13 The conjugacy class association scheme for a finite
abelian group

In this section we consider the conjugacy class association scheme for a finite abelian group
G. Our goal is to show that this association scheme is self-dual.

Recall that any finite abelian group is a direct sum of cyclic groups. Write
G = (Z/nZ) ® (Zfnol) & - - & (Z/n, ).
The group operation is expressed additively:

Gx(@—->0
(¢,7) = i+7

For 1 <4 <7 let w; € C denote a primitive n® root of unity. Thus w]* = 1, and wi £ 1 for
3 y 1 1

1< 4 <m;—1. Note that w; = w; " for 1 <4 < 7.
We denote the group association scheme by X = (&G, {R;}ieq). The associate matrices of X

satisfy

AiAj = Ay (4,7 € G),
142 =A_; (i & (?).

Recall the eigenmatrices P, ¢} of X.

Lemma 13.1. The matrices P, are described as follows after permuting the primitive

idempotents as necessary. Fori = (i1,49,...,%) € G and j = (j1,72,...,7r) € G we have
B(j) = o wy® -, Qi) = wy Myl i,

Proof. Define

171

pi(f) = w;

—t1f1, —dafe |

ingz ird N i
W2 e g:{7) = wy 7wy i

a-wr

Note that p;(7)g{7) = 1 and p:{7) = ¢i(4). For a,b,4,j € G we have

=1,  wp() =1,  pile)pd) =pi(a+b),  plF)Ee(d) = Pasts(d);
)=pi(),  p-ild) =a() = pil—1),

0)=1,  @l)=1  al@aud)=al+d), w6l =74l
(7) = g;(4), q-i(j) = p:(F) = a:(—7)-

It suffices to show that the maftrices

Bi=G17" ) ali)4, (ie @)

jea

b8 -




are the primitive idempotents of X, and that A, F; = p,(i}F; for i,r € G. For i,r € G we

have
AB =G Y Gl A4

jea

= lGI_l Z Qi(j)A?'+j
jed

= |G @i — )4
jed

=G> alal—r)4;
jeG

= |G| Z G (i) Ay
jeG

=Py (T)Ez

So far, we have shown that F; is a scalar multiple of a primitive idempotent of X. The scalar
is equal to 1, because tr(F;) = 1 and every primitive idempotent has trace 1. The result

follows.

Proposition 13.2. We have P = Q.

Proof. By Lemma 13.1 we have B,(j) = Q;(5) for 4,7 € G.

Corollary 13.3. The conjugacy class association scheme X is self-dual.

Proof. By Proposition 7.6 and Proposition 13.2.

14 The Hamming association scheme H(d, )

O

In this section we consider the Hamming association scheme H(d, q). We saw earlier that
H(d, q) is P-polynomial. Our next goal is to show that H{d, q) is @-polynomial. We will do
this by showing that H(d, ¢) is self-dual. Recall that H{(d, ¢) has valency k = (¢ — 1}d and

intersection numbers

Ci=’l:, b«;= (q—l)(d—i), G,iZ(qgQ)'Z:
for 0 < i < d. We have
bobl"‘bi—l AN ,
’Iﬂi B - 1 ! 0 < < '
0162 o 'Ci (q ) (i) ( - ¢ - d)

Recall the abbreviation
0; = P1(j) (0<j<d).
For notational convenience, we order the primitive idempotents such that

Og > 6y >« > 8,
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Lemma 14.1. For 0 < j < d we have
, 0;=(g—1){d~4)— 7, my = kj.
Proof. The vertex set X of H(d, ¢) is given by
X=FxFx o xF (d copies), -

where |F| = ¢. View F as the vertex set of the complete graph K,. Let A denote the
adjacency matrix of K,. The matrix A has eigenvalues ¢ — 1 (with multiplicity 1) and —1
(with multiplicity ¢ — 1). Let W = C denote the standard module for K,. Let Wy (resp.
W) denote the eigenspace of A with eigenvalue ¢ — 1 (vesp. —1). The dimension of Wy

(resp. W1)is 1 (resp. ¢ —1). The sum W = W, + W is direct. Recall the standard module
V of H{d,q). We view

V=WeWe - -@W (d factors).

