Theorem 11.9. For the symmetric association scheme $\mathfrak{X} = (X, \{R_i\}_{i=0}^d)$ the following are equivalent:

- (i) the ordering $\{R_i\}_{i=0}^d$ is P-polynomial;
- (ii) the first intersection matrix B_1 is irreducible tridiagonal;
- (iii) there exist polynomials $\{v_i\}_{i=0}^d$ in $\mathbb{R}[\lambda]$ such that v_i has degree i and $A_i = v_i(A)$ for $0 \le i \le d$, where $A = A_1$;
- (iv) there exist polynomials $\{v_i\}_{i=0}^d$ in $\mathbb{R}[\lambda]$ such that v_i has degree i $(0 \le i \le d)$ and

$$P_i(j) = v_i(\theta_j) \qquad (0 \le i, j \le d),$$

where $\theta_j = P_1(j)$ for $0 \le j \le d$.

Proof. (i) \Rightarrow (ii) By Lemma 11.2.

(ii) \Rightarrow (iii) In the proof of Lemma 11.5, we only used the fact that B_1 is irreducible tridiagonal.

 $(iii) \Leftrightarrow (iv)$ Use

$$A_i = \sum_{j=0}^{d} P_i(j)E_j \qquad (0 \le i \le d)$$

and $A = \sum_{j=0}^{d} \theta_j E_j$. (iii) \Rightarrow (i) Recall that

$$k_{\ell} p_{i,j}^{\ell} = k_{i} p_{i,\ell}^{i} = k_{j} p_{\ell,i}^{j}$$
 $(0 \le i, j, \ell \le d).$

It suffices to show that for $0 \le i, j \le d$ with $i + j \le d$,

$$i + j = \max\{\ell | 0 \le \ell \le d, \ p_{i,j}^{\ell} > 0\}.$$
 (42)

In the equation

$$A_i A_j = \sum_{\ell=0}^d p_{i,j}^\ell A_\ell,$$

we view each side as a polynomial in A. By comparing the degrees we routinely obtain (42).

Lecture 16

Next, we explain how P-polynomial association schemes are related to distance-regular graphs.

Let $\Gamma = (X, \mathbb{R})$ denote a finite, undirected, connected graph, without loops or multiple edges, with vertex set X and adjacency relation \mathbb{R} . Vertices x, y are adjacent whenever $(x, y) \in \mathbb{R}$.

To avoid trivialities, we assume that $|X| \geq 2$. Let ∂ denote the path-length distance function for Γ , and define $d = \max\{\partial(x,y)|x,y \in X\}$. We call d the diameter of Γ . For $x \in X$ and an integer $i \geq 0$ define $\Gamma_i(x) = \{y \in X | \partial(x,y) = i\}$. We abbreviate $\Gamma(x) = \Gamma_1(x)$. For an integer $k \geq 0$ we say that Γ is regular with valency k whenever $|\Gamma(x)| = k$ for all $x \in X$. We say that Γ is distance-regular whenever for $0 \leq i \leq d$ and $x, y \in X$ with $\partial(x,y) = i$, the constants

$$a_i = |\Gamma_i(x) \cap \Gamma(y)|,$$
 $b_i = |\Gamma_{i+1}(x) \cap \Gamma(y)|,$ $c_i = |\Gamma_{i-1}(x) \cap \Gamma(y)|$

depend only on i and not on the choice of x, y. Assume that Γ is distance-regular. By construction $a_0 = 0$, $b_d = 0$, $c_0 = 0$, $c_1 = 1$. Moreover

$$c_i > 0 \quad (1 \le i \le d), \qquad b_i > 0 \quad (0 \le i \le d - 1).$$

The graph Γ is regular with valency $k = b_0$. Moreover,

$$c_i + a_i + b_i = k (0 \le i \le d).$$

Theorem 11.10. Let $\Gamma = (X, \mathbb{R})$ denote a distance-regular graph with diameter d. For $0 \le i \le d$ define

$$R_i = \{(x, y) | x, y \in X, \ \partial(x, y) = i\}.$$

Then $\mathfrak{X} = (X, \{R_i\}_{i=0}^d)$ is a symmetric association scheme, and the ordering $\{R_i\}_{i=0}^d$ is P-polynomial.

