Therefore

ok 6
o ““Pl,Q*“““g* e
0 k

and Claim 1 is proved.

Lecture 23
Claim 2. We have
d
AAT Ay — ApAYA =) "y (A% A, — ApAY), (68)
h=1

Proof of Claim 2. Fory, z € X we compute the (y, 2)-entry of the left-hand side of (68) minus
the right-hand side of (68). For y = z the (y, z)-entry is zero. For y # z the (y, z)-entry is
equal to

<f)(-’f)a Yoo pwy- ), p(w)“?‘i",z(p(y)~p(z))>,

wel(y)Na{z) wely (1Nl (2)

where {y, z) € Rp. The above scalar is zero by Claim 1. Claim 2 is proved.
Conceivably 67 = 6%, In this case rig =0for 1 <k <d Soby Claim 2, AA*A, = A;A™A.
In this equation we eliminate Ay using Ay = (A% — a1 A — k[)/ca (k= by) and get

AZA*A — AATA? = 5(A*A — AAY). (69)

We will return to this equation shortly.
Claim 3. Assume that 6] # #5. Then there exist scalars 3,7, ¢ € IR such that

0=[A, A2A* — BAA*A+ A*A% — y(AA* + A"A) — pA¥), (70)

where [r, 5] = rs — sr.

Proof of Claim 3. Referring to (67), the scalar pf, is zero if £ > 3 and nonzero if & = 3.
Therefore 7}, is zero if & > 3 and nonzero if k& = 3. The matrices Ay and Az appear in
(68). Recall that Ay and A are polynomials in A that have degrees 2 and 3, respectively.
Evaluating {68) using this fact, we obtain

ABA* — A* A% € Span (Af*A*A _AAYAZ APAR — A AR AAT A*A).
Therefore there exist 8,7, ¢ € R such that
APAY — AP = (B+ 1)(AZA*A — AA*A®) + Y(AZA* — A*A%) + o(AA* — A A).

In this equation we rearrange the terms to obtain {70). Claim 3 is proved.

For 0 < i < d let #; denote the eigenvalue of A for E;. Recall the reduced representation
diagram A%. The graph AL is connected since p is weakly nondegenerate. Recall that in
AR vertex 0 is adjacent to vertex 1 and no other vertex. We will show that Af is a path.
To do this, it suffices to show that each vertex ¢ in A} is adjacent to at most 2 vertices in
AR, -

Claim 4. For distinet vertices 1, j in AZ that ave adjacent,
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(1) if 6} = 6} then 0;0; = —x;
(i} if @7 5 05 then P(8;,0;) = 0, where
PN ) = N — B+ 1 — y(A+ ) — 0.

Proof of Claim 4. First assume that 87 = 5. Then (69) holds. In (69), multiply each term
on the left by E; and on the right by E;. Simplify the result to get

0= EEA*EJ(Qt -— 93)(979‘7 + iﬁl).

We have E; A*E; # 0 since 4,  are adjacent in AZ. The scalar 8; — 6; is nonzero since i # j.
Therefore 6;; + & = 0 50 0,0; = —k. Next assume that 67 # 6. Then (70) holds. In (70),
multiply each term on the left by F; and the right by Ej;. Simplify the result to get

0 = BA*E;(6; — 6,)P(6:,0;).

We have F;A*E; # 0 since 4, j are adjacent in AR The scalar ; — 6; is nonzero since 4 # 7.
Therefore P(6;,0;) = 0.

Claim 5. We have 67 # 05.

Proof of Claim 5. Suppose that ¢f = #3. By Claim 4 and since vertex 0 is adjacent to vertex
1, we have 8pf; = —k. We have 0y = £ so ) = —1. The graph AR is connected, so vertex 1
is adjacent to some nonzero vertex j. By Claim 4 we have ¢10; = —s. By this and 6, = -1,
we obtain #; = . This implies j = 0, for a contradiction. Claim b is proved.

Claim 6. Each vertex i in A% is adjacent at most two vertices in A%,

Proof of Claim 6. By Claims 4, 5 we see that for each vertex j in AE that is adjacent vertex
i, the eigenvalue 8; is a root of the polynomial

P0;, 1) = 67 — PO+ 12 — (0 + 1) — @

This polynomial is quadratic in g, so it has at most two distinct roots. Claim 6 is proved.
We have shown that the graph AE is a path. Consequently X is ()-polynomial with respect
to E. (W

The balanced set condition is very useful, We illustrate with some applications.

Theorem 16.20. Assume that d > 3, and the ordering {R;}&., is P-polynomial. Assume
that X is Q-polynomial with respect to K. Then

* ES
9i—2 * 9i+1

" - (71)
0f.; —6;
is independent of ¢ for 2 <¢<d—1.

