Similarly
<p(y), > p(w)> = pf;0;.
wel;(y)NTi(z)
We also have
(p(v), p(y)) = 6, (p(v), p(2)) = b;.
By these comments,
i (0F = 05) = (65 — 07).
The result follows. O

We have some comments about the representation diagram Apg. This diagram has vertex
set 0,1,2,...,d. Since X is symmetric, the edges in Ag are undirected. Some of the vertices
might have a loop. Let A& denote the diagram obtained from Ap by removing the loops.
We call AR the reduced representation diagram for E.

We now state the next main result.

Theorem 16.12. The following are equivalent:
(i) p is balanced;
(ii) AL 4s a tree.

We will prove Theorem 16.12 shortly. First we mention a corollary. Note that AZ is a path
if and only if X is -polynomial with respect to E.

Corollary 16.13. Assume that X is Q-polynomial with respect to E. Then p is balanced.
Proof. The diagram A% is a path and hence a tree. ]

Lecture 22

"To prove Theorem 16.12, we will use the subconstituent algebra. For the rest of this section,
fix a vertex x € X. Recall that T = T'(z) is generated by M and M* = M*(z). Abbreviate
A* = A} € M*. By construction

Af = zd: O E;.
i=0

We define a subspace £ of the vector space 7"

£ = Span{MA*N — NA*M|M, N € M}.
Each of {4;}4, and {F;}Z, is a basis for M. Therefore

L = Span{A;A*A; — A;A"A;)0 < 4,5 < d} (59)
and

L = Span{E;A*E; — E;A*E;|0 <i,5 < d}. (60)

We now give a refined version of (60).
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Lemma 16.14. The set
18 a basis for L.

Proof. We saw earlier that for 0 < 4,7 < d the matrix F;A*E; = 0 if and only if q; ; =0.
Also, the nonzero matrices among {E;A*E;|0 < 4,5 < d} are mutually orthogonal, and
therefore linearly independent. Il

Corollary 16.15. The dimension of £ is equal to the number of edges in AE.

Proof. For 0 < i < j < d the vertices i,j of A% are adjacent if and only if qi{ i # 0. The
result follows from this and Lemma 16.14. O

Corollary 16.16. Assume that p is weakly nondegenerate. Then d < dim £, with equality
if and only if AR is a tree.

Proof. The graph A% is connected. An undirected connected graph with d + 1 vertices has
at least d edges, with equality if and only if the graph is a tree. The result follows. O

Lemma 16.17. Assume that p is weakly nondegenerate. Then the set {A*A, — A A*|1 <
k < d} is a linearly independent subset of L.

Proof. By construction the given set is contained in £. For 1 < k < d and y € X we
compute the (z,y)-entry of A*A, — ArA*. This entry is equal to

A2 Ay ~ (A4, = {g R
The linear independence is a routine consequence of this. O
Corollary 16.18. Assume that p is weakly nondegenerate. Then the following are equivalent:

(i) dim £ = d;

(i) AZ 4s a tree;

(ili) the matrices {A* Ay — AgA*|1 < k < d} span L;

(iv) the matrices {A*Ay — AR A*|1 < k < d} form a basis for L.
Proof. By Corollary 16.15 and Lemma 16.17. O

Proof of Theorem 16.12. (i) = (ii) We assume p is balanced, so p is weakly nondegenerate.
We show that for 0 < 4,5 <d,

d
AA* Ay — AjAT A = 1l (AT Ay — AAY), (62)

k=1
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where

o
4,7 4,7 A% _ . O*
05— 0

(1<k<d).

