We also have

Y = QoY
= Qg Z Olej(O)

jED

> aOZ&jCj(O) + Z a; (Z Oéjcj@))

jeD ieMX jeD

= Z Z aiajCj(z').

i€M jeD

We now state the duality theorem for linear programming.

Theorem 17.7. Assume that Problems (C, M) and (C, M) are feasible. Then there exists a
program {a; }ieps for (C, M) and a program {o;}ep for (C, M) such that g = ~. Moreoever
Jo =g =7 ="

The proof of Theorem 17.7 can be found in the textbook, pages 110-112.

Next, we consider how to find the programs {a;}ien and {a;}jep in Theorem 17.7.

Lemma 17.8. Given a program {a;}ien for (C, M) and a program {o;}jep for (C, M)
Then g = v if and only if the following (i), (ii) hold:

(i) forie MX,
a; ZajCj(z') = 0.
jeD
(ii) for j € D*, ,
o Z a;C;(i) = 0.

€M

Proof. Immediate from the proof of Lemma 17.6. O
Lecture 25

Example 17.9. For even d = 2t, the orthogonality graph €14 has the same vertex set as the
hypercube H(d,2); vertices y, z are adjacent in §; whenever (y,2) € R, in H(d,2). A set
of vertices Y for )y is called independent whenever no two vertices in Y are adjacent in € .
Our problem is to find the maximal size of an independent set in €24. First assume that ¢
is odd. Recall that H(d,?2) is bipartite, and note that either half of the bipartition is an
independent set in €. This independent set has cardinality 2¢=!, which is maximal. Next
assume that ¢ is even. In this case, the problem is open. The above linear programming
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technique gives an upper bound of gy = 2"/n for the size of an independent subset. Thus
for H(4,2) we have gy = 16/4 = 4. For H(4,2) the linear programming details are shown
below. We have d = 4. We have D = {0,1,2,3,4} and M = {0,1,3,4}. We take C = @
where

1 4 6 4 1
1 2 0 -2 -1
Q=11 0 -2 0 1
1 -2 0 2 -1
1 —4 6 -4 1

Problem (C, M): Maximize

g=ag+a;+as+ a4

subject to
(3] Z 07 as Z 07 (4 Z 0) 4CLO + 26I/l - 20/3 - 40’4 Z 07
6ag + 6as > 0, dag — 201 + 2a3 — 4ay > 0, ag — a1 — as +aq > 0.

Problem (C, M)": Minimize
v = ao + 4ay + 6ag + daz + ay
subject to

a; 20, a2>20, az3=>0, a42>0, ap + 20y — 2a3 — ay <0,
Qg — 201 + 203 — ayg <0, oy — 4oy + 6ag — 4dag + ay < 0.

Suppose we are given a program {a; }iea for (C, M) and a program {a; };ep for (C, M)’ such
that g = . Then ag = 1 and

011(4G0 + 2(11 — 2@3 — 4&4) == O, OJQ(6CL() + 6&4) == 0,
0,

&3(4&0 i 2CL1 + 2(1,3 — 40,4) = (314((10 —ay — az + CL4) = 0.

Moreover, ag = 1 and

ai(ap + 200 — 203 — ag) = 0, as(ao — 201 + 2a3 — ay) = 0,
ag(ap — 4day + 6ay — daz + ay) = 0.

For the above 9 equations, there are 13 solutions (found using Maple). Among these so-
lutions, only one satisfies the inequalities in Problem (C, M) and Problem (C, M)’. This
unique solution is

0;0:1, a’lzla CL3:1, a’4:17
ap=1, a;=1/4, a;=0, az=1/4, as=1

For this solution g = 4 = ~. Therefore gg = 4 = 7.
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For more information see

E. de Klerk, D. V. Pasechnik.
A note on the stability number of an orthogonality graph. arXiv:math/0505038.

Ferdinand Ihringer, Hajime Tanaka.
The Independence Number of the Orthogonality Graph in Dimension 2k,
arXiv:1901.04860.

18 Subsets of an association scheme
In this section, we investigate the linear programming approach in more detail. Recall the
symmetric association scheme X = (X, {R;}¢_,) with eigenmatrices P and Q.

Let Y denote a nonempty subset of X.
Definition 18.1. The inner distribution of Y is the row vector {a;}{, where

ai:l(YXéi)iﬂRil (0<i<d).

We sometimes let ay denote the inner distribution of Y.

The dual distribution of Y is the row vector {a;‘f ;l::o where

d

a; = aiQ;(4) (0<j<d).

i=0
We sometimes let a¥ denote the dual distribution of Y.

Observe that

ay = ay @, ay = |X| ta} P.
Moreover
d
a; = |X|7' Y aiPi(0) (0<j <d).
i=0
Lemma 18.2. With reference to Definition 18.1,
(i) ag = 1; '
(i) af = Yo = [Y].
Proof. Recall that Qo(i) =1 for 0 <1 < d. O

Definition 18.3. By the characteristic vector of Y we mean the vector

Py =9

yeX
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Lemma 18.4. For 0 <1 < d we have

_ YAy Y
a; = IY[ > a; D/[ wa ’L/)i

Proof. We have

Vo Anpy = Y (Aiy: = (Y X Y) N Ri| = [Y]as.

Y,2€Y

We also have

M&

d 7
=y~ Z%’Aﬂﬁy i(0) = Y™y (Z Qi(l Ae> Yy = X1 by By .

=0 =0 =0 [Y|

O

Corollary 18.5. For 0 <1 <d,

Bt =t
Moreover a; > 0.
Proof. Use Lemma 18.4 and
| Epy || = (Eioy ) Eihy = P4 Elhy = oy By

0]

Recall the set D = {0,1,...,d}.

Definition 18.6. We define a matrix By with entries indexed by X x D. For z € X and
i € D the (z,i)-entry of By is

By (z,i) = [Y NTi(xz)|.
We call By the outer distribution of Y.

Lemma 18.7. We have

Yy By
Y|

ay =

Proof. For 0 < i < d the i*" entry of either side is equal to
Yy

YISy nTy()]

z€Y

Lemma 18.8. The following hold for 0 < <d:
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() the vector Ajy is equal to column i of By;
(i) the vector | X|Epy is equal to column i of By Q.

Proof. (i) For x € X the z-coordinate of A;1y is equal to

D (Aay@y)y =Y (Aday = >, 1=V NTi(z)] = By(z,9).

yeX yey yeYNly(z)
. . o d .
(i) Use (i) and E; = [X|7' 3 70_o Qi(5) A;. 0
Our next general goal is to compute the rank of the matrix By.
We bring in some notation. For any vector u = (uq,us, ..., u,) let A, denote the diagonal
matrix with diagonal entries uq, ug, ..., U,.

Theorem 18.9. With the above notation,

Y
BYBy = Tlf(ll P'Ag, P

Proof. For 0 < 4,5 < d we show that the (7, j)-entry of each side is equal to

d
Y| pr,j%
k=0

Using Lemma 18.8 the (i, j)-entry of B By is equal to

d d
(Asby) Ay = P AiAjdy = pl b Ay = YD pf sy
k=0 =0

The (i, j)-entry of P*Ag P is equal to

d d
> PlLaiPy; =Y Pi(0)a;P(t)
£=0

I
3
ST
.
(]~
2
o %
iy,
N
[
N

O

Corollary 18.10. The rank of the matriz By s equal to the number of nonzero scalars
among {a}e,.
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