Proof. We use the generating function in Lemma 14.3. For $0 \le j \le d$ define

$$G_j(z) = (1-z)^j (1+(q-1)z)^{d-j}.$$

Let D = d/dz denote the derivative with respect to z. By elementary calculus,

$$\theta_i G_i(z) = (q-1)(dz - z^2 D)G_i(z) + (q-2)zDG_i(z) + DG_i(z).$$

One routinely checks that

$$\theta_{j}G_{j}(z) = \sum_{i=0}^{d} \theta_{j}K_{i}(j)z^{i},$$

$$(q-1)(dz-z^{2}D)G_{j}(z) = \sum_{i=0}^{d} b_{i-1}K_{i-1}(j)z^{i},$$

$$(q-2)zDG_{j}(z) = \sum_{i=0}^{d} a_{i}K_{i}(j)z^{i},$$

$$DG_{j}(z) = \sum_{i=0}^{d} c_{i+1}K_{i+1}(j)z^{i}.$$

The result follows.

Proposition 14.5. We have

$$P_i(j) = K_i(j) \qquad (0 \le i, j \le d).$$

Proof. View j as fixed, and consider the sequences $\{P_i(j)\}_{i=0}^d$, $\{K_i(j)\}_{i=0}^d$. These sequences satisfy the same 3-term recurrence. They also satisfy the same initial condition $P_0(j) = 1 = K_0(j)$. The result follows.

Lecture 18

Our next goal is to show that $Q_i(j) = K_i(j)$ for $0 \le i, j \le d$.

Lemma 14.6. For $0 \le i, j \le d$ we have

$$\frac{K_i(j)}{k_i} = \frac{K_j(i)}{k_j}. (46)$$

Proof. Using (45) we find that each side of (46) is equal to

$$\sum_{\ell} \frac{(-1)^{\ell}}{(q-1)^{\ell}} \frac{i!(d-i)!j!(d-j)!}{(i-\ell)!(j-\ell)!\ell!(d-i-j+\ell)!},$$

where the sum is over all nonnegative integers ℓ such that $i+j-d \leq \ell \leq \min(i,j)$.

Proposition 14.7. We have

$$Q_i(j) = K_i(j) \qquad (0 \le i, j \le d).$$

Proof. We have

$$\frac{Q_i(j)}{m_i} = \frac{\overline{P_j(i)}}{k_j} = \frac{K_j(i)}{k_j} = \frac{K_i(j)}{k_i} = \frac{K_i(j)}{m_i}.$$

Therefore $Q_i(j) = K_i(j)$.

Corollary 14.8. The Hamming scheme H(d,q) is self-dual.

Proof. We have
$$P = Q = \overline{Q}$$
.

We mention some alternative forms for the Krawtchouk polynomials.

Lemma 14.9. For $0 \le i \le d$ we have

$$K_i = \sum_{\ell=0}^{i} (-1)^{\ell} q^{\ell} (q-1)^{i-\ell} {d-\ell \choose i-\ell} {\lambda \choose \ell}, \tag{47}$$

$$K_i = \sum_{\ell=0}^{i} (-1)^{\ell} q^{i-\ell} \binom{d-i+\ell}{\ell} \binom{d-\lambda}{i-\ell}. \tag{48}$$

Proof. We will use generating functions. First we consider (47). For $0 \le j \le d$ we have

$$\begin{split} \sum_{i=0}^{d} z^{i} \sum_{\ell=0}^{i} (-1)^{\ell} q^{\ell} (q-1)^{i-\ell} \binom{d-\ell}{i-\ell} \binom{j}{\ell} \\ &= \sum_{\ell=0}^{j} \sum_{i=\ell}^{d} z^{i} (-1)^{\ell} q^{\ell} (q-1)^{i-\ell} \binom{d-\ell}{i-\ell} \binom{j}{\ell} \\ &= \sum_{\ell=0}^{j} (-1)^{\ell} q^{\ell} z^{\ell} \binom{j}{\ell} \sum_{i=\ell}^{d} z^{i-\ell} (q-1)^{i-\ell} \binom{d-\ell}{i-\ell} \\ &= \sum_{\ell=0}^{j} (-1)^{\ell} q^{\ell} z^{\ell} \binom{j}{\ell} \sum_{r=0}^{d-\ell} z^{r} (q-1)^{r} \binom{d-\ell}{r} \qquad r=i-\ell \\ &= \sum_{\ell=0}^{j} (-1)^{\ell} q^{\ell} z^{\ell} \binom{j}{\ell} (1+(q-1)z)^{d-\ell} \\ &= (1+(q-1)z)^{d} \sum_{\ell=0}^{j} (-1)^{\ell} q^{\ell} z^{\ell} \binom{j}{\ell} (1+(q-1)z)^{-\ell} \\ &= (1+(q-1)z)^{d} \left(1-\frac{qz}{1+(q-1)z}\right)^{j} \\ &= (1-z)^{j} (1+(q-1)z)^{d-j}. \end{split}$$