Proof. For $0 \le i \le d$ define a matrix $A_i \in M_X(\mathbb{C})$ with (y, z)-entry

$$(A_i)_{y,z} = \begin{cases} 1, & \text{if } \partial(y,z) = i; \\ 0, & \text{if } \partial(y,z) \neq i \end{cases} \quad (y,z \in X).$$

The matrix A_i is symmetric. Note that $A_0 = I$. Abbreviate $A = A_1$. The distance-regularity of Γ implies that

$$AA_i = b_{i-1}A_{i-1} + a_iA_i + c_{i+1}A_{i+1} \qquad (1 \le i \le d-1), \qquad (43)$$

$$AA_d = b_{d-1}A_{d-1} + a_dA_d. (44)$$

Let \mathcal{M} denote the subalgebra of $M_X(\mathbb{C})$ generated by A. The algebra \mathcal{M} is commutative. By (43), (44) the matrices $\{A_i\}_{i=0}^d$ form a basis for \mathcal{M} . Consequently \mathcal{M} is closed under Hadamard multiplication. The algebra \mathcal{M} contains $J = \sum_{i=0}^d A_i$. By these comments and Proposition 2.4, we see that $\mathcal{X} = (X, \{R_i\}_{i=0}^d)$ is a symmetric association scheme. The ordering $\{R_i\}_{i=0}^d$ is P-polynomial because the distance function ∂ satisfies the triangle inequality.

Theorem 11.11. Let $X = (X, \{R_i\}_{i=0}^d)$ denote a symmetric association scheme such that $\{R_i\}_{i=0}^d$ is P-polynomial. Then the graph (X, R_1) is distance-regular with diameter d. Moreover

$$R_i = \{(x, y) | x, y \in X, \ \partial(x, y) = i\}$$
 $(0 \le i \le d).$

Proof. Routine consequence of Lemma 11.3.

Problem 11.12. Assume that $\mathcal{X} = (X, \{R_i\}_{i=0}^d)$ is P-polynomial with respect to the ordering $\{R_i\}_{i=0}^d$. Show that

$$k_i = \frac{b_0 b_1 \cdots b_{i-1}}{c_1 c_2 \cdots c_i} \qquad (0 \le i \le d).$$

Problem 11.13. Show that the Hamming scheme H(d,q) is P-polynomial, with valency k=(q-1)d and intersection numbers

$$c_i = i,$$
 $b_i = (q-1)(d-i),$ $a_i = (q-2)i$

for $0 \le i \le d$.

Problem 11.14. Show that the Johnson scheme J(v,d) is P-polynomial, with valency k = d(v - d) and intersection numbers

$$c_i = i^2,$$
 $b_i = (d-i)(v-d-i),$ $a_i = i(v-2i)$

for $0 \le i \le d$.

12 Q-polynomial association schemes

In this section, we continue to discuss a symmetric association $\mathfrak{X} = (X, \{R_i\}_{i=0}^d)$ with Bose-Mesner algebra \mathfrak{M} , associate matrices $\{A_i\}_{i=0}^d$, and primitive idempotents $\{E_i\}_{i=0}^d$. We assume that $d \geq 1$.

Definition 12.1. The ordering $\{E_i\}_{i=0}^d$ is called *Q-polynomial* whenever the following hold for $0 \le i, j, k \le d$:

- (i) $q_{i,j}^k = 0$ if one of i, j, k is greater than the sum of the other two;
- (ii) $q_{i,j}^k \neq 0$ if one of i, j, k is equal to the sum of the other two.

We say that $\mathfrak X$ is Q-polynomial whenever there exists a Q-polynomial ordering of the primitive idempotents.

Lemma 12.2. Assume that the ordering $\{E_i\}_{i=0}^d$ is Q-polynomial. Then the first dual intersection matrix has the form

where we abbreviate

$$c_i^* = q_{1,i-1}^i (1 \le i \le d), \qquad a_i^* = q_{1,i}^i (0 \le i \le d), \qquad b_i^* = q_{1,i+1}^i (1 \le i \le d-1).$$

Moreover $\{c_i^*\}_{i=1}^d$ and $\{b_i^*\}_{i=0}^{d-1}$ are nonzero.

Proof. By the definition of the dual intersection matrices.

Until further notice, assume that the ordering $\{E_i\}_{i=0}^d$ is Q-polynomial. We fix $x \in X$, and consider the subconstituent algebra T = T(x). We abbreviate $A^* = A_1^*$. Note that $a_0^* = 0$ and $a_1^* = 1$.

