Lecture 21 ## 16 Embeddings into spheres Throughout this section we consider a symmetric association scheme $\mathfrak{X} = (X, \{R_i\}_{i=0}^d)$. Recall that $$i'=i,$$ $\hat{i}=i$ $(0 \le i \le d),$ and that $$P_i(j) \in \mathbb{R}, \qquad Q_i(j) \in \mathbb{R} \qquad (0 \le i, j \le d).$$ To avoid trivialities, we assume that $d \geq 1$. It will be convenient to work over the field \mathbb{R} instead of \mathbb{C} . We take the standard module to be $V = \mathbb{R}^X$. We endow V with a bilinear form \langle , \rangle such that $\langle u, v \rangle = u^t v$ for all $u, v \in V$. Abbreviate $||u||^2 = \langle u, u \rangle$. Throughout this section we fix a nontrivial primitive idempotent E. Without loss of generality, we may assume that $E = E_1$. We abbreviate $$heta_i^* = Q_1(i) \qquad \qquad (0 \le i \le d).$$ Note that $$E = |X|^{-1} \sum_{i=0}^{d} \theta_i^* A_i.$$ Recall that EV is a common eigenspace for the Bose-Mesner algebra \mathcal{M} . Definition 16.1. We define the map $$\rho: \quad \frac{X \to EV}{y \mapsto |X|^{1/2} E\hat{y}}$$ We call ρ the spherical representation of \mathfrak{X} associated with E. By construction, $$EV = \operatorname{Span}\{\rho(y)|y \in X\}.$$ **Lemma 16.2.** The following hold for $0 \le i \le d$. (i) For $y, z \in X$ such that $(y, z) \in R_i$, $$\langle \rho(y), \rho(z) \rangle = \theta_i^*.$$ (ii) For $y \in X$, $$\sum_{z\in \Gamma_i(y)} ho(z) = P_i(1) ho(y),$$ where we recall $$\Gamma_i(y) = \{ z \in X | (y, z) \in R_i \}.$$ Proof. (i) We have $$\begin{split} \langle \rho(y), \rho(z) \rangle &= |X| \langle E\hat{y}, E\hat{z} \rangle \\ &= |X| \langle \hat{y}, E^t E \hat{z} \rangle \\ &= |X| \langle \hat{y}, E^2 \hat{z} \rangle \\ &= |X| \langle \hat{y}, E\hat{z} \rangle \\ &= |X| \Big((y, z) \text{-entry of } E \Big) \\ &= \theta_i^*. \end{split}$$ (ii) We have $$\sum_{z \in \Gamma_{i}(y)} \rho(z) = |X|^{1/2} \sum_{z \in \Gamma_{i}(y)} E\hat{z}$$ $$= |X|^{1/2} E \sum_{z \in \Gamma_{i}(y)} \hat{z}$$ $$= |X|^{1/2} E A_{i} \hat{y}$$ $$= |X|^{1/2} A_{i} E \hat{y}$$ $$= |X|^{1/2} P_{i}(1) E \hat{y}$$ $$= P_{i}(1) \rho(y).$$ Note that $\theta_0^* = Q_1(0) = m_1$. By Lemma 16.2(i), $$\|\rho(y)\|^2 = \theta_0^*$$ $(y \in X).$ **Lemma 16.3.** For $y, z \in X$ the angle between $\rho(y), \rho(z)$ has cosine θ_i^*/θ_0^* , where $(y, z) \in R_i$. *Proof.* By Lemma 16.2(i) and the comment above the lemma statement. **Definition 16.4.** The spherical representation ρ is said to be *nondegenerate* whenever $\{\theta_i^*\}_{i=0}^d$ are mutually distinct. Recall the Q-polynomial property from Definition 12.1. **Definition 16.5.** We say that \mathcal{X} is Q-polynomial with respect to E whenever the there exists a Q-polynomial ordering $\{E_i\}_{i=0}^d$ of the primitive idempotents such that $E=E_1$. **Lemma 16.6.** Assume that X is Q-polynomial with respect to E. Then ρ is nondegenerate. *Proof.* We saw earlier that $\{\theta_i^*\}_{i=0}^d$ are mutually distinct. **Definition 16.7.** The spherical representation ρ is said to be weakly nondegenerate whenever $\theta_i^* \neq \theta_0^*$ for $1 \leq i \leq d$. Let us clarify the meaning of weakly nondegenerate. **Lemma 16.8.