Proof. This result asserts that for subsets y, z of $\{1, 2, \ldots, v\}$ such that

$$|y|=d, \qquad |z|=d, \qquad |y\cap z|=d-\ell,$$

the number of subsets $w \subseteq \{1, 2, ..., v\}$ such that

$$w \subseteq y, \qquad \qquad w \subseteq z, \qquad \qquad |w| = d - i$$

is equal to

$$\binom{d-\ell}{d-i}$$
.

This assertion is routinely checked.

Lecture 20

Lemma 15.5. For $0 \le i \le d$ the following holds on V:

$$A_i = \sum_{\ell=0}^i \frac{\mathbf{R}^\ell}{\ell!} \frac{\mathbf{L}^\ell}{\ell!} (-1)^{i-\ell} \binom{d-\ell}{d-i}.$$

Proof. Use linear algebra to solve the system of linear equations in Lemma 15.4. \Box

Proposition 15.6. For J(v,d) the entries of P are given as follows. For $0 \le i, j \le d$,

$$P_i(j) = \sum_{\ell=0}^i (-1)^{i-\ell} {d-j \choose \ell} {v-d-j+\ell \choose \ell} {d-\ell \choose d-i}.$$

Proof. Let W denote an irreducible T-module with endpoint j. For $0 \le \ell \le d$ the matrix

$$\frac{\mathbf{R}^{\ell}}{\rho_1} \frac{\mathbf{L}^{\ell}}{\rho_1}$$

acts on $\mathbf{E}_d^* \mathbf{W}$ as $\gamma_{\ell} \mathbf{I}$, where

$$\gamma_\ell = {d-j \choose \ell} {v-d-j+\ell \choose \ell}.$$

The result follows.

For J(v,d) the matrix Q satisfies

$$Q_i(j) = \frac{m_i}{k_j} P_j(i) \qquad (0 \le i, j \le d).$$

In order to clarify our formulas, we bring in hypergeometric series. For $a \in \mathbb{C}$ define

$$(a)_n = a(a+1)(a+2)\cdots(a+n-1)$$
 $(n \in \mathbb{N}).$

We interpret $(a)_0 = 1$. For $n, m \in \mathbb{N}$ we have

$$(-m)_n = \begin{cases} \neq 0 & \text{if } n \leq m; \\ 0 & \text{if } n \geq m+1. \end{cases}$$

For $r, s \in \mathbb{N}$ and complex scalars

$$\alpha_1, \alpha_2, \ldots, \alpha_r; \qquad \beta_1, \beta_2, \ldots, \beta_s$$

the corresponding hypergeometric series is

$$_rF_s\left(\begin{array}{c} \alpha_1,\alpha_2,\ldots,\alpha_r\\ \beta_1,\beta_2,\ldots,\beta_s \end{array}\middle| z\right) = \sum_{n=0}^{\infty} \frac{(\alpha_1)_n(\alpha_2)_n\cdots(\alpha_r)_n}{(\beta_1)_n(\beta_2)_n\cdots(\beta_s)_n} \frac{z^n}{n!}.$$

If at least one of $\alpha_1, \alpha_2, \ldots, \alpha_r$ is an integer at most 0, then the above sum has finitely many nonzero summands.

Proposition 15.7. For $0 \le i, j \le d$ we have

$$\frac{P_i(j)}{k_i} = \frac{Q_j(i)}{m_i} = {}_{3}F_2 \begin{pmatrix} -i, -j, j - v - 1 \\ d - v, -d \end{pmatrix} 1.$$
 (57)

Proof. Use Proposition 15.6.

Recall the abbreviation

$$\theta_i^* = Q_1(i) \qquad (0 \le i \le d).$$

Corollary 15.8. For J(v, d) we have

$$\theta_i^* = v - 1 - \frac{v(v-1)i}{d(v-d)} \qquad (0 \le i \le d).$$

Proof. Set j = 1 in Proposition 15.7.

Note that $\{\theta_i^*\}_{i=0}^d$ are mutually distinct.

The following definition is for notational convenience.

Definition 15.9. Define

$$s^* = \frac{v(1-v)}{d(v-d)}.$$

Further define

$$\varphi_i = s^* i(i - d - 1)(i + d - v - 1)$$
 $(1 \le i \le d).$

Note that $\varphi_i \neq 0$ for $1 \leq i \leq d$.

Proposition 15.10. For $0 \le i, j \le d$ the common value in (57) is equal to

$$\sum_{n=0}^{\min(i,j)} \frac{(\theta_i^* - \theta_0^*)(\theta_i^* - \theta_1^*) \cdots (\theta_i^* - \theta_{n-1}^*)(\theta_j - \theta_0)(\theta_j - \theta_1) \cdots (\theta_j - \theta_{n-1})}{\varphi_1 \varphi_2 \cdots \varphi_n}$$

Proof. For $0 \le n \le d$ we have

$$(\theta_i^* - \theta_0^*)(\theta_i^* - \theta_1^*) \cdots (\theta_i^* - \theta_{n-1}^*) = (-1)^n s^{*n} (-i)_n,$$

$$(\theta_j - \theta_0)(\theta_j - \theta_1) \cdots (\theta_j - \theta_{n-1}) = (-1)^n (-j)_n (j - v - 1)_n,$$

$$\varphi_1 \varphi_2 \cdots \varphi_n = s^{*n} (d - v)_n (-d)_n n!$$

Therefore

$$\frac{(\theta_i^* - \theta_0^*)(\theta_i^* - \theta_1^*) \cdots (\theta_i^* - \theta_{n-1}^*)(\theta_j - \theta_0)(\theta_j - \theta_1) \cdots (\theta_j - \theta_{n-1})}{\varphi_1 \varphi_2 \cdots \varphi_n}$$

$$= \frac{(-i)_n (-j)_n (j - v - 1)_n}{(d - v)_n (-d)_n n!}.$$

The result follows from this and Proposition 15.7.

