Proof. This result asserts that for subsets y, z of {1,2,...,v} such that

|yl = d, 2| = d, lynzl=d-—¢,
the number of subsets w C {1,2,...,v} such that
w C y, w C 2z, lw|=d -1
is equal to |
(=)

d—i)

"This assertion is routinely checked. Ll
Lecture 20

Lemma 15.5. For 0 <i < d the following holds on V.

d—1{
A —1 i—¢
> (i)
Proof. Use linear algebra to solve the system of linear equations in Lemma 15.4. 1

Proposition 15.6. For J(v,d) the entries of P are given as follows. For 0 <i,j <d,

roy- e () (1))

£=0

Proof. Let W denote an irreducible T-module with endpoint j. For 0 < ¢ < d the matrix

R!L¢
oo
acts on EYW as I, where
_fd—j\[v—d—j+{
/Yg - g g .
The result follows. t
For J(v,d) the matrix ¢} satisfies
. my . .
Quls) = —Fi(0) (0<i,j<d).
§

In order to clarify our formulas, we bring in hypergeometric series. For a € € define

(a)p=ala+1){a+2) - (a+n—1) {n €N}

71




We interpret (a)o = 1. For n,m & N we have

() = £0 if n <my
" 0 ifn>m+1.

For r,s € N and complex scalars

Qq, gy 0 e vy Qg }81)1625'--76&'

the corresponding hypergeometric series is

Ny, Qigy ...y Qip . . (e1)nlca)n (@ )n
1‘Fs (ﬁl) /82a v :/Bs z) B nz_% (/Bl)n(ﬁ2)n e (ﬁs)n ¥

I

|

7
|

o

If at least one of aq, ag, . .., @, is an integer at most 0, then the above sum has finitely many

nonzero summands.

Proposition 15.7. For 0 <1i,j <d we have

Fi(7) _ @s(1) MBFQ(*'E’*J'J“”_ 1‘ 1).

k; m;

Proof. Use Proposition 15.6.

Recall the abbreviation

9::?;—1—";(5;2); 0<i<d)

Proof. Set 7 =1 in Proposition 15.7.
Note that {0}% , are mutnally distinct.
The following definition is for notational convenience.
Definition 15.9. Define

. v(i-v)

d(v — d)
Further define
w;=si(i—d-1){(i+d—v—1) (1<i<d).

Note that ¢; #£ 0 for 1 <1 < d.
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Proposition 15.10. For 0 <4,j < d the common value in (57) is equal to
min{%,j) 5 % ® ® *
f (6 607 =00~ (01 = 01_:)(0; —00)(0; =)+ (65 — o)
n=0 Pripa - Pn |
Proof. For 0 < n < d we have
(67 — 05307 — 01) -+ (67 — O_y) = (—1)"s™(—)n,

(8; = 00)(05 = 01) -+ (0 — Op1) = (—1)"(—5)u(f —v — 1),
Pripg - pn =8 (d - 'U)n(_ )11.n!

Therefore

(07 — 05)(6; — 07) -~ (0 — 05 _1)(0; — 00)(0; — 0s) - - (0; — Ona)
PiPa Pn
— (Mz)n(mj)n(j —v- l)n
(d —v)p{—d)pn!

The result follows from this and Proposition 15.7.
Definition 15.11. For 0 < ¢ < d define the polynomials 7;, 7* € R[A] by

1= (A —Oo)(A~01)- - (A= 0iy),
=000 (A0

Each of 7;, 7/ is monic with degree <.
Lemma 15.12. For 0 <4,7 < d we have

0 ifj<i- 0 ij<i-1;
i) {%o if > 4. (%) {%0 if 5 > .

Proof. Since {6;}4., are mutually distinct and {8}}4., are mutually distinct.
Definition 15.13. For 0 < ¢ < d define the polynomials v, v} € R{A] by
i
9. *
~k Z o =3 Tl
n=0 (,01(,02 n=0 Pripz e Pn
Fach of v;, v} has degree 4. We call v; (resp. o})} the i Eberlein (resp. Hahn) polynomial.
Proposition 15.14. For 0 <i,j < d we have
Fi(7) = w(8;), Qily) = v (7).

Proof. By Proposition 15.10, Lemma 15.12, and Definition 15.13 we obtain

mm(m}

T (07 )a(05)
=k =k = u;(8;:).
Z 01p9 - gon Z 991902 i(05)

n=0
The proof of Q;(j) = v;(#;) is similar.
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Cor ollary 15.15. The Johnson graph J(v,d) is Q-polynomial with respect to the ordering

{EiYizo

Proof. For 0 < 1 < d we displayed a polynomial v of degree ¢ such that Q;(7) = v (6}) for
0 < 7 <d. The result follows by Theorem 12.9. 1

Remark 15.16. The polynomials {;}¢, from Definition 15 13 are the same as the poly-
nomials {v;}%., from Definition 11.4. The polynomials {v}}%, from Definition 15.13 are the
same as the polynomials {v}}¢_; from Definition 12.4.

Next we compute the Krein parameters for J(v, d).
Lemma 15.17. For J{v,d) we have

v N{d—-d)v—i+Hv—d—1)

. v(w-1) .
= a2 41) (Osisd-1)
. vlo=10id—i+ 1) v—-d—i+1) .
T dw=d) =%+ (=212 (l=isd),
. (w=1w-—2d)%wv—i+1) ,
“ Yo d) (o~ 24)(v — 2+ 2) O=i<d=1),
(v —

v —2d)(v—d+1)
(v—d}(v—2d+2)

a; =

Proof. Evaluate the 3-term recurrence given in Definition 12.4 using the formulas in Defini-
tion 15.13. (I

Problem 15.18. Show that for H(d, ¢) the following holds for 0 < 4,7 < &
RO Q0 (3] 1)
R U A Iy
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