Proof. We use the generating function in Lemma 14.3. For 0 < j < d define
Gi(z) = (1-2)' (1 +(@—1)2)"".
Let D = d/dz denote the derivative with respect to z. By elementary calculus,
0,G;(2) = (¢ — 1)(dz — 2°D)G;(2) + (¢ — 2)2DG;(z) + DGj(2).

One routinely checks that

05Gi() = Y B (5)2,
(q - 1)(dZ — ZZD)GJ(Z) = Zbi—lKi—l(j)zia
(¢ —2)2DGj(2) = ZaiKz(J)z’,

The result follows. O

Proposition 14.5. We have
Fi(7) = Ki(j) (0<4,5<d).

Proof. View j as fixed, and consider the sequences {Fi(5)}%,, {K;(5)}L o These sequences
satisfy the same 3-term recurrence. They also satisfy the same initial condition Py(j) =1 =
Ko(7). The result follows. O

Lecture 18
Our next goal is to show that Q;(j) = K;(j) for 0 <4,j <d.

Lemma 14.6. For 0 <1i,7 < d we have

K 150 "
Proof. Using (45) we find that each side of (46) is equal to
Z (—1)¢ il(d —4)!5)(d — j)!
- (q—DE G- d—i—j+ 0V
where the sum is over all nonnegative integers £ such that i + j — d < £ < min(3, 5). O
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Proposition 14.7. We have

Proof. We have

Therefore Q;(7) = K;(j)-

Corollary 14.8. The Hamming scheme H(d, q) is self-dual.

Proof. We have P = Q = Q.

We mention some alternative forms for the Krawtchouk polynomials.

Lemma 14.9. For 0 < i < d we have

K = gc—l)ﬂq a5, (0)
ke () ()

Proof. We will use generating functions. First we consider (47). For 0 < j < d we have

S S et~ 1) (52)0)

() St ()
=§< () :z%q_-l)r(d;e) it
=S (D)oo



We now consider (48). For 0 < j < d we have

sy (U (470)

[l

Remark 14.10. We mention an alternative proof of Proposition 14.5. We use the notation
from the proof of Lemma 14.1. For 0 < i < d we have

A=Y Fohe ek (49)

where the sum is over all the sequences Fi, Fy, ..., Fy involving 7 copies of A and d —17 copies
of I. The sum (49) has (‘f) summands. Recall that for 0 < j < d we have

EV=> 1ol U, (50)

where the sum is over all the sequences Uy, Us, ..., Uy involving j copies of Wy and d — j
copies of Wy. The sum (50) has (j) summands. Fix one of these summands:

U U® - ®Uy. (51)

We compute the action of A; on (51). For the moment, pick a summand F; ® F2 K- ® Fy
from (49). Let £ denote the number of integers 7 (1 < r < d) such that F, = A and U, = W,.
Note that 0 < £ < i. The summand F} ® F, ® - - - ® Fy acts on (51) as (—1)%(¢ — 1)** times
the identity. We call £ the indezof Fy @ F5®---® Fy on (51). For 0 < £ < ¢ there are exactly
(“=0) (%) summands in (49) that have index £ on (51). By these comments, A; acts on (51)
as the following scalar multiple of the identity:

Z:O(—l)@(q -0({2D) ()

Consequently



Remark 14.11. The formula (48) has the following combinatorial interpretation. We use
the notation from the proof of Lemma 14.1. For 0 <14 < d define

‘I’i:ZH1®H2®"'®Hd, (52)

where the sum is over all the sequences Hy, Hy, ..., H; involving 4 copies of A+ I and d — 1
copies of I. The sum (52) has (‘f) summands. By combinatorial counting, we find

L fd— ¢ | ,
(I)i:Z(i—e)A‘f (0<i<d).
£=0

Solving the above equations, we obtain

A= }: C?'@@e (0<i<d). (53)

For 0 < j,£ < d we now compute the action of &, on the eigenspace E;V. The matrix A+ 1
acts on Wy (resp. W) as ¢ (vesp. 0) times the identity. Therefore, ®; acts on E;V as g ( )
times the identity. By this and (53) we find that for 0 < 4,5 <d,

! o (d—0\ (d—j
]Di AN -1 il £ )
DRV (20"
In the above equation we make a change of variables ¢ — ¢ — £; this yields
N ofd—i+0\ [d—j
P(5) =Y (1) ).
14 i—4
=0
By this and P,(j) = K;(j) we get (48).

For the rest of this section, we assume that ¢ = 2. We view F = {0,1}. The Hamming
graph H(d,2) is often called the binary Hamming graph, or the d-cube, or a hypercube. We
identify the vertices of H(d,2) with the subsets of {1,2,...d}. Vertices y, 2 € X are adjacent
whenever one contains the other, and their cardinalities differ by one. The graph H(d,?2)
has valency k = d and intersection numbers

CiZ’I:, bi:d-‘“i, ai=0

for 0 <4 < d. Moreover

The adjacency matrix A has eigenvalues

0; =d—2i (0<i<d).
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Since H(d, 2) is self-dual, we have

. . .
c; =1, b = d —1, a

for 0 <14 < d. Moreover
d
mi:() (0<i<d)

7

and
0f =d— 21 (0 <i<d).

Fix the vertex z = 0. For y € X we have d(z,y) = |y|.
Our next goal is to describe the subconstituent algebra T' = T'(z).

Definition 14.12. For y, z € X we say that z covers y whenever y C z and |y| + 1 = |2|.
define

d—1 d
R=)E},AE;, L=> E; ,AE].
1=0 i=1

For y € X we have

Rj= Y 3% Li= Y %

Z covers y Yy covers z
Note that

A=R+1L, R = L.
Recall the dual adjacency matrix A* = A} with respect to x. We have

d
A* =) (d—20)E}.
i=0
Lemma 14.13. The matrices R, L, A* satisfy
A*L — LA* = 2L, A*R — RA* = —2R, LR — RL = A*.

Proof. To verify these equations, for y, z € X compare the (y, 2z)-entry on either side. O

The above equations are the defining relations for the Lie algebra sl;. We now explain the
details. The Lie algebra sl consists of the 2 X 2 matrices over C that have trace 0, together
with the Lie bracket [r, s] = rs — sr. The vector space sls has a basis

0 1 00 1 0
p=(o0)  F=(o)  #(h)
The Lie bracket satisfies

[H, E] = 2E, [H,F| = —2F, (B, F] = H. (54)

Lemma 14.14. The standard module V of H(d,2) becomes an sly-module on which E, F, H
act as L, R, A* respectively.

Proof. Compare Lemma 14.13 with (54). 0
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