We now consider (48). For $0 \le j \le d$ we have

$$\sum_{i=0}^{d} z^{i} \sum_{\ell=0}^{i} (-1)^{\ell} q^{i-\ell} \binom{d-i+\ell}{\ell} \binom{d-j}{i-\ell}$$

$$= \sum_{r=0}^{d-j} z^{r} q^{r} \binom{d-j}{r} \sum_{\ell=0}^{d-r} z^{\ell} (-1)^{\ell} \binom{d-r}{\ell}$$

$$= \sum_{r=0}^{d-j} z^{r} q^{r} \binom{d-j}{r} (1-z)^{d-r}$$

$$= (1-z)^{j} \sum_{r=0}^{d-j} \binom{d-j}{r} q^{r} z^{r} (1-z)^{d-j-r}$$

$$= (1-z)^{j} (1+(q-1)z)^{d-j}.$$

Remark 14.10. We mention an alternative proof of Proposition 14.5. We use the notation from the proof of Lemma 14.1. For $0 \le i \le d$ we have

$$A_i = \sum F_1 \otimes F_2 \otimes \cdots \otimes F_d, \tag{49}$$

where the sum is over all the sequences F_1, F_2, \ldots, F_d involving i copies of \mathcal{A} and d-i copies of I. The sum (49) has $\binom{d}{i}$ summands. Recall that for $0 \leq j \leq d$ we have

$$E_j V = \sum U_1 \otimes U_2 \otimes \cdots \otimes U_d, \tag{50}$$

where the sum is over all the sequences U_1, U_2, \ldots, U_d involving j copies of W_1 and d-j copies of W_0 . The sum (50) has $\binom{d}{j}$ summands. Fix one of these summands:

$$U_1 \otimes U_2 \otimes \cdots \otimes U_d. \tag{51}$$

We compute the action of A_i on (51). For the moment, pick a summand $F_1 \otimes F_2 \otimes \cdots \otimes F_d$ from (49). Let ℓ denote the number of integers r ($1 \leq r \leq d$) such that $F_r = \mathcal{A}$ and $U_r = W_1$. Note that $0 \leq \ell \leq i$. The summand $F_1 \otimes F_2 \otimes \cdots \otimes F_d$ acts on (51) as $(-1)^{\ell}(q-1)^{i-\ell}$ times the identity. We call ℓ the *index* of $F_1 \otimes F_2 \otimes \cdots \otimes F_d$ on (51). For $0 \leq \ell \leq i$ there are exactly $\binom{d-j}{i-\ell}\binom{j}{\ell}$ summands in (49) that have index ℓ on (51). By these comments, A_i acts on (51) as the following scalar multiple of the identity:

$$\sum_{\ell=0}^{i} (-1)^{\ell} (q-1)^{i-\ell} \binom{d-j}{i-\ell} \binom{j}{\ell}.$$

Consequently

$$P_{i}(j) = \sum_{\ell=0}^{i} (-1)^{\ell} (q-1)^{i-\ell} \binom{d-j}{i-\ell} \binom{j}{\ell}$$
 $(0 \le i, j \le d).$

Remark 14.11. The formula (48) has the following combinatorial interpretation. We use the notation from the proof of Lemma 14.1. For $0 \le i \le d$ define

$$\Phi_i = \sum H_1 \otimes H_2 \otimes \cdots \otimes H_d, \tag{52}$$

where the sum is over all the sequences H_1, H_2, \ldots, H_d involving i copies of A + I and d - i copies of I. The sum (52) has $\binom{d}{i}$ summands. By combinatorial counting, we find

$$\Phi_i = \sum_{\ell=0}^i \binom{d-\ell}{i-\ell} A_\ell \qquad (0 \le i \le d).$$

