Lemma 14.13. The matrices R, L, A^* satisfy

$$A^*L - LA^* = 2L,$$
 $A^*R - RA^* = -2R,$ $LR - RL = A^*.$

Proof. To verify these equations, for $y, z \in X$ compare the (y, z)-entry on either side. \square

Lecture 19

Remark 14.14. The above equations are the defining relations for the Lie algebra \mathfrak{sl}_2 . We briefly explain the details. The Lie algebra \mathfrak{sl}_2 consists of the 2×2 matrices over \mathbb{C} that have trace 0, together with the Lie bracket [r,s] = rs - sr. The vector space \mathfrak{sl}_2 has a basis

$$E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \qquad F = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \qquad H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

The Lie bracket satisfies

$$[H, E] = 2E,$$
 $[H, F] = -2F,$ $[E, F] = H.$ (54)

By these comments, the standard module V of H(d,2) becomes an \mathfrak{sl}_2 -module on which E, F, H act as L, R, A^* respectively.

Recall that the standard module V is an orthogonal direct sum of irreducible T-modules.

Definition 14.15. Let W denote an irreducible T-module. Define

$$r = \min\{i | 0 \le i \le d, \ E_i^*W \ne 0\}, \qquad \delta = \left| \{i | 0 \le i \le d, \ E_i^*W \ne 0\} \right| - 1.$$

We call r (resp. δ) the endpoint (resp. diameter) of W.

Proposition 14.16. Let W denote an irreducible T-module. The endpoint r of W satisfies

$$0 \le r \le d/2$$
.

The diameter δ of W satisfies

$$\delta = d - 2r$$
.

There exists a basis $\{w_i\}_{i=0}^{\delta}$ of W such that

$$w_i \in E_{r+i}^* W$$
 $(0 \le i \le \delta),$
 $Rw_i = (i+1)w_{i+1}$ $(0 \le i \le \delta),$ $Rw_{\delta} = 0,$
 $Lw_i = (\delta - i + 1)w_{i-1}$ $(1 \le i \le \delta),$ $Lw_0 = 0.$

Proof. Pick $0 \neq w_0 \in E_r^*W$. For $0 \leq i \leq d-r$ define

$$w_i = \frac{R^i w_0}{i!}.$$

We have $w_i \in E_{r+i}^* W$, so

$$A^*w_i = (d - 2r - 2i)w_i.$$

By construction,

$$Rw_i = (i+1)w_{i+1}$$
 $(0 \le i \le d-r),$

where $w_{d-r+1} = 0$. By the definition of w_0 , we have $Lw_0 = 0$. By this and $LR - RL = A^*$ we find by induction on i that

$$Lw_{i+1} = (d - 2r - i)w_i$$
 $(0 \le i \le d - r).$

There exists a unique integer s $(0 \le s \le d - r)$ such that w_0, w_1, \ldots, w_s are nonzero and $w_{s+1} = 0$. We claim that s = d - 2r. To see this, note that

$$Lw_{s+1} = (d - 2r - s)w_s.$$

In the above equation, we have $Lw_{s+1} = L0 = 0$ and $w_s \neq 0$, so s = d - 2r. The claim is proved. One readily checks that the vectors $\{w_i\}_{i=0}^{d-2r}$ form a basis for W, and the result follows.

Definition 14.17. Decompose the standard module V into an orthogonal direct sum of irreducible T-modules. For an integer r $(0 \le r \le d/2)$ let $\operatorname{mult}(r)$ denote the number of irreducible T-modules in this decomposition that have endpoint r.

Proposition 14.18. With the above notation,

$$\operatorname{mult}(0) = 1,$$

$$\operatorname{mult}(r) = {d \choose r} - {d \choose r-1} \qquad (1 \le r \le d/2).$$

Proof. Using Proposition 14.16 we find that for $0 \le i \le d/2$,

$$\sum_{j=0}^i \operatorname{mult}(j) = \dim E_i^* V = k_i = inom{d}{i}.$$

The result follows.

