Theorem 18.9. With the above notation,

Y
BYBy = |15(""| P'Aq P.

Proof. For 0 < i,7 < d we show that the (¢, j)-entry of each side is equal to

d
Y] Zpﬁjak.
k=0

Using Lemma 18.8 the (i, 7)-entry of B By is equal to
d d
(Asy ) Ay = Wo AApby =Y bbb Ay = [V ) ol
k=0 k=0

The (i, j)-entry of PtAa;P is equal to

d d
> PhagP; =Y P(f)a;Pi(0)

=0

£=0
d d
= Z ag pr,jpk(e)
k=0

£=0 o=
d d
= pr,j Z ag Fi,(¢)
k=0 £=0

d
= X] Zpﬁjak-
k=0

]

Corollary 18.10. The rank of the matriz By is equal to the number of nonzero scalars
among {af}d,.

Proof. By Theorem 18.9 and since P is invertible. O

Lecture 26

Let us clarify what it means for some a} to be zero.

Lemma 18.11. For 0 <1 < d the following are equivalent:

(iii) column ¢ of By @ is zero.
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Proof. By Corollary 18.5 and Lemma 18.8(ii). Ol
Definition 18.12. We define some parameters as follows.
(i) Define
§ = min{i|1 <7 < d, a; # 0}, §* = min{i|l <4 <d, aj #0}.
We call & (resp. 6*) the minimum distance (vesp. dual minimum distance) of Y.
(ii) Define
s=|{i]l <i<d, a; £0}, st=|{ill <i<d, af #0}|.
We call s (resp. s*) the degree (vesp. dual degree) of Y.
(iii) Define
t=max{i|]l <i<d, af=aj=---=a; =0} =06 —1
We call t the strength of Y.
The above definitions depend on the given orderings {R;}¢, and {E;} L.

Our next general goal is to explain the MacWilliams inequality. This inequality will play an
important role for codes and designs.

We bring in some notation. For any row vector u = (ug, U1, . - ., Ua) such that ug =+ 0, define
s(u) = |{ill <i<d, u # 0}
We also define
t(u) = max{i|l <i<d, uy =uy=---=u; = 0}.
If u; # 0 then we define t(u) = 0.

Theorem 18.13. (MacWilliams inequality). Consider a row vector u = (ug, U1, - - - Ud)
such that ug # 0.

(i) Assume that the ordering {R;}{—, is P-polynomial. Then
s(uQ) > V—%Q}

(i) Assume that the ordering {E;}{q is Q-polynomial. Then

s(uP) > V_(;‘—)}
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Proof. (i) Write 6; = Py(3) for 0 <4 < d. For 0 < k < d there exists a polynomial vy(2 ) that
has degree k and Py (i) = v, (6;) for 0 <4 < d. Abbreviate t = t(u). By assumption u; = 0
for 1 < i < t. Abbreviate s = s(u@). We assume s < |t/2] and get a contradiction. Note
that 2s + 2 < t. Define the set S = {1 <14 < d, >0 ,ue®Qi(€) # 0}. So s = |S|. Define a
polynomial

f(z) = (z=60) [ [ (= 05).

jes
The degree of f(z) is s+ 1. For 0 <17 < d,
f(6;)=0  ifandonlyif i€ SU{0}.
The degree of f(2)? is 2s -+ 2. Therefore f(z)? is a linear combination of {v;(z)};25*. Write

2542
1=0
Define
b =0 (25 +3 < i < d).

For 1 < i < d we have u;b; = 0, because u; = 0 for 1 <i <tandb;=0fort+1<4 <d.
Consider the row vector

/ b:(bo,bl,...,bd).
Observe that

d
uQ(bPYt = uQPY = | X |ub' = |X| Y usb; = | X|uobo.
=0

Observe that for j € SU {0},

d
(bPY) (7 Zkak k}:bkuk(ej) = f(8;)* =0.
=0

Therefore
u@Q(bPH) = 0.
We have ugbg = 0 and ug # 0, so bg = 0. Observe that
d d
> F(6:)°Qs ZZb P;(i Zb ZQz = " b;(QP)o; = |Xbo = 0.
i=0 i=0 j=0 j=0
This is impossible because f(6;)? > 0 and Q;(0) = m; > 0 for i ¢ S U {0}. O

