Lecture 24
Chapter 3: Codes and designs in association schemes

Throughout this chapter, X = (X, {R;}L,) is a symmetric association scheme with eigen-
matrices P and ). We work over R. Any scalar that we mention is understood to be in
R.

17 Linear programming approach to association schemes

In this section we introduce the linear programming approach. We motivate things with a
problem.

Problem 17.1. Let Y denote a subset of X such that no two vertices in Y are Rj-related.
How large can Y be?

We now attack the above problem. Recall the standard module V = RX. Define the vector
Yy € V by

Py = > 9.

yey

For 0 < j < d the scalar || Ejiby ||? is nonnegative. Let us compute this scalar. We have

1 Esv || = <Z B, » Ej5>

yey z€Y
= > (B0 B2)
yeY zeY

RS .
- D?I ; ain(Z))

where

%:Kyﬂgm&' (0<i<d).

Of course a; > 0 for 0 <4 < d. Moreover
d
ag = 1, a) = 0, |Y( = Zai.
i=0

We can gain insight about Problem 17.1 by solving the following linear programming prob-
lem.
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Problem 17.2. Maximize

subject to the following constraints:
(i) ap=1land gy =0and a; > 0 for 2 <4 < d;
(i) 3¢, aiQ;(@) >0for 0<j <d.

Problems 17.1, 17.2 are related as follows. Let go denote the maximal value of g in Problem
17.2. Then Y| < go for all subsets Y from Problem 17.1.

Example 17.3. Assume the association scheme X is the 3-cube H(3,2). We can see at a
glance that for Problem 17.1, the answer is 4. Let us find go. We have

13 3 1
11 -1 -1
Q= 1 -1 -1 1
1 -3 3 -1
We maximize g = Z;”:O a; subject to
ap =1, a; =0, ag > 0, az > 0,
ag + 3as < 3, ay — 3as < 3, as — ag < 1.
A graph of the inequalities reveals that g is maximized at (ag,az) = (3,0). Therefore

do = 1 + O -+ 3 —F 0 == 4.

We have some comments about Problem 17.2. Recall that Qi) = 1 for 0 <4 < d. So in
part (ii), the case j = 0 provides no information, and can be ignored. Since a; = 0 we can
remove a; from the entire problem. Concerning part (i), sometimes it is convenient to drop
the requirement that ap = 1. In this case, Problem 17.2 has type (C, M) below.

Fix an integer d > 1 and define the set D = {0,1,...,d}. Define a subset M C D such that
0 € M. Define DX = D\{0} and M* = M\{0}. Pick C € Matq,1(R), with (i, 7)-entry
denoted C;(3) for 0 < 4,5 < d. Assume that Co(é) =1 for 0 < ¢ < d.

Problem (C, M): Maximize

9= a:Coli)

1EM

subject to

a; >0 (i€ M), > aiC5(i) =0 (j € D¥). (76)

ieM
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Definition 17.4. A vector {a;}icas is called a program for (C, M) whenever it satisfies (76)
and ag = 1. A program {a;}ienr for (C, M) is called mazimal whenever it gives the maximal
value of g. Problem (C, M) is called feasible whenever there exists a program for (C, M).

The following problem is related to Problem (C, M).
Problem (C, M)": Minimize
v="a;Ci(0)
jeD

subject to

a; >0 (j€ D), > 0Ci(i) <0 (i € M¥). (77)

jeD

Definition 17.5. A vector {a;},ep is called a program for (C, M)’ whenever it satisfies (77)

and g = 1. A program {a;}jep for (C, M)’ is called minimal whenever it gives the minimal
value of . Problem (C, M)’ is called feasible whenever there exists a program for (C, M)'.

Problem (C, M) and Problem (C, M) are related as follows.

Lemma 17.6. Let {a;}ienr and {a;}jep denote programs for (C, M) and (C, M) respec-
tiwely. Then g <.

Proof. We show that

g S Z ZaiajC’j(z') S Y-

icM jeD
We have

g = Gog
= O Z CLIO()(Z)

1eM

< ap Z az-C'o(z') + Z &7 (Z G'ZO](Z)>

ieM jeDX ieM

= Z Z a;a;C;(4)

jeDieM

We also have

= Z Z aio:jC’j(i).

ieM jeD



We now state the duality theorem for linear programming.

Theorem 17.7. Assume that Problems (C, M) and (C, M) are feasible. Then there exists a
program {a; }iens for (C, M) and a program {cy}jep for (C, M) such that g = . Moreoever
o =9 =7 ="

The proof of Theorem 17.7 can be found in the textbook, pages 110-112.

Next, we consider how to find the programs {a;}sen and {o;}jep in Theorem 17.7.

Lemma 17.8. Given a program {a;}iepn for (C, M) and a program {a;}jep for (C, M)'.
Then g = vy if and only if the following (i), (ii) hold:

(i) forie M,

a; Z OéjCj(’i) = ().

jED
(ii) for j € DX,

& Z GJzCJ(’L) = 0.

1EM

Proof. ITmmediate from the proof of Lemma 17.6. O

Example 17.9. For even d = 2t, the orthogonality graph )y has the same vertex set as the
hypercube H(d,2); vertices y,z are adjacent in )y whenever (y,2) € R; in H(d,2). A set
of vertices Y for €y is called independent whenever no two vertices in Y are adjacent in 2.
Our problem is to find the maximal size of an independent set in ;. First assume that ¢
is odd. Recall that H(d,2) is bipartite, and note that either half of the bipartition is an
independent set in {24. This independent set has cardinality 2¢~', which is maximal. Next
assume that ¢ is even. In this case, the problem is open. The above linear programming
" technique gives an upper bound of gy = 2"/n for the size of an independent subset. Thus
for H(4,2) we have gy = 16/4 = 4. For H(4,2) the linear programming details are shown
below. We have d = 4. We have D = {0,1,2,3,4} and M = {0,1,3,4}. We take C = @
where

1 4 6 4 1
1 2 0 -2 -1
Q=1 0 -2 0 1
1 -2 0 2 -1
1 4 6 —4 1
Problem (C, M): Maximize

g=ag+aL+as+ay
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