Therefore

$$\alpha = p_{1,2}^k \frac{\theta_1^* - \theta_2^*}{\theta_0^* - \theta_k^*},$$

and Claim 1 is proved.

Lecture 23

Claim 2. We have

$$AA^*A_2 - A_2A^*A = \sum_{k=1}^d r_{1,2}^k (A^*A_k - A_kA^*).$$
 (68)

Proof of Claim 2. For $y, z \in X$ we compute the (y, z)-entry of the left-hand side of (68) minus the right-hand side of (68). For y = z the (y, z)-entry is zero. For $y \neq z$ the (y, z)-entry is equal to

$$\left\langle \rho(x), \sum_{w \in \Gamma(y) \cap \Gamma_2(z)} \rho(w) - \sum_{w \in \Gamma_2(y) \cap \Gamma(z)} \rho(w) - r_{1,2}^k \left(\rho(y) - \rho(z)\right) \right\rangle,$$

where $(y, z) \in R_k$. The above scalar is zero by Claim 1. Claim 2 is proved.

Conceivably $\theta_1^* = \theta_2^*$. In this case $r_{1,2}^k = 0$ for $1 \le k \le d$. So by Claim 2, $AA^*A_2 = A_2A^*A$. In this equation we eliminate A_2 using $A_2 = (A^2 - a_1A - \kappa I)/c_2$ ($\kappa = b_0$) and get

$$A^{2}A^{*}A - AA^{*}A^{2} = \kappa(A^{*}A - AA^{*}). \tag{69}$$

We will return to this equation shortly.

Claim 3. Assume that $\theta_1^* \neq \theta_2^*$. Then there exist scalars $\beta, \gamma, \varrho \in \mathbb{R}$ such that

$$0 = [A, A^{2}A^{*} - \beta AA^{*}A + A^{*}A^{2} - \gamma (AA^{*} + A^{*}A) - \varrho A^{*}], \tag{70}$$

where [r, s] = rs - sr.

Proof of Claim 3. Referring to (67), the scalar $p_{1,2}^k$ is zero if k > 3 and nonzero if k = 3. Therefore $r_{1,2}^k$ is zero if k > 3 and nonzero if k = 3. The matrices A_2 and A_3 appear in (68). Recall that A_2 and A_3 are polynomials in A that have degrees 2 and 3, respectively. Evaluating (68) using this fact, we obtain

$$A^3A^* - A^*A^3 \in \operatorname{Span}\left(A^2A^*A - AA^*A^2, A^2A^* - A^*A^2, AA^* - A^*A\right).$$

Therefore there exist $\beta, \gamma, \varrho \in \mathbb{R}$ such that

$$A^{3}A^{*} - A^{*}A^{3} = (\beta + 1)(A^{2}A^{*}A - AA^{*}A^{2}) + \gamma(A^{2}A^{*} - A^{*}A^{2}) + \varrho(AA^{*} - A^{*}A).$$

In this equation we rearrange the terms to obtain (70). Claim 3 is proved.

For $0 \leq i \leq d$ let θ_i denote the eigenvalue of A for E_i . Recall the reduced representation diagram Δ_E^R . The graph Δ_E^R is connected since ρ is weakly nondegenerate. Recall that in Δ_E^R , vertex 0 is adjacent to vertex 1 and no other vertex. We will show that Δ_E^R is a path. To do this, it suffices to show that each vertex i in Δ_E^R is adjacent to at most 2 vertices in Δ_E^R .

Claim 4. For distinct vertices i, j in Δ_E^R that are adjacent,

- (i) if $\theta_1^* = \theta_2^*$ then $\theta_i \theta_j = -\kappa$;
- (ii) if $\theta_1^* \neq \theta_2^*$ then $\mathcal{P}(\theta_i, \theta_j) = 0$, where

$$\mathcal{P}(\lambda,\mu) = \lambda^2 - \beta \lambda \mu + \mu^2 - \gamma(\lambda + \mu) - \varrho.$$

Proof of Claim 4. First assume that $\theta_1^* = \theta_2^*$. Then (69) holds. In (69), multiply each term on the left by E_i and on the right by E_j . Simplify the result to get

$$0 = E_i A^* E_j (\theta_i - \theta_j) (\theta_i \theta_j + \kappa).$$

We have $E_i A^* E_j \neq 0$ since i, j are adjacent in Δ_E^R . The scalar $\theta_i - \theta_j$ is nonzero since $i \neq j$. Therefore $\theta_i \theta_j + \kappa = 0$ so $\theta_i \theta_j = -\kappa$. Next assume that $\theta_1^* \neq \theta_2^*$. Then (70) holds. In (70), multiply each term on the left by E_i and the right by E_j . Simplify the result to get

$$0 = E_i A^* E_j (\theta_i - \theta_j) \mathcal{P}(\theta_i, \theta_j).$$

We have $E_i A^* E_j \neq 0$ since i, j are adjacent in Δ_E^R . The scalar $\theta_i - \theta_j$ is nonzero since $i \neq j$. Therefore $\mathcal{P}(\theta_i, \theta_j) = 0$.