Corollary 18.14. Assume that the ordering {E;}{, is Q-polynomial. LetY denote a
nonempty subset of X that has degree s and strength t. Then

s > |t/2].
Proof. Apply Theorem 18.13(ii) with v = ay Q. O
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19 Codes in a P-polynomial association scheme

We continue to discuss a symmetric association scheme X = (X, {R;}¢ ). Throughout
this section we assume that the ordering {R;}¢ o is P-polynomial. Recall that the graph
I' = (X, R,) is distance-regular. Let 0 denote the path-length distance function for I'. Recall
that for y,z € X and 0 < i < d, 8(y,2) = 4 if and only if (y,2) € R;. Abbreviate A = A;
and 6; = P.(4) for 0 <7 < d. Recall the valencies {k;}L,. Abbreviate k = k.

For z € X and 0 < e < d we consider the set of vertices
{y € X]0(z,y) <e}.
This set has a partition
{y € X|0(z,y) < e} = UioLi(2).
Therefore
[{y € X|0(@,y) < e} =D INi(@) =D _ ki
i=0 i
Let Y denote a subset of X with |[Y| > 2. We call Y a code. We consider the minimum

distance & = min{d(y, 2)|y,z € Y, y # z}. We have 1 <4 < d.

Definition 19.1. For 0 < e < d, the code Y is e error correcting whenever Iy,z) > 2e+1
for distinct y,z € Y.

Lemma 19.2. The code Y is e error correcting for 0 < e < [(6 —1)/2].

Proof. Clear. O
Lemma 19.3. Write e = |(6 — 1)/2]. Then the dual degree s* of Y satisfies |
s*>e.

Proof. Apply the first MacWilliams inequality to the inner distribution of Y. O

Lemma 19.4. Writee = (6 —1)/2].

(i) The following subsets are mutually disjoint:
{2 € X|0(y,2) < e} yevy. (78)
(il) We have
Y |(ko + ko + -+ ke) < | X]. (79)

(iii) Equality holds in (79) if and only if the subsets (78) partition X.

Proof. By our above comments. U
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Definition 19.5. The code Y is called perfect whenever equality holds in (79).

Recall the characteristic vector 1y. Recall the Bose-Mesner algebra M and the vector
1=3cx2

Theorem 19.6. (Lloyd type theorem, I). Write e = [(6 — 1)/2], and assume that Y s
perfect.

(i) The vectors {Ashy }5—y are linearly independent;
(i) (Ao+ A1+ -+ APy =1;
(iil) (A — kD) (Ao+ A1+ + APy =0;
(iv) the vectors { Ay }5—o span My ;
(v) dimMypy =1+e;
(vi) the dual degree s* = e.

Proof. (i) For these vectors the nonzero coordinates are in disjoint locations.
(ii) Because X is partitioned by the subsets

{z € X|0(y, z) < e} yev.

(iii) The graph T is regular with valency k, so A1 = k1. The result follows by this and (ii).
(iv) Let W denote the span of {A;9y }2o. Note that ¢y € W. We show that W = Mdy.
To do this, it suffices to show that AW C W. For 0 < ¢ < e —1 we have AAjpy € W,
because AA; is a linear combination of A;_1, A;, Asy1. Also, AAehy € W in view of (iii).
(v) By (i), (iv) above.

(vi) We show that the dimension of My is equal to 1 + s*. The vector space M has a
basis {F;}¢_,. The vector space M)y has a basis consisting of the nonzero vectors among
{Eiby Y&, The cardinality of this basis is 1+ s*, in view of Lemma 18.11. So the dimension
of Maby is equal to 1+ s*. The result follows by this and (v). |

Theorem 19.7. (Lloyd type theorem, II). Write e = |(6 — 1)/2], and assume that Y is
perfect. Define a polynomial

U (2) = Z v;(2),

where the polynomial v;(2) has degree i and A; = v;(A). Then the roots of We(2) are
{61 <i<d, Egpy # 0}.

Proof. The polynomial ¥.(z) has degree e. There are e many integers ¢ (1 <1 < d) such
that E;py # 0. For these i we show that U,(6;) = 0. We have

0=(A-kD(Ao+ A+ +A)Yy
= (A= KI)Te(A)y.

®
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