Definition 15.11. For $0 \le i \le d$ define the polynomials $\tau_i, \tau_i^* \in \mathbb{R}[\lambda]$ by

$$\tau_i = (\lambda - \theta_0)(\lambda - \theta_1) \cdots (\lambda - \theta_{i-1}),$$

$$\tau_i^* = (\lambda - \theta_0^*)(\lambda - \theta_1^*) \cdots (\lambda - \theta_{i-1}^*).$$

Each of τ_i, τ_i^* is monic with degree *i*.

Lemma 15.12. For $0 \le i, j \le d$ we have

$$au_i(heta_j) = egin{cases} 0 & ext{if } j \leq i-1; \
eq 0 & ext{if } j \geq i. \end{cases} ag{ au_i^*(heta_j^*)} = egin{cases} 0 & ext{if } j \leq i-1; \
eq 0 & ext{if } j \geq i. \end{cases}$$

Proof. Since $\{\theta_j\}_{j=0}^d$ are mutually distinct and $\{\theta_j^*\}_{j=0}^d$ are mutually distinct.

Definition 15.13. For $0 \leq i \leq d$ define the polynomials $v_i, v_i^* \in \mathbb{R}[\lambda]$ by

$$v_i = k_i \sum_{n=0}^i \frac{\tau_n^*(\theta_i^*)\tau_n}{\varphi_1\varphi_2\cdots\varphi_n}, \qquad v_i^* = m_i \sum_{n=0}^i \frac{\tau_n(\theta_i)\tau_n^*}{\varphi_1\varphi_2\cdots\varphi_n}.$$

Each of v_i, v_i^* has degree i. We call v_i (resp. v_i^*) the ith Eberlein (resp. Hahn) polynomial.

Proposition 15.14. For $0 \le i, j \le d$ we have

$$P_i(j) = v_i(\theta_j), \qquad \qquad Q_i(j) = v_i^*(\theta_j^*).$$

Proof. By Proposition 15.10, Lemma 15.12, and Definition 15.13 we obtain

$$P_i(j) = k_i \sum_{n=0}^{\min(i,j)} \frac{\tau_n^*(\theta_i^*) \tau_n(\theta_j)}{\varphi_1 \varphi_2 \cdots \varphi_n} = k_i \sum_{n=0}^i \frac{\tau_n^*(\theta_i^*) \tau_n(\theta_j)}{\varphi_1 \varphi_2 \cdots \varphi_n} = v_i(\theta_j).$$

The proof of $Q_i(j) = v_i^*(\theta_i^*)$ is similar.

Corollary 15.15. The Johnson graph J(v,d) is Q-polynomial with respect to the ordering $\{E_i\}_{i=0}^d$.

Proof. For $0 \le i \le d$ we displayed a polynomial v_i^* of degree i such that $Q_i(j) = v_i^*(\theta_j^*)$ for $0 \le j \le d$. The result follows by Theorem 12.9.

Remark 15.16. The polynomials $\{v_i\}_{i=0}^d$ from Definition 15.13 are the same as the polynomials $\{v_i\}_{i=0}^d$ from Definition 11.4. The polynomials $\{v_i\}_{i=0}^d$ from Definition 15.13 are the same as the polynomials $\{v_i^*\}_{i=0}^d$ from Definition 12.4.

Next we compute the Krein parameters for J(v, d).

Lemma 15.17. For J(v, d) we have

$$b_{i}^{*} = \frac{v(v-1)}{d(v-d)} \frac{(d-i)(v-i+1)(v-d-i)}{(v-2i)(v-2i+1)} \qquad (0 \le i \le d-1),$$

$$c_{i}^{*} = \frac{v(v-1)}{d(v-d)} \frac{i(d-i+1)(v-d-i+1)}{(v-2i+1)(v-2i+2)} \qquad (1 \le i \le d),$$

$$a_{i}^{*} = \frac{(v-1)(v-2d)^{2}i(v-i+1)}{d(v-d)(v-2i)(v-2i+2)} \qquad (0 \le i \le d-1),$$

$$a_{d}^{*} = \frac{(v-1)(v-2d)(v-d+1)}{(v-d)(v-2d+2)}.$$

Proof. Evaluate the 3-term recurrence given in Definition 12.4 using the formulas in Definition 15.13. \Box

Problem 15.18. Show that for H(d,q) the following holds for $0 \le i, j \le d$:

$$\frac{P_i(j)}{k_i} = \frac{Q_j(i)}{m_j} = {}_2F_1\left(\begin{matrix} -i, -j \\ -d \end{matrix}\middle| \frac{q}{q-1}\right).$$