Theorem 18.9. With the above notation,

$$B_Y^t B_Y = \frac{|Y|}{|X|} P^t \Delta_{a_Y^*} P.$$

Proof. For $0 \le i, j \le d$ we show that the (i, j)-entry of each side is equal to

$$|Y|\sum_{k=0}^{d} p_{i,j}^{k} a_{k}.$$

Using Lemma 18.8 the (i, j)-entry of $B_Y^t B_Y$ is equal to

$$(A_i \psi_Y)^t A_j \psi_Y = \psi_Y^t A_i A_j \psi_Y = \sum_{k=0}^d p_{i,j}^k \psi_Y^t A_k \psi_Y = |Y| \sum_{k=0}^d p_{i,j}^k a_k.$$

The (i,j)-entry of $P^t\Delta_{a_Y^*}P$ is equal to

$$\sum_{\ell=0}^{d} P_{i,\ell}^{t} a_{\ell}^{*} P_{\ell,j} = \sum_{\ell=0}^{d} P_{i}(\ell) a_{\ell}^{*} P_{j}(\ell)$$

$$= \sum_{\ell=0}^{d} a_{\ell}^{*} \sum_{k=0}^{d} p_{i,j}^{k} P_{k}(\ell)$$

$$= \sum_{k=0}^{d} p_{i,j}^{k} \sum_{\ell=0}^{d} a_{\ell}^{*} P_{k}(\ell)$$

$$= |X| \sum_{k=0}^{d} p_{i,j}^{k} a_{k}.$$

Corollary 18.10. The rank of the matrix B_Y is equal to the number of nonzero scalars among $\{a_i^*\}_{i=0}^d$.

Proof. By Theorem 18.9 and since P is invertible.

Lecture 26

Let us clarify what it means for some a_i^* to be zero.

Lemma 18.11. For $0 \le i \le d$ the following are equivalent:

- (i) $a_i^* = 0;$
- (ii) $E_i \psi_Y = 0$;
- (iii) column i of B_YQ is zero.

Definition 18.12. We define some parameters as follows.

(i) Define

$$\delta = \min\{i | 1 \le i \le d, \ a_i \ne 0\}, \qquad \delta^* = \min\{i | 1 \le i \le d, \ a_i^* \ne 0\}.$$

We call δ (resp. δ^*) the minimum distance (resp. dual minimum distance) of Y.

(ii) Define

$$s = |\{i|1 \le i \le d, \ a_i \ne 0\}|, \qquad s^* = |\{i|1 \le i \le d, \ a_i^* \ne 0\}|.$$

We call s (resp. s^*) the degree (resp. dual degree) of Y.

(iii) Define

$$t = \max\{i | 1 \le i \le d, \ a_1^* = a_2^* = \dots = a_i^* = 0\} = \delta^* - 1.$$

We call t the strength of Y.

The above definitions depend on the given orderings $\{R_i\}_{i=0}^d$ and $\{E_i\}_{i=0}^d$.

Our next general goal is to explain the MacWilliams inequality. This inequality will play an important role for codes and designs.

We bring in some notation. For any row vector $u = (u_0, u_1, \ldots, u_d)$ such that $u_0 \neq 0$, define

$$s(u) = |\{i|1 \le i \le d, u_i \ne 0\}|.$$

We also define

$$t(u) = \max\{i | 1 \le i \le d, \ u_1 = u_2 = \dots = u_i = 0\}.$$

If $u_1 \neq 0$ then we define t(u) = 0.

Theorem 18.13. (MacWilliams inequality). Consider a row vector $u = (u_0, u_1, \ldots, u_d)$ such that $u_0 \neq 0$.

