Theorem 11.9. For the symmetric association scheme X = (X, {R;}¢,) the following are
equivalent:

(i) the ordering {R;}%_, is P-polynomial;
(i) the first intersection matriz By is irreducible tridiagonal;

(iii) there emist polynomials {v;}4 , in R[\] such that v; has degree i and A; = v;(A) for
0 <i<d, where A= Ay,

(iv) there exist polynomials {v;}_, in R[\] such that v; has degree i (0 < i < d) and
P(7) = vi(05) (0<ij<d),
where 0; = Py(j) for 0 < 5 <d.

Proof. (i) = (ii) By Lemma 11.2.

(ii) = (iii) In the proof of Lemma 11.5, we only used the fact that B is irreducible tridiag-
onal.

(ili) & (iv) Use

d
A= P()E; (0<i<d)
: pare
and A = Z;l:o 0,L;.
(iii) = (i) Recall that
kept ;= kiplp = kipl,; (0<4,4,0<d).

It suffices to show that for 0 <4,j < d with i+ j <d,
i+ 7 = max{f|0 < ¢ < d, pf)j > 0}. (42)
In the equation

d
AzAj = pr,jAea

{=0

we view each side as a polynomial in A. By comparing the degrees we routinely obtain
(42). O

Lecture 16

Next, we explain how P-polynomial association schemes are related to distance-regular
graphs.

Let I' = (X, R) denote a finite, undirected, connected graph, without loops or multiple edges,
with vertex set X and adjacency relation R. Vertices z,y are adjacent whenever (z,y) € R.
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To avoid trivialities, we assume that | X| > 2. Let J denote the path-length distance function
for I, and define d = max{9d(z,y)|z,y € X}. We call d the diameter of I'. For z € X and
an integer i > 0 define I';(z) = {y € X|9(z,y) = i}. We abbreviate I'(x) = I';(z). For an
integer k > 0 we say that I' is reqular with valency k whenever |['(z)| = k for all z € X.
We say that T' is distance-regular whenever for 0 <7 < d and z,y € X with d(z,y) = 1, the
~constants

a; = |Ti(z) N T(y)], bi = [lia(z) N T(y)], ¢i = [Tia(z) NT(y)]

depend only on 7 and not on the choice of z,y. Assume that [' is distance-regular. By
construction ag = 0, by = 0, ¢g = 0, ¢; = 1. Moreover

;>0 (1<4<4d), b; >0 (0<i<d-—1).
The graph I' is regular with valency k& = by. Moreover,

Theorem 11.10. Let I' = (X,R) denote a distance-regular graph with diameter d. For
0 <1 < d define

Rfi = {(m,y)lat,y € X’ 8($)y) = 7’}

Then X = (X,{R;}L,) is a symmetric association scheme, and the ordering {R;}, is
P-polynomial.

Proof. For 0 < i < d define a matrix A; € Mx(C) with (y, z)-entry

1, if 0(y,2) = 4;
Ai z = s X .

The matrix A; is symmetric. Note that Ag = I. Abbreviate A = A;. The distance-regularity
of I' implies that L :

AAZ = biulAi—l + aiAi + Ci+1Ai+1 (1 < 1 < d— 1), ! (43)
AA; = by 1Ag_1 + agAy. (44)

Let M denote the subalgebra of Mx(C) generated by A. The algebra M is commutative.
By (43), (44) the matrices {A4;}%, form a basis for M. Consequently M is closed under
Hadamard multiplication. The algebra M contains J = Zf:o A;. By these comments and
Proposition 2.4, we see that X = (X, {R;}%,) is a symmetric association scheme. The
ordering {R;}%, is P-polynomial because the distance function J satisfies the triangle in-
equality. O

Theorem 11.11. Let X = (X, {R;}L,) denote a symmetric association scheme such that
{R}L, is P-polynomial. Then the graph (X, Ry) is distance-reqular with diameter d. More-
over

R; = {(z,y)|z,y EbX, Az, y) =i} (0 <i<d).
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Proof. Routine consequence of Lemma 11.3. |

Problem 11.12. Assume that X = (X, {R;}%,) is P-polynomial with respect to the order-
ing {R;}¢,. Show that

_ boby by

€18 G

ks (0<i<d).

Problem 11.13. Show that the Hamming scheme H(d, ¢q) is P-polynomial, with valency
k = (g — 1)d and intersection numbers

Ci:’[:, bz: (Q“l)(d—l), a; = (q—2)7,
for 0 <1 <d.

