_Y = 0;$
- (iv) the vectors $\{A_i\psi_Y\}_{i=0}^e$ span $\mathcal{M}\psi_Y$;
- (v) dim $\mathcal{M}\psi_Y = 1 + e$;
- (vi) the dual degree $s^* = e$.

Proof. (i) For these vectors the nonzero coordinates are in disjoint locations.

(ii) Because X is partitioned by the subsets

$$\{z \in X | \partial(y, z) \le e\}$$
 $y \in Y$.

(iii) The graph Γ is regular with valency k, so A1 = k1. The result follows by this and (ii).

(iv) Let W denote the span of $\{A_i\psi_Y\}_{i=0}^e$. Note that $\psi_Y \in W$. We show that $W = \mathcal{M}\psi_Y$. To do this, it suffices to show that $AW \subseteq W$. For $0 \le i \le e-1$ we have $AA_i\psi_Y \in W$, because AA_i is a linear combination of A_{i-1} , A_i , A_{i+1} . Also, $AA_e\psi_Y \in W$ in view of (iii).

(v) By (i), (iv) above.

(vi) We show that the dimension of $\mathcal{M}\psi_Y$ is equal to $1+s^*$. The vector space \mathcal{M} has a basis $\{E_i\}_{i=0}^d$. The vector space $\mathcal{M}\psi_Y$ has a basis consisting of the nonzero vectors among $\{E_i\psi_Y\}_{i=0}^d$. The cardinality of this basis is $1+s^*$, in view of Lemma 18.11. So the dimension of $\mathcal{M}\psi_Y$ is equal to $1+s^*$. The result follows by this and (v).

Lecture 27

Theorem 19.7. (Lloyd type theorem, II). Assume that Y is perfect, and write $\delta = 2e + 1$. Define a polynomial

$$\Psi_e(z) = \sum_{i=0}^e v_i(z),$$

where the polynomial $v_i(z)$ has degree i and $A_i = v_i(A)$. Then the roots of $\Psi_e(z)$ are

$$\{\theta_i|1\leq i\leq d,\ E_i\psi_Y\neq 0\}.$$

Proof. The polynomial $\Psi_e(z)$ has degree e. There are e many integers i $(1 \le i \le d)$ such that $E_i \psi_Y \ne 0$. For these i we show that $\Psi_e(\theta_i) = 0$. We have

$$0 = (A - kI)(A_0 + A_1 + \dots + A_e)\psi_Y = (A - kI)\Psi_e(A)\psi_Y.$$

For $1 \leq i \leq d$,

$$0 = E_i(A - kI)\Psi_e(A)\psi_Y$$

= $(\theta_i - k)\Psi_e(\theta_i)E_i\psi_Y$.

If $E_i \psi_Y \neq 0$ then $\Psi_e(\theta_i) = 0$, by the above equation and $\theta_i \neq k$. The result follows.

The polynomial $\Psi_e(z)$ in Theorem 19.7 is called the *Lloyd polynomial*. This polynomial is determined by e and the intersection numbers of the scheme.

Next we consider Lloyd I, II using linear programming. Let Y denote a code with minimum distance δ , and write $e = \lfloor (\delta - 1)/2 \rfloor$. Note that $\delta = 2e + 1$ or $\delta = 2e + 2$. Let us take $M = \{0, 2e + 1, 2e + 2, \ldots, d\}$ and C = Q. Recall the inner distribution vector $\{a_i\}_{i=0}^d$ of Y. We have $a_0 = 1$ and $a_i = 0$ for $1 \le i \le 2e$. The vector $\{a_i\}_{i \in M}$ is a program for (Q, M). Next we display a program $\{\alpha_j\}_{j=0}^d$ for (Q, M)'. Define

$$K_e = \sum_{i=0}^e k_i.$$

Note that

$$K_e = \sum_{i=0}^{e} P_i(0) = \sum_{i=0}^{e} v_i(\theta_0) = \Psi_e(\theta_0).$$

Define

$$lpha_j = \left(rac{\Psi_{m{e}}(heta_j)}{K_{m{e}}}
ight)^2 \qquad \qquad (0 \leq j \leq d).$$

By construction, $\alpha_0 = 1$ and $\alpha_j \geq 0$ for $1 \leq j \leq d$. Recall that

$$Q_j(i) = \frac{P_i(j)m_j}{k_i} = \frac{v_i(\theta_j)m_j}{k_i} \qquad (0 \le i, j \le d).$$