(i) Assume that the ordering $\{R_i\}_{i=0}^d$ is P-polynomial. Then

$$s(uQ) \ge \left\lfloor \frac{t(u)}{2} \right\rfloor.$$

(ii) Assume that the ordering $\{E_i\}_{i=0}^d$ is Q-polynomial. Then

$$s(uP) \ge \left\lfloor \frac{t(u)}{2} \right\rfloor.$$

Proof. (i) Write $\theta_i = P_1(i)$ for $0 \le i \le d$. For $0 \le k \le d$ there exists a polynomial $v_k(z)$ that has degree k and $P_k(i) = v_k(\theta_i)$ for $0 \le i \le d$. Abbreviate t = t(u). By assumption $u_i = 0$ for $1 \le i \le t$. Abbreviate s = s(uQ). We assume $s < \lfloor t/2 \rfloor$ and get a contradiction. Note that $2s + 2 \le t$. Define the set $S = \{i | 1 \le i \le d, \sum_{\ell=0}^d u_\ell Q_i(\ell) \ne 0\}$. So s = |S|. Define a polynomial

$$f(z) = (z - \theta_0) \prod_{j \in S} (z - \theta_j).$$

The degree of f(z) is s+1. For $0 \le i \le d$,

$$f(\theta_i) = 0$$
 if and only if $i \in S \cup \{0\}$.

The degree of $f(z)^2$ is 2s+2. Therefore $f(z)^2$ is a linear combination of $\{v_i(z)\}_{i=0}^{2s+2}$. Write

$$f(z)^2 = \sum_{i=0}^{2s+2} b_i v_i(z) \qquad b_i \in \mathbb{R}.$$

Define

$$b_i = 0 (2s + 3 \le i \le d).$$

For $1 \le i \le d$ we have $u_i b_i = 0$, because $u_i = 0$ for $1 \le i \le t$ and $b_i = 0$ for $t + 1 \le i \le d$. Consider the row vector

$$b=(b_0,b_1,\ldots,b_d).$$

Observe that

$$uQ(bP^t)^t = uQPb^t = |X|ub^t = |X|\sum_{i=0}^d u_ib_i = |X|u_0b_0.$$

Observe that for $j \in S \cup \{0\}$,

$$(bP^t)(j) = \sum_{k=0}^d b_k P_k(j) = \sum_{k=0}^d b_k v_k(\theta_j) = f(\theta_j)^2 = 0.$$

Therefore

$$uQ(bP^t)^t = 0.$$

We have $u_0b_0=0$ and $u_0\neq 0$, so $b_0=0$. Observe that

$$\sum_{i=0}^{d} f(\theta_i)^2 Q_i(0) = \sum_{i=0}^{d} \sum_{j=0}^{d} b_j P_j(i) Q_i(0) = \sum_{j=0}^{d} b_j \sum_{i=0}^{d} Q_i(0) P_j(i) = \sum_{j=0}^{d} b_j (QP)_{0,j} = |X| b_0 = 0.$$

This is impossible because $f(\theta_i)^2 > 0$ and $Q_i(0) = m_i > 0$ for $i \notin S \cup \{0\}$.

Corollary 18.14. Assume that the ordering $\{E_i\}_{i=0}^d$ is Q-polynomial. Let Y denote a nonempty subset of X that has degree s and strength t. Then

$$s \ge \lfloor t/2 \rfloor$$
.

Proof. Apply Theorem 18.13(ii) with $u = a_Y Q$.

19 Codes in a P-polynomial association scheme

We continue to discuss a symmetric association scheme $\mathfrak{X}=(X,\{R_i\}_{i=0}^d)$. Throughout this section we assume that the ordering $\{R_i\}_{i=0}^d$ is P-polynomial. Recall that the graph $\Gamma=(X,R_1)$ is distance-regular. Let ∂ denote the path-length distance function for Γ . Recall that for $y,z\in X$ and $0\leq i\leq d$, $\partial(y,z)=i$ if and only if $(y,z)\in R_i$. Abbreviate $A=A_1$ and $\theta_i=P_1(i)$ for $0\leq i\leq d$. Recall the valencies $\{k_i\}_{i=0}^d$. Abbreviate $k=k_1$.

For $x \in X$ and $0 \le e \le d$ we consider the set of vertices

$$\{y \in X | \partial(x, y) \le e\}.$$

This set has a partition

$$\{y \in X | \partial(x, y) \le e\} = \bigcup_{i=0}^{e} \Gamma_i(x).$$

Therefore

$$|\{y \in X | \partial(x, y) \le e\}| = \sum_{i=0}^{e} |\Gamma_i(x)| = \sum_{i=0}^{e} k_i.$$

Let Y denote a subset of X with $|Y| \geq 2$. We call Y a code. We consider the minimum distance $\delta = \min\{\partial(y,z)|y,z\in Y,\ y\neq z\}$. We have $1\leq \delta \leq d$.

