## 13 The conjugacy class association scheme for a finite abelian group

In this section we consider the conjugacy class association scheme for a finite abelian group G. Our goal is to show that this association scheme is self-dual.

Recall that any finite abelian group is a direct sum of cyclic groups. Write

$$G = (\mathbb{Z}/n_1\mathbb{Z}) \oplus (\mathbb{Z}/n_2\mathbb{Z}) \oplus \cdots \oplus (\mathbb{Z}/n_r\mathbb{Z}).$$

The group operation is expressed additively:

$$G \times G \to G$$
  
 $(i,j) \mapsto i+j$ 

For  $1 \leq i \leq r$  let  $\omega_i \in \mathbb{C}$  denote a primitive  $n_i^{\text{th}}$  root of unity. Thus  $\omega_i^{n_i} = 1$ , and  $\omega_i^j \neq 1$  for  $1 \leq j \leq n_i - 1$ . Note that  $\overline{\omega_i} = \omega_i^{-1}$  for  $1 \leq i \leq r$ .

We denote the group association scheme by  $\mathfrak{X} = (G, \{R_i\}_{i \in G})$ . The associate matrices of  $\mathfrak{X}$  satisfy

$$A_i A_j = A_{i+j} \qquad (i, j \in G),$$
  
$$A_i^t = A_{-i} \qquad (i \in G).$$

Recall the eigenmatrices P, Q of  $\mathfrak{X}$ .

**Lemma 13.1.** The matrices P, Q are described as follows after permuting the primitive idempotents as necessary. For  $i = (i_1, i_2, ..., i_r) \in G$  and  $j = (j_1, j_2, ..., j_r) \in G$  we have

$$P_i(j) = \omega_1^{i_1 j_1} \omega_2^{i_2 j_2} \cdots \omega_r^{i_r j_r}, \qquad Q_i(j) = \omega_1^{-i_1 j_1} \omega_2^{-i_2 j_2} \cdots \omega_r^{-i_r j_r}.$$

*Proof.* Define

$$p_i(j) = \omega_1^{i_1 j_1} \omega_2^{i_2 j_2} \cdots \omega_r^{i_r j_r}, \qquad q_i(j) = \omega_1^{-i_1 j_1} \omega_2^{-i_2 j_2} \cdots \omega_r^{-i_r j_r}.$$

Note that  $p_i(j)q_i(j)=1$  and  $\overline{p_i(j)}=q_i(j)$ . For  $a,b,i,j\in G$  we have

$$p_i(0) = 1,$$
  $p_0(j) = 1,$   $p_i(a)p_i(b) = p_i(a+b),$   $p_a(j)p_b(j) = p_{a+b}(j),$   $p_i(j) = p_j(i),$   $p_{-i}(j) = q_i(j) = p_i(-j),$   $q_i(0) = 1,$   $q_0(j) = 1,$   $q_i(a)q_i(b) = q_i(a+b),$   $q_a(j)q_b(j) = q_{a+b}(j),$   $q_i(j) = q_i(i),$   $q_{-i}(j) = p_i(j) = q_i(-j).$ 

It suffices to show that the matrices

$$E_i = |G|^{-1} \sum_{j \in G} q_i(j) A_j \qquad (i \in G)$$

are the primitive idempotents of  $\mathcal{X}$ , and that  $A_r E_i = p_r(i) E_i$  for  $i, r \in G$ . For  $i, r \in G$  we have

$$A_r E_i = |G|^{-1} \sum_{j \in G} q_i(j) A_r A_j$$

$$= |G|^{-1} \sum_{j \in G} q_i(j) A_{r+j}$$

$$= |G|^{-1} \sum_{j \in G} q_i(j - r) A_j$$

$$= |G|^{-1} \sum_{j \in G} q_i(j) q_i(-r) A_j$$

$$= |G|^{-1} \sum_{j \in G} q_i(j) p_i(r) A_j$$

$$= p_i(r) E_i$$

$$= p_r(i) E_i.$$

So far, we have shown that  $E_i$  is a scalar multiple of a primitive idempotent of  $\mathfrak{X}$ . The scalar is equal to 1, because  $\operatorname{tr}(E_i) = 1$  and every primitive idempotent has trace 1. The result follows.