Solving the above equations, we obtain

$$A_i = \sum_{\ell=0}^{i} (-1)^{i-\ell} {d-\ell \choose i-\ell} \Phi_{\ell} \qquad (0 \le i \le d).$$
 (53)

For $0 \leq j, \ell \leq d$ we now compute the action of Φ_{ℓ} on the eigenspace $E_j V$. The matrix $\mathcal{A} + I$ acts on W_0 (resp. W_1) as q (resp. 0) times the identity. Therefore, Φ_{ℓ} acts on $E_j V$ as $q^{\ell} \binom{d-j}{\ell}$ times the identity. By this and (53) we find that for $0 \leq i, j \leq d$,

$$P_i(j) = \sum_{\ell=0}^{i} (-1)^{i-\ell} q^{\ell} \binom{d-\ell}{i-\ell} \binom{d-j}{\ell}.$$

In the above equation we make a change of variables $\ell \mapsto i - \ell$; this yields

$$P_i(j) = \sum_{\ell=0}^{i} (-1)^{\ell} q^{i-\ell} \binom{d-i+\ell}{\ell} \binom{d-j}{i-\ell}.$$

By this and $P_i(j) = K_i(j)$ we get (48).

For the rest of this section, we assume that q=2. We view $F=\{0,1\}$. The Hamming graph H(d,2) is often called the binary Hamming graph, or the d-cube, or a hypercube. We identify the vertices of H(d,2) with the subsets of $\{1,2,\ldots d\}$. Vertices $y,z\in X$ are adjacent whenever one contains the other, and their cardinalities differ by one. The graph H(d,2) has valency k=d and intersection numbers

$$c_i = i, b_i = d - i, a_i = 0$$

for $0 \le i \le d$. Moreover

$$k_i = \begin{pmatrix} d \\ i \end{pmatrix} \qquad (0 \le i \le d).$$

The adjacency matrix A has eigenvalues

$$\theta_i = d - 2i \qquad (0 \le i \le d).$$

Since H(d, 2) is self-dual, we have

$$c_i^* = i,$$
 $b_i^* = d - i,$ $a_i^* = 0$

for $0 \le i \le d$. Moreover

$$m_i = \begin{pmatrix} d \\ i \end{pmatrix} \qquad (0 \le i \le d)$$

and

$$\theta_i^* = d - 2i \qquad (0 \le i \le d).$$

Fix the vertex $x = \emptyset$. For $y \in X$ we have $\partial(x, y) = |y|$.

Our next goal is to describe the subconstituent algebra T = T(x).

Definition 14.12. For $y, z \in X$ we say that z covers y whenever $y \subseteq z$ and |y| + 1 = |z|. define

$$R = \sum_{i=0}^{d-1} E_{i+1}^* A E_i^*, \qquad L = \sum_{i=1}^d E_{i-1}^* A E_i^*.$$

For $y \in X$ we have

$$R\hat{y} = \sum_{z \text{ covers } y} \hat{z}, \qquad \qquad L\hat{y} = \sum_{y \text{ covers } z} \hat{z}.$$

Note that

$$A = R + L, R^t = L.$$

Recall the dual adjacency matrix $A^* = A_1^*$ with respect to x. We have

$$A^* = \sum_{i=0}^{d} (d-2i)E_i^*.$$

Lemma 14.13. The matrices R, L, A^* satisfy

$$A^*L - LA^* = 2L,$$
 $A^*R - RA^* = -2R,$ $LR - RL = A^*.$

Proof. To verify these equations, for $y, z \in X$ compare the (y, z)-entry on either side. \square

The above equations are the defining relations for the Lie algebra \mathfrak{sl}_2 . We now explain the details. The Lie algebra \mathfrak{sl}_2 consists of the 2×2 matrices over $\mathbb C$ that have trace 0, together with the Lie bracket [r,s]=rs-sr. The vector space \mathfrak{sl}_2 has a basis

$$E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \qquad F = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \qquad H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

The Lie bracket satisfies

$$[H, E] = 2E,$$
 $[H, F] = -2F,$ $[E, F] = H.$ (54)

Lemma 14.14. The standard module V of H(d, 2) becomes an \mathfrak{sl}_2 -module on which E, F, H act as L, R, A^* respectively.