Claim 5. We have $\theta_1^* \neq \theta_2^*$.

Proof of Claim 5. Suppose that $\theta_1^* = \theta_2^*$. By Claim 4 and since vertex 0 is adjacent to vertex 1, we have $\theta_0 \theta_1 = -\kappa$. We have $\theta_0 = \kappa$ so $\theta_1 = -1$. The graph Δ_E^R is connected, so vertex 1 is adjacent to some nonzero vertex j. By Claim 4 we have $\theta_1 \theta_j = -\kappa$. By this and $\theta_1 = -1$, we obtain $\theta_j = \kappa$. This implies j = 0, for a contradiction. Claim 5 is proved.

Claim 6. Each vertex i in Δ_E^R is adjacent at most two vertices in Δ_E^R .

Proof of Claim 6. By Claims 4, 5 we see that for each vertex j in $\Delta_E^{\vec{R}}$ that is adjacent vertex i, the eigenvalue θ_j is a root of the polynomial

$$\mathfrak{P}(\theta_i, \mu) = \theta_i^2 - \beta \theta_i \mu + \mu^2 - \gamma(\theta_i + \mu) - \varrho.$$

This polynomial is quadratic in μ , so it has at most two distinct roots. Claim 6 is proved. We have shown that the graph Δ_E^R is a path. Consequently \mathcal{X} is Q-polynomial with respect to E.

The balanced set condition is very useful. We illustrate with some applications.

Theorem 16.20. Assume that $d \geq 3$, and the ordering $\{R_i\}_{i=0}^d$ is P-polynomial. Assume that \mathfrak{X} is Q-polynomial with respect to E. Then

$$\frac{\theta_{i-2}^* - \theta_{i+1}^*}{\theta_{i-1}^* - \theta_i^*} \tag{71}$$

is independent of i for $2 \le i \le d-1$.

Proof. Fix an integer i $(2 \le i \le d-1)$. Pick $x \in X$ and $z \in \Gamma_{i+1}(x)$ and $y \in \Gamma_{i-2}(x) \cap \Gamma_3(z)$. By the balanced set condition,

$$\sum_{w \in \Gamma(y) \cap \Gamma_2(z)} \rho(w) - \sum_{w \in \Gamma_2(y) \cap \Gamma(z)} \rho(w) = r_{1,2}^3 \left(\rho(y) - \rho(z)\right),\tag{72}$$

where

$$r_{1,2}^3 = p_{1,2}^3 \frac{\theta_1^* - \theta_2^*}{\theta_0^* - \theta_3^*}. (73)$$

Take the inner product of $\rho(x)$ with each side of (72); this yields

$$p_{1,2}^3(\theta_{i-1}^* - \theta_i^*) = r_{1,2}^3(\theta_{i-2}^* - \theta_{i+1}^*).$$

Evaluating this using (73) and rearranging terms, we obtain

$$\frac{\theta_{i-2}^* - \theta_{i+1}^*}{\theta_{i-1}^* - \theta_i^*} = \frac{\theta_0^* - \theta_3^*}{\theta_1^* - \theta_2^*}.$$

The result follows.

Definition 16.21. Assume that $d \geq 3$, and the ordering $\{R_i\}_{i=0}^d$ is P-polynomial. Assume that \mathcal{X} is Q-polynomial with respect to E. Define $\beta \in \mathbb{R}$ such that $\beta + 1$ is the common value of (71). We call β the fundamental parameter of E.

Corollary 16.22. Assume that $d \geq 3$, and the ordering $\{R_i\}_{i=0}^d$ is P-polynomial. Assume that X is Q-polynomial with respect to E. Then the dual eigenvalues have the following closed forms.

(i) Assume $\beta \neq \pm 2$. Then

$$\theta_i^* = a + bq^i + cq^{-i} \qquad (0 \le i \le d),$$

where $\beta = q + q^{-1}$.

(ii) Assume $\beta = 2$. Then

$$\theta_i^* = a + bi + ci^2 \qquad (0 \le i \le d).$$

(iii) Assume $\beta = -2$. Then

$$\theta_i^* = a + b(-1)^i + ci(-1)^i$$
 $(0 \le i \le d).$

Proof. The dual eigenvalues satisfy the three-term recurrence

$$\theta_{i+1}^* - (\beta+1)\theta_i^* + (\beta+1)\theta_{i-1}^* - \theta_{i-2}^* = 0 \qquad (2 \le i \le d-1).$$

For this recurrence the characteristic polynomial is

$$\lambda^3 - (\beta + 1)\lambda^2 + (\beta + 1)\lambda - 1.$$

This polynomial has roots 1, q, q^{-1} where $\beta = q + q^{-1}$. The result follows by linear algebra. \square

Note 16.23. Under the assumptions of Corollary 16.22, the eigenvalues $\{\theta_i\}_{i=0}^d$ have similar closed forms.