To establish (62), we will show that the following matrix is equal to 0:

d
AZA*A] — AJA*Az - Z Tf,j (A*Ak - AAA*) (63)

k=1
For y, z € X we compute the (y, z)-entry of (63). The (y, 2)-entry of A;A*A; is equal to

Z (Ai)%’wA'Tu,w (Aj)w,z = Z A?L:U,’LU

weX wel: ()T (2)

= > (@), p(w))

wel; (y)NT;(z)

~(sle) X otw)

wels (y)Nl';(2)

Similarly, the (y, z)-entry of A;A*A; is equal to

(o) ¥ ow)

wGFj (y)ﬂFi (Z)

For 1 < k < d the (y, z)-entry of A*A, — ApA* is equal to

. B . J{p@),ply) = p(2)) if (y,2) € Ry;
Ay,y(Ak)y,z (Ak)y,zAz,z - {0 if (y,z) Q’ Ry

By these comments, the (y, z)-entry of (63) is equal to

<p<x>, o) - Y p(w)—r;fj(p<y>—p<z>)>, (64)

wely (y)NT;(2) wel; (y)NTi(z)

provided that y # 2z and (y,2) € Ry. In this case the scalar (64) is equal to zero, because
in the inner product the vector on the right is zero. Note that for y = z the (y, 2)-entry of
(63) is equal to zero. We have shown that the matrix (63) is equal to zero, so (62) holds. By
(59) and (62) we get Corollary 16.18(iii), which implies Corollary 16.18(ii). We have shown
that AL is a tree.

(ii) = (i) The graph A% is connected since it is a tree. Therefore p is weakly nondegenerate.
We show that p satisfies the balanced set condition. By Corollary 16.18 the matrices { A* A —
ApA*|1 < k < d} form a basis for £. Consequently, for 0 < 4,5 < d there exist rzlfj e R
(1 <k < d) such that

d
AATA; — AJAT A =) ok (AT A — AgA”). (65)
k=1
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For distinct 3,z € X we examine the (y, z)-entry in (65). The result shows that p(z) is
orthogonal to

Soopw) = > plw) =) - p(2)), (66)
wely(y)NC;(2) wel';(y)NT;(z)

where (y, z) € Ry. Since the choice of z is arbitrary, the vector (66) must be orthogonal to
EV. The vector (66) is contained in EV/, so the vector (66) is equal to zero. Therefore

Soopw) = D pw) =78(ply) - p(2)).
wely (y)NI;(2) wel; (y)NT;(2)
Consequently p satisfies the balanced set condition. We conclude that p is balanced. O

As we saw earlier, if X is @-polynomial with respect to E, then p is balanced. We are going
to show that the converse is true, provided that X is P-polynomial. This converse is implied
by the following theorem. To avoid trivialities, we will assume d > 3.

Theorem 16.19. Assume that d > 3, and the ordering {R;}{, is P-polynomial. Assume
that p = pg satisfies:

(i) p is weakly nondegenerate;

(ii) forally,z € X,

Yoo pw)— > pw) € Span(p(y) — p(2))-

wel (y)NT2(z) wel (y)NI'(2)

Then X is Q-polynomial with respect to E.

Proof. We abbreviate A = A;. Fix z € X and write T = T'(z). We assume that p is weakly
nondegenerate, so 8; # 65 for 1 <17 <d.
Claim 1. Pick an integer k (1 < k < d) and y, 2z € X such that (y,2) € Ry. Then

Yoopw)— D> pw) =1F,(p(y) — o),

wel(y)Nla(z) wel'2(y)NI(2)
where
o0 — 05
k U1 2
T1 o= Doy ) (67)
1,2 1,2 60 - 9;;

Proof of Claim 1. By assumption there exists o € R such that

Yo pw)— > pw) =aply) - p(2)).

wel(y)NT'2(2) wels (y)NI(z)

For each term in the above equation, take the inner product with p(y). A brief calculation
yields

Pio(0; — 03) = a6 — 07).
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Therefore

0 — 0%
k V10
=Dl om0

Y205 — 6;
and Claim 1 is proved.
Claim 2. We have

d
AATAy — ApATA = "1l (A A — ALAY). (68)
k=1

Proof of Claim 2. For y, z € X we compute the (y, z)-entry of the left-hand side of (68) minus
the right-hand side of (68). For y = z the (y, z)-entry is zero. For y # z the (y, z)-entry is
equal to