Recall that

$$A^*L - LA^* = 2L,$$
 $A^*R - RA^* = -2R,$ $LR - RL = A^*.$ (55)

Next we express these relations in terms of A, A^* .

Proposition 14.19. For the graph H(d,2) the adjacency matrix A and dual adjacency matrix A^* satisfy

$$A^{2}A^{*} - 2AA^{*}A + A^{*}A^{2} = 4A^{*},$$

 $A^{*2}A - 2A^{*}AA^{*} + AA^{*2} = 4A.$

Proof. Recall A = R + L. Adding the first two equations in (55), we obtain

$$AA^* - A^*A = 2(R - L).$$

Combining this with A = R + L, we obtain

$$R = \frac{AA^* - A^*A + 2A}{4}, \qquad L = \frac{A^*A - AA^* + 2A}{4}.$$

Use these equations to eliminate R, L in the first two relations from (55). The result follows.

For more information about H(d, 2) see

Junie Go. The Terwilliger algebra of the hypercube. Europ. J. Combin. (2002) 399-429.

15 The Johnson scheme J(v, d)

In this section we consider the Johnson association scheme J(v,d). We mentioned earlier that J(v,d) is P-polynomial; we view J(v,d) as a distance-regular graph. This graph has valency k = d(v-d) and intersection numbers

$$c_i = i^2$$
, $b_i = (d-i)(v-d-i)$, $a_i = i(v-2i)$

for $0 \le i \le d$. We will show that J(v,d) is Q-polynomial. As we will see, J(v,d) is not self-dual. Note that

$$k_i = \frac{b_0 b_1 \cdots b_{i-1}}{c_1 c_2 \cdots c_i} = \binom{d}{i} \binom{v - d}{i} \qquad (0 \le i \le d).$$

The vertex set X of J(v, d) consists of the d-subsets of $\{1, 2, ..., v\}$. Consequently, we may identify X with the dth subconstituent of H(v, 2) with respect to the vertex \emptyset . We will use bold face notation for H(v, 2). Thus

$$V = \mathbf{E}_d^* \mathbf{V}$$
.

Lemma 15.1. On V,

$$RL - dI = LR - (v - d)I.$$
(56)

Proof. We have $LR - RL = A^*$. Also A^* acts on V as (v - 2d)I. The result follows.

Lemma 15.2. The following are the same:

- (i) the adjacency matrix A of J(v, d);
- (ii) the restriction of either side of (56) to $X \times X$.

Proof. By the definition of adjacency for the graph J(v, d).

Recall the abbreviation

$$\theta_j = P_1(j) \qquad (0 \le j \le d).$$

For notational convenience, we order the primitive idempotents such that

$$\theta_0 > \theta_1 > \dots > \theta_d$$
.

Lemma 15.3. For $0 \le j \le d$ we have

$$E_j V = \mathbf{E}_d^* \mathbf{W}_j,$$

where \mathbf{W}_j is the sum of the irreducible T-modules that have endpoint j. We have

$$\theta_j = (d-j)(v-d-j) - j \qquad (0 \le j \le d).$$

Moreover, $m_0 = 1$ and

$$m_j = {v \choose j} - {v \choose j-1}$$
 $(1 \le j \le d).$

Proof. Let **W** denote an irreducible **T**-module with endpoint j. Note that $\mathbf{RL} - d\mathbf{I}$ acts on $\mathbf{E}_d^* \mathbf{W}$ as $\alpha_j \mathbf{I}$, where

$$\alpha_j = (d-j)(v-d-j+1) - d = (d-j)(v-d-j) - j.$$

The result follows.

Adjusting the above formula for m_j , we find

$$m_j = \binom{v}{j} \frac{v - 2j + 1}{v - j + 1} \qquad (0 \le j \le d).$$

Our next goal is to compute $P_i(j)$ for $0 \le i, j \le d$. To do this, we describe A_i in terms of R, L.

Lemma 15.4. For $0 \le i \le d$ the following holds on V:

$$\frac{\mathbf{R}^i}{i!} \frac{\mathbf{L}^i}{i!} = \sum_{\ell=0}^i A_\ell \binom{d-\ell}{d-i}.$$