Problem 11.14. Show that the Johnson scheme J(v,d) is P-polynomial, with valency
k = d(v — d) and intersection numbers

¢ = 17, b= (d—1)(v—d—1), a; = i(v — 2i)

for 0 <4 <d.

12 ()-polynomial association schemes

In this section, we continue to discuss a symmetric association X = (X, {R;}%,) with Bose-
Mesner algebra M, associate matrices {4;}%,, and primitive idempotents {F;}¢ ;. We
assume that d > 1.

Definition 12.1. The ordering {F;}2, is called Q-polynomial whenever the following hold
for 0 < 4,5,k <d:

(i) qffj = 0 if one of 1, 7, k is greater than the sum of the other two;
(ii) qi’fj # 0 if one of 4, j, k is equal to the sum of the other two.

We say that X is Q-polynomial whenever there exists a ¢J-polynomial ordering of the primitive
idempotents.

Lemma 12.2. Assume that the ordering {E;}%, is Q-polynomial. Then the first dual in-
tersection matriz has the form

a; ¢ 0
by a1 <
b*
BT: 1 )

) c

0 bi1 ag

where we abbreviate
¢ =q,,(1<i<d), a=¢;0<i<d), b=q¢;,(1<i<d-1)

Moreover {4 . and {b*Y=} are nonzero.
i Ji=1 i Ji=0
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Proof. By the definition of the dual intersection matrices. O

Until further notice, assume that the ordering {E;}¢_ is Q-polynomial. We fix z € X, and
consider the subconstituent algebra 7' = T'(x). We abbreviate A* = A}. Note that af = 0
and cf = 1.

Lemma 12.3. We have
AYAT = bj_ AT+ ai AT i A (1<i<d-1),
AAL =0 (A |+ ajAy
Proof. This is AfA% = "1_o ¢k A} with j = 1. O
Definition 12.4. We define some polynomials {v}}%} in R[A] such that
vy =1, vy = A,
Ao} = B0 + a0} + i (1<i<d),
where ¢y, , = 1.
Lemma 12.5. The following (i)—(iv) hold:
(i) degvf =i (0<i<d+1);
(ii) the coefficient of A in v} is (cich---cf)™t (0<i<d+1);
(i) 0f(4%) = A (0<3 < d);
(iv) v, (4*) =0.
Proof. Similar to the proof of Lemma 11.5. O
Corollary 12.6. The following hold:
(i) the algebra M* is generated by A*;
(ii) the minimal polynomial of A* is cich- - - cjvj, 4.
Proof. Similar to the proof of Lemma 11.6. [
Recall that

d
A; =Y Q)E; (0<i<d)
=0
Define
07 = @1(7) (0<j<d)
Note that



Lemma 12.7. The following (i)—(iii) hold:
(i) the scalars {0} }9_ are mutually distinct, and these are the roots of the polynomial v}, ,;
(il) the eigenspaces of A* are subconstituents { E¥V }{_,;
(iti) for 0 <j <d, 05 is the eigenvalue of A* for E;V.
Proof. Similar to the proof of Lemma 11.7. (]
Lemma 12.8. We have
Qi) = vi(6)) (0<i,j <d)
Proof. We have

O

We have been describing some features of the ()-polynomial association scheme X. Next, we
use these features to characterize the @)-polynomial property. Going forward, we no longer
assume that the ordering {E;}4_, is Q-polynomial.

Theorem 12.9. For the symmetric association scheme X = (X, {R;}%,) the following are
equivalent:

(i) the ordering {E;}L, is Q-polynomial;
ii) the first dual intersection matriz By is irreducible tridiagonal;
(ii) 1 g

(iil) there exist polynomials {v;}L o in R[\] such that vi has degree i and Af = vi(A*) for
0 <i<d, where A* = A};

(iv) there emist polynomials {v}}L, in R[\] such that v} has degree i (0 <i < d) and
Qi(7) = v (0;) (0<4,7 <d),
where 05 = Q1(j) for 0 < j < d.
Proof. Similar to the proof of Theorem 11.9. O

As we will see, both the Hamming scheme H(d,q) and the Johnson scheme J(v,d) are
@-polynomial.

Problem 12.10. Assume that X = (X, {R;}%,) is Q-polynomial with respect to the order-
ing {E;}¢_,. Show that

_ bgbi- b,

my;
cesc
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