Lecture 24

Chapter 3: Codes and designs in association schemes

Throughout this chapter, $\mathcal{X} = (X, \{R_i\}_{i=0}^d)$ is a symmetric association scheme with eigenmatrices P and Q. We work over \mathbb{R} . Any scalar that we mention is understood to be in \mathbb{R} .

17 Linear programming approach to association schemes

In this section we introduce the linear programming approach. We motivate things with a problem.

Problem 17.1. Let Y denote a subset of X such that no two vertices in Y are R_1 -related. How large can Y be?

We now attack the above problem. Recall the standard module $V = \mathbb{R}^X$. Define the vector $\psi_Y \in V$ by

$$\psi_Y = \sum_{y \in Y} \hat{y}.$$

For $0 \le j \le d$ the scalar $||E_j\psi_Y||^2$ is nonnegative. Let us compute this scalar. We have

$$||E_j \psi_Y||^2 = \left\langle \sum_{y \in Y} E_j \hat{y}, \sum_{z \in Y} E_j \hat{z} \right\rangle$$
$$= \sum_{y \in Y} \sum_{z \in Y} \langle E_j \hat{y}, E_j \hat{z} \rangle$$
$$= \frac{|Y|}{|X|} \sum_{i=0}^d a_i Q_j(i),$$

where

$$a_i = \frac{|(Y \times Y) \cap R_i|}{|Y|} \qquad (0 \le i \le d).$$

Of course $a_i \geq 0$ for $0 \leq i \leq d$. Moreover

$$a_0 = 1,$$
 $a_1 = 0,$ $|Y| = \sum_{i=0}^{d} a_i.$

We can gain insight about Problem 17.1 by solving the following linear programming problem.

Problem 17.2. Maximize

$$g = \sum_{i=0}^{d} a_i$$

subject to the following constraints:

- (i) $a_0 = 1$ and $a_1 = 0$ and $a_i \ge 0$ for $2 \le i \le d$;
- (ii) $\sum_{i=0}^{d} a_i Q_j(i) \ge 0$ for $0 \le j \le d$.

Problems 17.1, 17.2 are related as follows. Let g_0 denote the maximal value of g in Problem 17.2. Then $|Y| \leq g_0$ for all subsets Y from Problem 17.1.

Example 17.3. Assume the association scheme \mathcal{X} is the 3-cube H(3,2). We can see at a glance that for Problem 17.1, the answer is 4. Let us find g_0 . We have

$$Q = \begin{pmatrix} 1 & 3 & 3 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & -3 & 3 & -1 \end{pmatrix}$$

We maximize $g = \sum_{i=0}^{3} a_i$ subject to

$$a_0 = 1,$$
 $a_1 = 0,$ $a_2 \ge 0,$ $a_3 \ge 0,$ $a_2 + 3a_3 \le 3,$ $a_2 - 3a_3 \le 3,$ $a_3 - a_2 \le 1.$

A graph of the inequalities reveals that g is maximized at $(a_2, a_3) = (3, 0)$. Therefore $g_0 = 1 + 0 + 3 + 0 = 4$.

We have some comments about Problem 17.2. Recall that $Q_0(i) = 1$ for $0 \le i \le d$. So in part (ii), the case j = 0 provides no information, and can be ignored. Since $a_1 = 0$ we can remove a_1 from the entire problem. Concerning part (i), sometimes it is convenient to drop the requirement that $a_0 = 1$. In this case, Problem 17.2 has type (C, M) below.

Fix an integer $d \geq 1$ and define the set $D = \{0, 1, ..., d\}$. Define a subset $M \subseteq D$ such that $0 \in M$. Define $D^{\times} = D \setminus \{0\}$ and $M^{\times} = M \setminus \{0\}$. Pick $C \in \operatorname{Mat}_{d+1}(\mathbb{R})$, with (i, j)-entry denoted $C_j(i)$ for $0 \leq i, j \leq d$. Assume that $C_0(i) = 1$ for $0 \leq i \leq d$.

Problem (C, M): Maximize

$$g = \sum_{i \in M} a_i C_0(i)$$

subject to

$$a_i \ge 0 \quad (i \in M^\times), \qquad \qquad \sum_{i \in M} a_i C_j(i) \ge 0 \quad (j \in D^\times).$$
 (76)

Definition 17.4. A vector $\{a_i\}_{i\in M}$ is called a *program* for (C, M) whenever it satisfies (76) and $a_0 = 1$. A program $\{a_i\}_{i\in M}$ for (C, M) is called *maximal* whenever it gives the maximal value of g. Problem (C, M) is called *feasible* whenever there exists a program for (C, M).

The following problem is related to Problem (C, M).