Definition 19.1. For $0 \le e \le d$, the code Y is e error correcting whenever $\partial(y, z) \ge 2e + 1$ for distinct $y, z \in Y$.

Lemma 19.2. The code Y is e error correcting for $0 \le e \le \lfloor (\delta - 1)/2 \rfloor$.

Proof. Clear.
$$\Box$$

Lemma 19.3. Write $e = \lfloor (\delta - 1)/2 \rfloor$. Then the dual degree s^* of Y satisfies

$$s^* \ge e$$
.

Proof. Apply the first MacWilliams inequality to the inner distribution of Y.

Lemma 19.4. Write $e = \lfloor (\delta - 1)/2 \rfloor$.

(i) The following subsets are mutually disjoint:

$$\{z \in X | \partial(y, z) \le e\} \qquad y \in Y. \tag{78}$$

(ii) We have

$$|Y|(k_0 + k_1 + \dots + k_e) \le |X|.$$
 (79)

(iii) Equality holds in (79) if and only if the subsets (78) partition X.

Proof. By our above comments. \Box

Definition 19.5. The code Y is called *perfect* whenever equality holds in (79).

Recall the characteristic vector ψ_Y . Recall the Bose-Mesner algebra \mathcal{M} and the vector $1 = \sum_{x \in X} \hat{x}$.

Theorem 19.6. (Lloyd type theorem, I). Write $e = \lfloor (\delta - 1)/2 \rfloor$, and assume that Y is perfect.

- (i) The vectors $\{A_i\psi_Y\}_{i=0}^e$ are linearly independent;
- (ii) $(A_0 + A_1 + \cdots + A_e)\psi_Y = 1$;
- (iii) $(A kI)(A_0 + A_1 + \dots + A_e)\psi_Y = 0;$
- (iv) the vectors $\{A_i\psi_Y\}_{i=0}^e$ span $\mathcal{M}\psi_Y$;
- (v) dim $\mathcal{M}\psi_Y = 1 + e$;
- (vi) the dual degree $s^* = e$.

Proof. (i) For these vectors the nonzero coordinates are in disjoint locations.

(ii) Because X is partitioned by the subsets

$$\{z \in X | \partial(y, z) \le e\}$$
 $y \in Y$.

- (iii) The graph Γ is regular with valency k, so A1 = k1. The result follows by this and (ii).
- (iv) Let W denote the span of $\{A_i\psi_Y\}_{i=0}^e$. Note that $\psi_Y \in W$. We show that $W = \mathcal{M}\psi_Y$. To do this, it suffices to show that $AW \subseteq W$. For $0 \le i \le e-1$ we have $AA_i\psi_Y \in W$, because AA_i is a linear combination of A_{i-1} , A_i , A_{i+1} . Also, $AA_e\psi_Y \in W$ in view of (iii).

(v) By (i), (iv) above.

(vi) We show that the dimension of $\mathcal{M}\psi_Y$ is equal to $1+s^*$. The vector space \mathcal{M} has a basis $\{E_i\}_{i=0}^d$. The vector space $\mathcal{M}\psi_Y$ has a basis consisting of the nonzero vectors among $\{E_i\psi_Y\}_{i=0}^d$. The cardinality of this basis is $1+s^*$, in view of Lemma 18.11. So the dimension of $\mathcal{M}\psi_Y$ is equal to $1+s^*$. The result follows by this and (v).

Theorem 19.7. (Lloyd type theorem, II). Write $e = \lfloor (\delta - 1)/2 \rfloor$, and assume that Y is perfect. Define a polynomial

$$\Psi_e(z) = \sum_{i=0}^e v_i(z),$$

where the polynomial $v_i(z)$ has degree i and $A_i = v_i(A)$. Then the roots of $\Psi_e(z)$ are

$$\{\theta_i|1\leq i\leq d,\ E_i\psi_Y\neq 0\}.$$

Proof. The polynomial $\Psi_e(z)$ has degree e. There are e many integers i $(1 \le i \le d)$ such that $E_i \psi_Y \ne 0$. For these i we show that $\Psi_e(\theta_i) = 0$. We have

$$0 = (A - kI)(A_0 + A_1 + \dots + A_e)\psi_Y$$

= $(A - kI)\Psi_e(A)\psi_Y$.