Lemma 12.3. We have

$$A^*A_i^* = b_{i-1}^* A_{i-1}^* + a_i^* A_i^* + c_{i+1}^* A_{i+1}^*$$
 (1 \le i \le d - 1),

$$A^*A_d^* = b_{d-1}^* A_{d-1}^* + a_d^* A_d^*.$$

Proof. This is $A_i^*A_j^* = \sum_{k=0}^d q_{i,j}^k A_k^*$ with j=1.

Definition 12.4. We define some polynomials $\{v_i^*\}_{i=0}^{d+1}$ in $\mathbb{R}[\lambda]$ such that

$$\begin{aligned} v_0^* &= 1, & v_1^* &= \lambda, \\ \lambda v_i^* &= b_{i-1}^* v_{i-1}^* + a_i^* v_i^* + c_{i+1}^* v_{i+1}^* & (1 \le i \le d), \end{aligned}$$

where $c_{d+1}^* = 1$.

Lemma 12.5. The following (i)-(iv) hold:

- (i) $\deg v_i^* = i \quad (0 \le i \le d+1);$
- (ii) the coefficient of λ^i in v_i^* is $(c_1^*c_2^*\cdots c_i^*)^{-1}$ $(0 \le i \le d+1)$;
- (iii) $v_i^*(A^*) = A_i^* \quad (0 \le i \le d);$
- (iv) $v_{d+1}^*(A^*) = 0$.

Proof. Similar to the proof of Lemma 11.5.

Corollary 12.6. The following hold:

- (i) the algebra \mathcal{M}^* is generated by A^* ;
- (ii) the minimal polynomial of A^* is $c_1^*c_2^*\cdots c_d^*v_{d+1}^*$.

Proof. Similar to the proof of Lemma 11.6.

Recall that

$$A_i^* = \sum_{j=0}^d Q_i(j)E_j^*$$
 $(0 \le i \le d).$

Define

$$\theta_j^* = Q_1(j) \qquad (0 \le j \le d).$$

Note that

$$A^* = \sum_{j=0}^{d} \theta_j^* E_j^*.$$

Lemma 12.7. The following (i)-(iii) hold:

(i) the scalars $\{\theta_j^*\}_{j=0}^d$ are mutually distinct, and these are the roots of the polynomial v_{d+1}^* ;

- (ii) the eigenspaces of A^* are subconstituents $\{E_j^*V\}_{j=0}^d$;
- (iii) for $0 \le j \le d$, θ_j^* is the eigenvalue of A^* for E_j^*V .

Proof. Similar to the proof of Lemma 11.7.

Lemma 12.8. We have

$$Q_i(j) = v_i^*(\theta_i^*) \qquad (0 \le i, j \le d).$$

Proof. We have

$$\sum_{j=0}^{d} Q_i(j) E_j^* = A_i^* = v_i^*(A^*) = \sum_{j=0}^{d} v_i(\theta_j^*) E_j^*.$$

We have been describing some features of the Q-polynomial association scheme \mathfrak{X} . Next, we use these features to characterize the Q-polynomial property. Going forward, we no longer assume that the ordering $\{E_i\}_{i=0}^d$ is Q-polynomial.

Theorem 12.9. For the symmetric association scheme $\mathfrak{X} = (X, \{R_i\}_{i=0}^d)$ the following are equivalent:

- (i) the ordering $\{E_i\}_{i=0}^d$ is Q-polynomial;
- (ii) the first dual intersection matrix B_1^* is irreducible tridiagonal;
- (iii) there exist polynomials $\{v_i^*\}_{i=0}^d$ in $\mathbb{R}[\lambda]$ such that v_i^* has degree i and $A_i^* = v_i^*(A^*)$ for $0 \le i \le d$, where $A^* = A_1^*$;
- (iv) there exist polynomials $\{v_i^*\}_{i=0}^d$ in $\mathbb{R}[\lambda]$ such that v_i^* has degree i $(0 \le i \le d)$ and

$$Q_i(j) = v_i^*(\theta_j) \qquad (0 \le i, j \le d),$$

where $\theta_j^* = Q_1(j)$ for $0 \le j \le d$.

Proof. Similar to the proof of Theorem 11.9.

As we will see, both the Hamming scheme H(d,q) and the Johnson scheme J(v,d) are Q-polynomial.

Problem 12.10. Assume that $\mathcal{X} = (X, \{R_i\}_{i=0}^d)$ is Q-polynomial with respect to the ordering $\{E_i\}_{i=0}^d$. Show that

$$m_i = \frac{b_0^* b_1^* \cdots b_{i-1}^*}{c_1^* c_2^* \cdots c_i^*} \qquad (0 \le i \le d).$$