** The spherical representation ρ is weakly nondegenerate if and only if the vectors $\{\rho(y)|y\in X\}$ are mutually distinct. Recall the representation diagram Δ_E from Definition 9.15. **Lemma 16.9.** The spherical representation ρ is weakly nondegenerate if and only if Δ_E is connected. *Proof.* By Proposition 9.17. $$\Box$$ **Definition 16.10.** The spherical representation ρ is said to be balanced whenever: - (i) ρ is weakly nondegenerate; - (ii) for distinct $y, z \in X$ and $0 \le i, j \le d$ we have $$\sum_{w \in \Gamma_i(y) \cap \Gamma_j(z)} \rho(w) - \sum_{w \in \Gamma_j(y) \cap \Gamma_i(z)} \rho(w) \in \operatorname{Span}(\rho(y) - \rho(z)).$$ (58) The equation (58) is called the balanced set condition. **Lemma 16.11.** Assume that ρ is balanced, and pick distinct $y, z \in X$. For $0 \le i, j \le d$ we have $$\sum_{w \in \Gamma_i(y) \cap \Gamma_j(z)} \rho(w) - \sum_{w \in \Gamma_j(y) \cap \Gamma_i(z)} \rho(w) = r_{i,j}^k (\rho(y) - \rho(z)),$$ where $(y, z) \in R_k$ and $$r_{i,j}^k = p_{i,j}^k \frac{\theta_i^* - \theta_j^*}{\theta_0^* - \theta_k^*}.$$ *Proof.* The left-hand side of (58) is a scalar multiple of $\rho(y) - \rho(z)$; denote the scalar by α . To compute α , take the inner product of $\rho(y)$ with each side of (58). We have $$\left\langle \rho(y), \sum_{w \in \Gamma_i(y) \cap \Gamma_j(z)} \rho(w) \right\rangle = \sum_{w \in \Gamma_i(y) \cap \Gamma_j(z)} \left\langle \rho(y), \rho(w) \right\rangle = \sum_{w \in \Gamma_i(y) \cap \Gamma_j(z)} \theta_i^* = p_{i,j}^k \theta_i^*.$$ Similarly $$\left\langle \rho(y), \sum_{w \in \Gamma_i(y) \cap \Gamma_i(z)} \rho(w) \right\rangle = p_{i,j}^k \theta_j^*.$$ We also have $$\langle \rho(y), \rho(y) \rangle = \theta_0^*, \qquad \langle \rho(y), \rho(z) \rangle = \theta_k^*.$$ By these comments, $$p_{i,j}^k(\theta_i^* - \theta_j^*) = \alpha(\theta_0^* - \theta_k^*).$$ The result follows. We have some comments about the representation diagram Δ_E . This diagram has vertex set $0, 1, 2, \ldots, d$. Since \mathfrak{X} is symmetric, the edges in Δ_E are undirected. Some of the vertices might have a loop. Let Δ_E^R denote the diagram obtained from Δ_E by removing the loops. We call Δ_E^R the reduced representation diagram for E. We now state the next main result. Theorem 16.12. The following are equivalent: - (i) ρ is balanced; - (ii) Δ_E^R is a tree. We will prove Theorem 16.12 shortly. First we mention a corollary. Corollary 16.13. Assume that X is Q-polynomial with respect to E. Then ρ is balanced. *Proof.* The diagram Δ_E^R is a path and hence a tree. To prove Theorem 16.12, we will use the subconstituent algebra. For the rest of this section, fix a vertex $x \in X$. Recall that T = T(x) is generated by \mathfrak{M} and $\mathfrak{M}^* = \mathfrak{M}^*(x)$. Abbreviate $A^* = A_1^* \in \mathfrak{M}^*$. By construction $$A^* = \sum_{i=0}^d \theta_i^* E_i^*.$$ We define a subspace \mathcal{L} of the vector space T: $$\mathcal{L} = \operatorname{Span}\{MA^*N - NA^*M | M, N \in \mathcal{M}\}.$$ Lemma 16.14. The set $$\{E_i A^* E_j - E_j A^* E_i | 0 \le i < j \le d, \ q_{i,j}^1 \ne 0\}$$ (59) is a basis for \mathcal{L} .