From this point of view, the adjacency matrix A = A, of H(d, ¢) satisfies

d
A:ZI@---@I@A@I@---@I,
=1

th

where A is the " factor. We have

Ve W+ W)@ (W + Wi @ @ (W + Wy)
=Y U808 8 U,,

where the sum is over all sequences Uy, Us, . .., Uy such that U is one of W, Wy for 1 <4 < d.

On each summand U; @ Uy ® - -+ ® Uy the matrix A acts as {¢g — 1)(d — j} — 7 times the
identity, where

j=Hil1<i<d, U= x4?1}|.
Consequently
0;=(¢g—-1)(d-75)—7 (0<7<d),
Moreover, for 0 < j < d we have
BV=YU:0U& - 8U,

where the sum is over all sequences U, Us, ..., Uy involving 7 copies of W; and d — j copies
of Wy. This sum has (?) summands, and each summand has dimension (g — 1), Therefore

m; = dim E;V = (g~ 1) (f) = k;.
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Lemma 14.2. For 0 <4,7 < d we have
0, P(5) = bima B () + i B (7)) + e Piad),
where P_1(§) =0 and Py (5) = 0.
Proof. We have
AAd; = b 1Ay + A+ e Aig,

where A_; = 0 and Agy; = 0. In the above equation multiply each side by F;, and evaluate
the result. 0

Recall the polynomial algebra R{A]. For 0 <4 < d define the polynomial I(; € R[A] by

K - g(—lm -0=(32)) () (45)

Note that I; has degree . We call K; the i*" Krawichouk polynomial with parameters d, .
For example

Ko=1, Ky =(g—1)(d=X)~ A

We are going to show that Fi{j) = K;{j) for 0 < 4,7 < d. It is convenient to use generating
functions.

Lemma 14.3. Let 2z denote an indeterminate. Then

d .
Y Ki(i)e = (1~ 2’ 1+ (g— 1)) 0<j<d).

i=0

Proof. Consider the right-hand side of the above equation. For 0 < ¢ < d compute the
coeflicient of 2 using the binomial theorem. Evaluate this coeflicient using (45). J

Lemma 14.4. For 0 < i,5 < d we have
0; K (5) == b1 Ki1(J) + @ JG(5) + cir1 Kia (7),
where Ky =0 and Kysq = 0.
Proof. We use the generating function in Lemima 14.3. For 0 < j < d define
Gi(2) = (1—2)" (1 + (g - 1)2)"7.
Let D =rd/ dz denote the derivative with respect to z. By elementary calculus,

0,Gi(z) = (g — 1)(dz — Z22D)C4(2) + (q — 2)2DG;(z) + DGy(=).
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One routinely checks that
d
= Z 0;1(7)7,
(g —1)(dz — 22D)G,(2) = Zb_lfi’, 2

(g — 2)2DGy( Z%K

z) = Z Cip1 K1 (f)2
=0
The result follows.

Proposition 14.5. We have

Fi(f) = Ki(4) (0<i,j<d)

Proof. View j as fixed, and consider the sequences {Z(5)},, {K;(5) 1o These sequences
satisfy the same 3-term recurrence. They also satisfy the same initial condition Pp(j) = 1 =

Ko(7). The result follows.
Our next goal is to show that Q;{7) = K;(j) for 0 <14,7 < d.

Lemma 14.6. For 0 < 4,7 < d we have

Ki(j) K@)
ko ko

Proof. Using (45) we find that each side of (46) is equal to

(-1)¢ i(d — i)l5(d — 5)!
2 (g—1)¢ G — O — OWNd—i— 54+ 0)

where the sum is over all nonnegative integers £ such that i + 7 — d < £ < min(%, j).

Proposition 14.7. We have

Qi(7) = Ki(7) (0<i,j<d).

Proof. We have

Q) _ BE _ K6 _ KGG)  K()
my key k; k; m;

Therefore Q; (5} = K;(4).
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