So for $i \in M^{\times}$,

$$\begin{split} \sum_{j=0}^d \alpha_j Q_j(i) &= \sum_{j=0}^d \left(\frac{\Psi_e(\theta_j)}{K_e}\right)^2 \frac{v_i(\theta_j) m_j}{k_i} \\ &= \frac{1}{K_e^2 k_i} \sum_{j=0}^d \left(\Psi_e(\theta_j)\right)^2 v_i(\theta_j) m_j. \end{split}$$

By construction, the polynomial $\Psi_e(z)$ has degree e. Write

$$\left(\Psi_e(z)\right)^2 = \sum_{\ell=0}^{2e} c_\ell v_\ell(z). \qquad c_\ell \in \mathbb{R}.$$

We recall the orthogonality relation for P. For $0 \leq i, j \leq d$ we have

$$\delta_{i,j}|X|k_i = \sum_{\ell=0}^d P_i(\ell)P_j(\ell)m_\ell = \sum_{\ell=0}^d v_i(\theta_\ell)v_j(\theta_\ell)m_\ell.$$

For $i \in M^{\times}$,

$$\sum_{j=0}^{d} \alpha_{j} Q_{j}(i) = \frac{1}{K_{e}^{2} k_{i}} \sum_{j=0}^{d} (\Psi_{e}(\theta_{j}))^{2} v_{i}(\theta_{j}) m_{j}$$

$$= \frac{1}{K_{e}^{2} k_{i}} \sum_{j=0}^{d} \sum_{\ell=0}^{2e} c_{\ell} v_{\ell}(\theta_{j}) v_{i}(\theta_{j}) m_{j}$$

$$= \frac{1}{K_{e}^{2} k_{i}} \sum_{\ell=0}^{2e} c_{\ell} \sum_{j=0}^{d} v_{\ell}(\theta_{j}) v_{i}(\theta_{j}) m_{j}$$

$$= \frac{1}{K_{e}^{2} k_{i}} \sum_{\ell=0}^{2e} c_{\ell} |X| \delta_{\ell,i} k_{i}$$

$$= 0.$$

We have shown that the vector $\{\alpha_j\}_{j=0}^d$ is a program for (Q, M)'. Next, we compute the objective function γ for the program $\{\alpha_j\}_{j=0}^d$. We have

$$\gamma = \sum_{\ell=0}^{d} \alpha_{\ell} Q_{\ell}(0) = \frac{1}{K_{e}^{2}} \sum_{\ell=0}^{d} (\Psi_{e}(\theta_{\ell}))^{2} m_{\ell}$$

$$= \frac{1}{K_{e}^{2}} \sum_{\ell=0}^{d} \sum_{i=0}^{e} \sum_{j=0}^{e} v_{i}(\theta_{\ell}) v_{j}(\theta_{\ell}) m_{\ell} = \frac{1}{K_{e}^{2}} \sum_{i=0}^{e} \sum_{j=0}^{e} \sum_{\ell=0}^{d} v_{i}(\theta_{\ell}) v_{j}(\theta_{\ell}) m_{\ell}$$

$$= \frac{1}{K_{e}^{2}} \sum_{i=0}^{e} \sum_{j=0}^{e} |X| \delta_{i,j} k_{i} = \frac{|X|}{K_{e}^{2}} \sum_{i=0}^{e} k_{i} = \frac{|X|}{K_{e}}.$$

Using the linear programming bound,

$$|Y| = \sum_{i \in M} a_i = g \le \gamma = \frac{|X|}{K_e}.$$

In other words,

$$|Y|(k_0 + k_1 + \dots + k_e) \le |X|.$$
 (80)

Equality is attained in (80) if and only if $g = \gamma$ if and only if $\{a_i\}_{i \in M}$ is a maximal program for (Q, M) and $\{\alpha_j\}_{j=0}^d$ is a minimal program for (Q, M)'. Assume this is the case. The code Y is perfect, so $\delta = 2e + 1$ is odd. We have

$$lpha_j \Biggl(\sum_{i \in M} a_i Q_j(i) \Biggr) = 0 \qquad \qquad (1 \leq j \leq d).$$