Problem (C, M)': Minimize

$$\gamma = \sum_{j \in D} \alpha_j C_j(0)$$

subject to

$$\alpha_j \ge 0 \quad (j \in D^{\times}), \qquad \qquad \sum_{j \in D} \alpha_j C_j(i) \le 0 \quad (i \in M^{\times}).$$
 (77)

Definition 17.5. A vector $\{\alpha_j\}_{j\in D}$ is called a *program* for (C, M)' whenever it satisfies (77) and $\alpha_0 = 1$. A program $\{\alpha_j\}_{j\in D}$ for (C, M)' is called *minimal* whenever it gives the minimal value of γ . Problem (C, M)' is called *feasible* whenever there exists a program for (C, M)'. Problem (C, M) and Problem (C, M)' are related as follows.

Lemma 17.6. Let $\{a_i\}_{i\in M}$ and $\{\alpha_j\}_{j\in D}$ denote programs for (C,M) and (C,M)' respectively. Then $g\leq \gamma$.

Proof. We show that

$$g \le \sum_{i \in M} \sum_{j \in D} a_i \alpha_j C_j(i) \le \gamma.$$

We have

$$g = \alpha_0 g$$

$$= \alpha_0 \sum_{i \in M} a_i C_0(i)$$

$$\leq \alpha_0 \sum_{i \in M} a_i C_0(i) + \sum_{j \in D^{\times}} \alpha_j \left(\sum_{i \in M} a_i C_j(i) \right)$$

$$= \sum_{j \in D} \sum_{i \in M} \alpha_j a_i C_j(i)$$

$$= \sum_{i \in M} \sum_{i \in D} a_i \alpha_j C_j(i).$$

We also have

$$\gamma = a_0 \gamma
= a_0 \sum_{j \in D} \alpha_j C_j(0)
\ge a_0 \sum_{j \in D} \alpha_j C_j(0) + \sum_{i \in M^{\times}} a_i \left(\sum_{j \in D} \alpha_j C_j(i) \right)
= \sum_{i \in M} \sum_{j \in D} a_i \alpha_j C_j(i).$$

We now state the duality theorem for linear programming.

Theorem 17.7. Assume that Problems (C, M) and (C, M)' are feasible. Then there exists a program $\{a_i\}_{i\in M}$ for (C, M) and a program $\{\alpha_j\}_{j\in D}$ for (C, M)' such that $g = \gamma$. Moreoever $g_0 = g = \gamma = \gamma_0$.

The proof of Theorem 17.7 can be found in the textbook, pages 110–112.

Next, we consider how to find the programs $\{a_i\}_{i\in M}$ and $\{\alpha_j\}_{j\in D}$ in Theorem 17.7.

Lemma 17.8. Given a program $\{a_i\}_{i\in M}$ for (C,M) and a program $\{\alpha_j\}_{j\in D}$ for (C,M)'. Then $g=\gamma$ if and only if the following (i), (ii) hold:

(i) for $i \in M^{\times}$,

$$a_i \sum_{j \in D} \alpha_j C_j(i) = 0.$$

(ii) for $j \in D^{\times}$,

$$\alpha_j \sum_{i \in M} a_i C_j(i) = 0.$$

Proof. Immediate from the proof of Lemma 17.6.

Example 17.9. For even d=2t, the orthogonality graph Ω_d has the same vertex set as the hypercube H(d,2); vertices y,z are adjacent in Ω_d whenever $(y,z) \in R_t$ in H(d,2). A set of vertices Y for Ω_d is called independent whenever no two vertices in Y are adjacent in Ω_d . Our problem is to find the maximal size of an independent set in Ω_d . First assume that t is odd. Recall that H(d,2) is bipartite, and note that either half of the bipartition is an independent set in Ω_d . This independent set has cardinality 2^{d-1} , which is maximal. Next assume that t is even. In this case, the problem is open. The above linear programming technique gives an upper bound of $g_0 = 2^n/n$ for the size of an independent subset. Thus for H(4,2) we have $g_0 = 16/4 = 4$. For H(4,2) the linear programming details are shown below. We have d=4. We have $D=\{0,1,2,3,4\}$ and $M=\{0,1,3,4\}$. We take C=Q where

$$Q = \begin{pmatrix} 1 & 4 & 6 & 4 & 1 \\ 1 & 2 & 0 & -2 & -1 \\ 1 & 0 & -2 & 0 & 1 \\ 1 & -2 & 0 & 2 & -1 \\ 1 & -4 & 6 & -4 & 1 \end{pmatrix}.$$

Problem (C, M): Maximize

$$g = a_0 + a_1 + a_3 + a_4$$