Theorem 16.24. Assume that $d \geq 3$, and the ordering $\{R_i\}_{i=0}^d$ is P-polynomial. Assume that X is Q-polynomial with respect to E. Then for $x \in X$ the subgraph of (X, R_1) induced on $\Gamma_{d-1}(x) \cup \Gamma_d(x)$ is connected.

Proof. The graph $\Gamma = (X, R_1)$ is distance-regular; let ∂ denote its path-length distance function. A path $\{y_i\}_{i=0}^r$ in Γ will be called geodesic whenever $\partial(y_0, y_r) = r$. We will use a proof by contradiction, and assume the subgraph induced on $\Gamma_{d-1}(x) \cup \Gamma_d(x)$ is disconnected. Let C be the vertex set of a connected component of the subgraph induced on $\Gamma_{d-1}(x) \cup \Gamma_d(x)$. Let the set Δ consist of the vertices in X that lie on a geodesic from x to C. Note that $\Delta \neq X$, since $C \neq \Gamma_{d-1}(x) \cup \Gamma_d(x)$. We partition $\Delta = \bigcup_{j=0}^d \Delta_j$ where $\Delta_j = \Delta \cap \Gamma_j(x)$ for $0 \leq j \leq d$. Note that $C = \Delta_{d-1} \cup \Delta_d$. Each vertex in Δ_d is adjacent to c_d vertices in c_d . Each vertex in c_d is adjacent to at least one vertex in c_d . For c_d is adjacent to at least one vertex in c_d .

A vertex in Δ will be called a border whenever it is adjacent to a vertex in $X \setminus \Delta$. Since $\Delta \neq X$ and Γ is connected, Δ contains at least one border vertex. Let t denote the maximal integer j $(0 \le j \le d)$ such that Δ_j contains a border vertex. By the construction $1 \le t \le d-2$. Pick a border vertex $w \in \Delta_t$. There exists $y \in \Delta_{t+2}$ such that $\partial(y, w) = 2$. Let $z \in X \setminus \Delta$ be adjacent to w. Define $\xi = \partial(x, z)$. By the triangle inequality $\xi \in \{t-1, t, t+1\}$. Note that $\xi \neq t-1$; otherwise z is on a geodesic from x to C passing through w, forcing $z \in \Delta$ for a contradiction. Therefore $\xi = t$ or $\xi = t+1$.

We next show that $\partial(y,z) = 3$. Because $\partial(y,w) = 2$ and $\partial(w,z) = 1$, the triangle inequality implies that $\partial(y,z) \leq 3$. By the maximality of t and since $y \in \Delta_{t+2}$, we see that y is not a border and not adjacent to a border. Therefore Δ contains all the vertices in X that are at distance at most 2 from y. The vertex z is not in Δ , so $\partial(y,z) \geq 3$. We have shown that $\partial(y,z) = 3$.

Note that $\Gamma(y) \cap \Gamma_2(z) \subseteq \Gamma_{t+1}(x)$ and $\Gamma_2(y) \cap \Gamma(z) \subseteq \Gamma_t(x)$. We apply the balanced set condition to y and z using i = 1, j = 2, k = 3 and then take the inner product of each side with $\rho(x)$; this gives

$$p_{1,2}^3(\theta_{t+1}^* - \theta_t^*) = p_{1,2}^3 \frac{\theta_1^* - \theta_2^*}{\theta_0^* - \theta_3^*} (\theta_{t+2}^* - \theta_\xi^*).$$

Rearranging terms, we obtain

$$\frac{\theta_{\xi}^* - \theta_{t+2}^*}{\theta_t^* - \theta_{t+1}^*} = \frac{\theta_0^* - \theta_3^*}{\theta_1^* - \theta_2^*}.$$
 (74)

By Theorem 16.20,

$$\frac{\theta_{t-1}^* - \theta_{t+2}^*}{\theta_t^* - \theta_{t+1}^*} = \frac{\theta_0^* - \theta_3^*}{\theta_1^* - \theta_2^*}.$$
 (75)

Comparing (74), (75) we obtain $\theta_{\xi}^* = \theta_{t-1}^*$. We have $\xi = t-1$ since $\theta_0^*, \theta_1^*, \dots, \theta_d^*$ are mutually distinct. We mentioned earlier that $\xi \neq t-1$, for a contradiction. We conclude that the subgraph induced on $\Gamma_{d-1}(x) \cup \Gamma_d(x)$ is connected.