Proposition 13.2. We have  $P = \overline{Q}$ .

*Proof.* By Lemma 13.1 we have 
$$P_i(j) = \overline{Q_i(j)}$$
 for  $i, j \in G$ .

Corollary 13.3. The conjugacy class association scheme X is self-dual.

## 14 The Hamming association scheme H(d,q)

In this section we consider the Hamming association scheme H(d,q). We saw earlier that H(d,q) is P-polynomial. Our next goal is to show that H(d,q) is Q-polynomial. We will do this by showing that H(d,q) is self-dual. Recall that H(d,q) has valency k=(q-1)d and intersection numbers

$$c_i = i,$$
  $b_i = (q-1)(d-i),$   $a_i = (q-2)i$ 

for  $0 \le i \le d$ . We have

$$k_i = \frac{b_0 b_1 \cdots b_{i-1}}{c_1 c_2 \cdots c_i} = (q-1)^i \binom{d}{i}$$
  $(0 \le i \le d).$ 

Recall the abbreviation

$$\theta_j = P_1(j) \qquad (0 \le j \le d).$$

For notational convenience, we order the primitive idempotents such that

$$\theta_0 > \theta_1 > \dots > \theta_d$$
.

**Lemma 14.1.** For  $0 \le j \le d$  we have

$$\theta_j = (q-1)(d-j) - j, \qquad m_j = k_j.$$

*Proof.* The vertex set X of H(d,q) is given by

$$X = F \times F \times \cdots \times F$$
 (*d* copies),

where |F| = q. View F as the vertex set of the complete graph  $K_q$ . Let  $\mathcal{A}$  denote the adjacency matrix of  $K_q$ . The matrix  $\mathcal{A}$  has eigenvalues q-1 (with multiplicity 1) and -1 (with multiplicity q-1). Let  $W = \mathbb{C}^F$  denote the standard module for  $K_q$ . Let  $W_0$  (resp.  $W_1$ ) denote the eigenspace of  $\mathcal{A}$  with eigenvalue q-1 (resp. q-1). The dimension of  $W_0$  (resp.  $W_1$ ) is 1 (resp. q-1). The sum  $W=W_0+W_1$  is direct. Recall the standard module V of H(d,q). We view

$$V = W \otimes W \otimes \cdots \otimes W \qquad (d \text{ factors}).$$

From this point of view, the adjacency matrix  $A = A_1$  of H(d,q) satisfies

$$A = \sum_{i=1}^{d} I \otimes \cdots \otimes I \otimes A \otimes I \otimes \cdots \otimes I,$$

where  $\mathcal{A}$  is the  $i^{\text{th}}$  factor. We have

$$V = (W_0 + W_1) \otimes (W_0 + W_1) \otimes \cdots \otimes (W_0 + W_1)$$
  
=  $\sum U_1 \otimes U_2 \otimes \cdots \otimes U_d$ ,

where the sum is over all sequences  $U_1, U_2, \ldots, U_d$  such that  $U_i$  is one of  $W_0, W_1$  for  $1 \le i \le d$ . On each summand  $U_1 \otimes U_2 \otimes \cdots \otimes U_d$  the matrix A acts as (q-1)(d-j)-j times the identity, where

$$j = |\{i | 1 \le i \le d, \ U_i = W_1\}|.$$

Consequently

$$\theta_j = (q-1)(d-j) - j \qquad (0 \le j \le d).$$

Moreover, for  $0 \le j \le d$  we have

$$E_j V = \sum U_1 \otimes U_2 \otimes \cdots \otimes U_d,$$

where the sum is over all sequences  $U_1, U_2, \ldots, U_d$  involving j copies of  $W_1$  and d-j copies of  $W_0$ . This sum has  $\binom{d}{j}$  summands, and each summand has dimension  $(q-1)^j$ . Therefore

$$m_j = \dim E_j V = (q-1)^j {d \choose j} = k_j.$$

**Lemma 14.2.** For  $0 \le i, j \le d$  we have

$$\theta_i P_i(j) = b_{i-1} P_{i-1}(j) + a_i P_i(j) + c_{i+1} P_{i+1}(j),$$

where  $P_{-1}(j) = 0$  and  $P_{d+1}(j) = 0$ .