<p(w), Yoo pw) - > p(w)—r’f,z(p(y)—p(Z))>,

wel(y)Na(z) wel's (y)NI(z)

where (y, z) € Ry. The above scalar is zero by Claim 1. Claim 2 is proved.
Conceivably 6} = 3. In this case 7§, = 0 for 1 < k < d. So by Claim 2, AA*A; = A,A*A.
In this equation we eliminate Ay using Ay = (A% — a1 A — kI)/cy (k = by) and get

APA*A — AA*A? = k(A% A — AAY). (69)

We will return to this equation shortly.
Claim 3. Assume that 7 # 05. Then there exist scalars 3,7, 0 € R such that

0= [A, A2A* — BAA*A + A*A® — y(AA* + A*A) — 0A"], (70)

where [r, s] =78 — sr.

Proof of Claim 3. Referring to (67), the scalar p}, is zero if £ > 3 and nonzero if k£ = 3.
Therefore rfg is zero if k > 3 and nonzero if £ = 3. The matrices Ay and A3 appear in
(68). Recall that Ay and Az are polynomials in A that have degrees 2 and 3, respectively.
Evaluating (68) using this fact, we obtain

A3A* — A*A3 € Span (AQA*A — AA*A? APA* — A* A% AAY — A*A).
Therefore there exist 3,7, 0 € R such that
ASA* — A*A% = (B4 1)(A2A*A — AA*A?) + Y(AZA* — A*A?) + o(AA* — A*A).

In this equation we rearrange the terms to obtain (70). Claim 3 is proved.

For 0 < ¢ < d let §; denote the eigenvalue of A for E;. Recall the reduced representation
diagram AZ. The graph A% is connected since p is weakly nondegenerate. Recall that in
AL vertex 0 is adjacent to vertex 1 and no other vertex. We will show that AR is a path.
To do this, it suffices to show that each vertex i in AL is adjacent to at most 2 vertices in
AR

Claim 4. For distinct vertices 4,7 in AL that are adjacent,
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(i) if 67 = 03 then 6,0, = —rx;
(ii) if 65 # 05 then P(6;,0;) = 0, where

PO ) =N =P+ —y(A+p) — 0.

Proof of Claim 4. First assume that 6f = 65. Then (69) holds. In (69), multiply each term
on the left by F; and on the right by F;. Simplify the result to get

We have F;A*E; # 0 since ¢, j are adjacent in AE. The scalar §; — f; is nonzero since i # j.
Therefore 6,0; + £ = 0 so 0;0; = —k. Next assume that 67 # 5. Then (70) holds. In (70),
multiply each term on the left by F; and the right by E;. Simplify the result to get

We have E;A*E; # 0 since 4, j are adjacent in AZ. The scalar §; — 6; is nonzero since 4 # j.
Therefore P(6;,6;) = 0.

Claim 5. We have 67 +# 63.

Proof of Claim 5. Suppose that 67 = 3. By Claim 4 and since vertex 0 is adjacent to vertex
1, we have 0p6) = —k. We have 0y = & so 6; = —1. The graph A% is connected, so vertex 1
is adjacent to some nonzero vertex j. By Claim 4 we have 6:6; = —«. By this and 8, = —1,
we obtain 0; = k. This implies j = 0, for a contradiction. Claim 5 is proved.

Claim 6. Bach vertex ¢ in A% is adjacent at most two vertices in AR,

Proof of Claim 6. By Claims 4, 5 we see that for each vertex j in A% that is adjacent vertex
1, the eigenvalue 6; is a root of the polynomial

P(6;, 1) = 07 — BOsyu+ 1 — 4(6; + 1) — o.

'This polynomial is quadratic in g, so it has at most two distinct roots. Claim 6 is proved.
We have shown that the graph A is a path. Consequently X is Q-polynomial with respect
to E. ]
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