Proof. Fix an iteger ¢ (2 <4 < d—1). Pickx € X and z € T'yy1(2) and y € T'io(z) NT3(2).
By the balanced set condition,

Sooopw) = Y plw)=ris(e) - p(2), (72)

wel'(y)NTa{z) weTa (y)NT(2)
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where

s 01— 05

3
=P .
T 1,2 11,293 . 9;
Take the inner product of p(z) with each side of (72); this yields
Piz( P00 = 7“?,2(92‘“2 - f+1)-
Evaluating this using (73) and rearranging terms, we obtain

* = ® ®
Him2 Vil — 00 _ 93
% * % % "
=1 Qi 9? - 92

The result follows.

(73)

]

Definition 16.21. Assume that d > 3, and the ordering {R;}L, is P-polynomial. Assume
that X is Q-polynomial with respect to E. Define # € R such that 8 + 1 is the common

value of (71). We call § the fundamental parameter of E.

Corollary 16.22. Assume that d > 3, and the ordering {R;}e, is P-polynomial. Assume
that X is Q-polynomial with respect to E. Then the dual eigenvalues have the following closed

forms.

(i) Assume f# £2. Then

6F =a -+ bg' +cqg 0<i<d),
1

where f = q+q L.
(i) Assume f = 2. Then

07 = a+ bi + ci® (0<i<d).

(ili) Assume B = —2. Then |

*=a+b(—1) + ei(—1) (0 <i<d).

Proof. The dual eigenvalues satisfy the three-term recurrence

i~ B+ (B+ 1), — 0,0 2<i<d—1)

For this recurrence the characteristic polynomial is

Mo B+ + B+ DAL

This polynomial has roots 1, ¢, ¢~ where § = g+q~*. The result follows by linear algebra. U

Note 16.23. Under the assumptions of Corollary 16.22, the eigenvalues {6;}{ o have similar

-closed forms.
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Theorem 16.24. Assume that d > 3, and the ordering {Ri}{_, is P-polynomial. Assume
that X is Q-polynomial with respect to E. Then for © € X the subgraph of (X, 1) induced
on Tg.1{z) UTy(x) is connected.

Proof. The graph I' = (X, R,) is distance-regular; let & denote its path-length distance
function. A path {y;}i_, in T' will be called geodesic whenever O(yo,4,) = r. We will use a
proof by contmdwtmn and assume the subgraph induced on T'y_1(z) UT4(z) is disconnected.
Let (' be the vertex set of a connected component of the subgraph induced on Iy (2)UTa(z).
Let the set A consist of the vertices in X that lie on a geodesic from « to C. Note that
A # X, since C' # I'y_1(2) UTy(z). We partition A = US_A; where Ay = AN 1y(z) for
0 < j < d. Note that C' = Ay U Ay Each vertex in Ay is adjacent to ¢y vertices in Ag_1.
Each vertex in Ay_y is adjacent to bg_y vertices in Ay For 0 < j < d— 1, each vertex in AW
is adjacent to at least one vertex in Ajyy.

A vertex in A will be called a border whenever it is adjacent to a vertex in X\ A. Since A # X
and T is connected, A contains at least one border vertex. Let t denote the maximal integer
7 {0 < j < d) such that A; contains a border vertex. By the construction 1 < ¢ < d—2.
Pick a border vertex w € At There exists y € Ayg such that d(y,w) = 2. Let 2 € X\A be

adjacent to w. Define &€ = d(z, z). By the triangle inequality £ € {f — 1,3, + 1}. Note that
£ # { — 1; otherwise z is on a geodesic from @ to C passing through w, forcing z € A for a
contradiction. Therefore £ =t or £ = ¢+ 1.

We next show that 8(y, z) = 3. Because (y, w) = 2 and d(w, z) = 1, the triangle inequality
implies that d(y, z) < 3. By the maximality of ¢ and since y € A9, we see that y is not a
border and not adjacent to a border. Therefore A contains all the vertices in X that are at -
.distance at most 2 from y. The vertex z is not in A, so d(y, 2) > 3. We have shown that
My, ) = 3.

Note that T'(y) NTq(z) C Teyi(z) and Ta(y) NT(z) © T'y(z). We apply the balanced set
condition to y and z using 4 = 1,7 = 2, k = 3 and then take the inner product of each side
with p(z); this gives

]Jiz(ewl )= 129* 92( e 95)

Rearranging terms, we obtain

9E~9§+2 me’é“ﬁgg‘

= 0 74
0 =0, 00 "
By Theorem 16.20,
9;;1 — ;‘-1-2 — 93 - 9§ (75)
0f =0l 00

Comparing (74), (75) we obtain 6 = 87 ;. We have § = t—1 since 65,67, ..., 0 are mutually
distinct. We mentioned earlier tha,t € # t — 1, for a contradiction. We (‘onclude that the
subgraph induced on I'y—1(z) U L4(z) is connected. ]
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