Lemma 14.13. The matrices R, L, A* satisfy

AL — LA = 2L, A*R — RA" = —2R, LR— RL = A"
Proof. To verify these equations, for y, z € X compare the (y, z)-entry on either side. O
Lecture 19

Remark 14.14. The above equations are the defining relations for the Lie algebra sl;. We
briefly explain the details. The Lie algebra sly consists of the 2 X 2 matrices over C that
have trace 0, together with the Lie bracket [r, s] == rs — sr. The vector space sl has a basis

01 g 0 1 0
s=(go)  F=(o)  w=(o f)
T'he Lie bracket satisfies

[H, E] = 2F, [H, F] = —2F, (E, F] = H. (54)

By these comments, the standard module V of H{d,2) becomes an slz-module on which
FE,F H act as L, R, A* respectively.

Recall that the standard module V is an orthogonal direct sum of irreducible T-modules.

Definition 14.15. Let W denote an irreducible T-module. Define
r=min{il0 < i< d, EW # 0}, §=[{i|0 < i < d, BfW # 0} — L.

We call r (resp. 8) the endpoint (resp. diameter) of W.

Proposition 14.16. Let W denote an wrreducible T-module. The endpoint r of W satisfies
0<r<d/2.

The diameter § of W satisfies
0 =d— 27

There exists a basis {uy}_o of W such that

w; € B W (0<i<8),
Ruw; = (i + L)wipq (0 <i<d), Ruws =0
L‘LU?; = (5 — i+ 1)’10{,1 (1 S % S 5), L’LUO = ().
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Proof. Pick 0+ wy € EXW. For 0 <+¢ < d— r define

i
Rwg
A

w; =
We have w; € F; W, so
Afw; = (d — 2r — 20wy
By construction,
Ruw; = (i + 1wy (0<i<d—r),

where wg_pr41 = 0. By the definition of wg, we have Lwg = 0. By this and LR — RL = A*
we find by induction on i that :

Lwgpy = {d — 2r — i)uy (0<i<d—r).

There exists a unique integer s (0 < s < d — r) such that wg,ws, ..., ws are nonzero and
Weyr = 0. We claim that s = d — 2r. To see this, note that

Lwgyy = (d — 2r — 8)ws.

In the above equation, we have Lw;p 1 = L0 = 0 and w, # 0, so s = d — 2r. The claim

is proved. One readily checks that the vectors {wi}f;g” form a basis for W, and the result

follows. |

Definition 14.17. Decompose the standard module V into an orthogonal direct sum of
irreducible T-modules. For an integer {0 < r < d/2) let mult(r) denote the number of
irreducible T-modules in this decomposition that have endpoint 7.

Proposition 14.18. With the cbove notation,

mult(0) = 1,

() — (d) - ( d ) (1< < df2)

T r—1
Proof Using Proposition 14,16 we find that for 0 <17 < d/2,
‘ d
Zmult(j) =dim EV =k = ()
=0 ’
The result follows. [l
Recall that

A'L — LA* = 2L, A*R— RA* = —9R, LR—RL = A*  (55)

Next we express these relations in terms of A, A*.
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Proposition 14.19. For the graph H(d,2) the adjacency matriz A and dual adjecency
matriz A* satisfy

A%A* — 2AA*A 4+ A* A% = 447,
APA QAT AAY | AA® = 4A,

Proof. Recall A = R+ L. Adding the first two equations in (55), we obtain
AA* — A"A=2(R - L).
Combining this with A = R + L, we obtain

AAT — A*A 424 ATA — AAY 24
R = 4 y L= 4 '

Use these equations to eliminate R, L in the first two relations from (55). The result follows.
]

For more information about H{d,2) see

Junie Go. The Terwilliger algebra of the hypercube. Europ. J. Combin. (2002) 399-429.

15 The Johnson scheme J(v,d)

In this section we consider the Johuson association scheme J(v,d). We mentioned earlier
that J(v,d) is P-polynomial; we view J(v,d) as a distance-regular graph. This graph has
valency k = d(v — d) and intersection numbers

¢; = 1%, by = (d — ) (v —d—1), a; = i(v — 24)

for 0 < i < d. We will show that J(v,d) is Q-polynomial. As we will see, J(v,d) is not
self-dual. Note that

kimMm@(”‘,d) (0<i<d).
C1Co 0 7 (3

The vertex set X of J{v,d) consists of the d-subsets of {1,2,...,2}. Consequently, we may
identify X with the d*' subconstituent of H{w,2) with respect to the vertex . We will use
bold face notation for H{v,2). Thus

V =E;V.
Lemma 15.1. On V,
RL —dl =LR — (v — d)L (56)
Proof. We have LR — RL = A* Also A* acts on V as (v — 2d)I. The result follows. [

Lemma 15.2. The following are the same:
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(i) the adjacency matriz A of J(v,d);
(i} the restriction of either side of (66) to X x X.
Proof. By the definition of adjacency for the graph J(v, d). O

Recall the abbreviation
0; = h(j) (06<j=<d)
For notational convenience, we order the primitive idempotents such that
Oy >0, > > 04
Lemma 15.3. For 0 < j < d we have
BV = EgW5,
where W is the sum of the irreducible T'-modules that have endpoint j. We have

0y ={d-fv—d-3j)—3 (0<j<d).

we()(r) o

Proof. Let W denote an irreducible T-module with endpoint j. Note that RL — dl acts on
E3W as ayl, where

Moreover, mg =1 and

aj={d—Yv—-d-j+1)~d=(d— {v—-d—j7) 3
The result follows. 0

Adjusting the above formula for mj;, we find

vyv—27+1
- S M 0<g<d).
my (j)v 1 (0<y )

Our next goal is to compute P;(7) for 0 < 4,57 < d. To do this, we describe 4; in terms of
R, L.

Lemma 15.4. For 0 < i < d the following holds on V:

RL <, (d—¢
WE"Z‘%(M)
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