Proof. We have

$$AA_i = b_{i-1}A_{i-1} + a_iA_i + c_{i+1}A_{i+1},$$

where  $A_{-1} = 0$  and  $A_{d+1} = 0$ . In the above equation multiply each side by  $E_j$ , and evaluate the result.

Recall the polynomial algebra  $\mathbb{R}[\lambda]$ . For  $0 \leq i \leq d$  define the polynomial  $K_i \in \mathbb{R}[\lambda]$  by

$$K_i = \sum_{\ell=0}^{i} (-1)^{\ell} (q-1)^{i-\ell} {d-\lambda \choose i-\ell} {\lambda \choose \ell}. \tag{45}$$

Note that  $K_i$  has degree i. We call  $K_i$  the i<sup>th</sup> Krawtchouk polynomial with parameters d, q. For example

$$K_0 = 1,$$
  $K_1 = (q - 1)(d - \lambda) - \lambda.$ 

We are going to show that  $P_i(j) = K_i(j)$  for  $0 \le i, j \le d$ . It is convenient to use generating functions.

Lemma 14.3. Let z denote an indeterminate. Then

$$\sum_{i=0}^{d} K_i(j)z^i = (1-z)^j (1+(q-1)z)^{d-j} \qquad (0 \le j \le d).$$

*Proof.* Consider the right-hand side of the above equation. For  $0 \le i \le d$  compute the coefficient of  $z^i$  using the binomial theorem. Evaluate this coefficient using (45).

**Lemma 14.4.** For  $0 \le i, j \le d$  we have

$$\theta_j K_i(j) = b_{i-1} K_{i-1}(j) + a_i K_i(j) + c_{i+1} K_{i+1}(j),$$

where  $K_{-1} = 0$  and  $K_{d+1} = 0$ .

*Proof.* We use the generating function in Lemma 14.3. For  $0 \le j \le d$  define

$$G_j(z) = (1-z)^j (1+(q-1)z)^{d-j}$$
.

Let D = d/dz denote the derivative with respect to z. By elementary calculus,

$$\theta_i G_i(z) = (q-1)(dz - z^2 D)G_i(z) + (q-2)zDG_i(z) + DG_i(z).$$

One routinely checks that

$$heta_j G_j(z) = \sum_{i=0}^d heta_j K_i(j) z^i,$$
 $(q-1) \left( dz - z^2 D \right) G_j(z) = \sum_{i=0}^d b_{i-1} K_{i-1}(j) z^i,$ 
 $(q-2) z D G_j(z) = \sum_{i=0}^d a_i K_i(j) z^i,$ 
 $D G_j(z) = \sum_{i=0}^d c_{i+1} K_{i+1}(j) z^i.$ 

The result follows.

Proposition 14.5. We have

$$P_i(j) = K_i(j) \qquad (0 \le i, j \le d).$$

*Proof.* View j as fixed, and consider the sequences  $\{P_i(j)\}_{i=0}^d$ ,  $\{K_i(j)\}_{i=0}^d$ . These sequences satisfy the same 3-term recurrence. They also satisfy the same initial condition  $P_0(j) = 1 = K_0(j)$ . The result follows.

Our next goal is to show that  $Q_i(j) = K_i(j)$  for  $0 \le i, j \le d$ .

Lemma 14.6. For  $0 \le i, j \le d$  we have

$$\frac{K_i(j)}{k_i} = \frac{K_j(i)}{k_i}. (46)$$

Proof. Using (45) we find that each side of (46) is equal to

$$\sum_{\ell} \frac{(-1)^{\ell}}{(q-1)^{\ell}} \frac{i!(d-i)!j!(d-j)!}{(i-\ell)!(j-\ell)!\ell!(d-i-j+\ell)!},$$

where the sum is over all nonnegative integers  $\ell$  such that  $i+j-d \leq \ell \leq \min(i,j)$ .

Proposition 14.7. We have

$$Q_i(j) = K_i(j) \qquad (0 \le i, j \le d).$$

*Proof.* We have

$$\frac{Q_i(j)}{m_i} = \frac{\overline{P_j(i)}}{k_i} = \frac{K_j(i)}{k_i} = \frac{K_i(j)}{k_i} = \frac{K_i(j)}{m_i}.$$

Therefore  $Q_i(j) = K_i(j)$ .