Thus for $1 \leq j \leq d$ such that $\sum_{i \in M} a_i Q_j(i) \neq 0$, we have $\alpha_j = 0$ and hence $\Psi_e(\theta_j) = 0$. The number of such j is equal to the dual degree s^* of Y, and the degree of $\Psi_e(z)$ is equal to e, so $s^* \leq e$. We have $s^* \geq e$ by the MacWilliams inequality, so $s^* = e$. For the polynomial $\Psi_e(z)$ the set of roots is $\{\theta_j | 1 \leq j \leq d, \sum_{i \in M} a_i Q_j(i) \neq 0\}$. Recall that for $1 \leq j \leq d, E_j \psi_Y \neq 0$ if and only if $\sum_{i \in M} a_i Q_j(i) \neq 0$. So for $\Psi_e(z)$ the set of roots is $\{\theta_j | 1 \leq j \leq d, E_j \psi_Y \neq 0\}$.

20 Designs in a Q-polynomial association scheme

We continue to discuss a symmetric association scheme $\mathfrak{X} = (X, \{R_i\}_{i=0}^d)$. Throughout this section we assume that the ordering $\{E_i\}_{i=0}^d$ is Q-polynomial. Abbreviate $\theta_i^* = Q_1(i)$ for $0 \le i \le d$.

Let Y denote a nonempty subset of X. Recall the inner distribution $\{a_i\}_{i=0}^d$ and dual distribution $\{a_i^*\}_{i=0}^d$ of Y.

Definition 20.1. For an integer t $(0 \le t \le d)$, we call Y a t-design whenever $a_i^* = 0$ for $1 \le i \le t$.

Assume that Y is a t-design, and write $e = \lfloor t/2 \rfloor$. Recall the degree

$$s = |\{i | 1 \le i \le d, \ a_i \ne 0\}|.$$

By Corollary 18.14,

$$s \ge e$$
.

Recall the multiplicities $\{m_i\}_{i=0}^d$ of \mathcal{X} . The Lloyd theorem has the following dual.

Theorem 20.2. Assume that Y is a t-design, and write $e = \lfloor t/2 \rfloor$.

(i) We have

$$|Y| \ge m_0 + m_1 + \dots + m_e. \tag{81}$$

- (ii) Assume that equality holds in (81). Then t = 2e is even.
- (iii) Assume that equality holds in (81). Then s = e.

(iv) Assume that equality holds in (81). Define a polynomial

$$\Psi_e^*(z) = \sum_{i=0}^e v_i^*(z),$$

where the polynomial $v_i^*(z)$ has degree i and $Q_i(j) = v_i^*(\theta_j^*)$ for $0 \le j \le d$. Then the roots of $\Psi_e^*(z)$ are

$$\{\theta_j^* | 1 \le j \le d, \ a_j \ne 0\}.$$

Proof. We use the linear programming method. Let us take $M = \{0, 2e+1, 2e+2, \ldots, d\}$ and C = P. Recall the dual distribution vector $\{a_i^*\}_{i=0}^d$ of Y. We have $a_0^* = |Y|$ and $a_i^* = 0$ for $1 \le i \le 2e$. For $0 \le j \le d$ we have

$$a_j = |X|^{-1} \sum_{i=0}^d a_i^* P_j(i).$$

Define

$$b_i = \frac{a_i^*}{|Y|} \qquad (0 \le i \le d).$$

We have $b_0 = 1$ and $b_i = 0$ for $1 \le i \le 2e$. Moreover for $0 \le j \le d$,

$$\sum_{i=0}^{d} b_i P_j(i) = \frac{|X|}{|Y|} a_j \ge 0.$$

By these comments, the vector $\{b_i\}_{i\in M}$ is a program for (P, M). Next we display a program $\{\beta_j\}_{j=0}^d$ for (P, M)'. Define

$$K_e^* = \sum_{i=0}^e m_i.$$

Note that

$$K_e^* = \sum_{i=0}^e Q_i(0) = \sum_{i=0}^e v_i^*(\theta_0^*) = \Psi_e^*(\theta_0^*).$$

Define

$$\beta_j = \left(\frac{\Psi_e^*(\theta_j^*)}{K_e^*}\right)^2 \qquad (0 \le j \le d).$$

By construction, $\beta_0 = 1$ and $\beta_j \geq 0$ for $1 \leq j \leq d$. Recall that

$$P_{j}(i) = \frac{Q_{i}(j)k_{j}}{m_{i}} = \frac{v_{i}^{*}(\theta_{j}^{*})k_{j}}{m_{i}}$$
 $(0 \le i, j \le d).$