Lecture 15

Proposition 10.17. $\widetilde{\mathcal{M}}_{\Lambda}^{\circ}$ is the Bose-Mesner algebra of a commutative association scheme with vertex set \widetilde{X} , associate matrices $\{D_i\}_{i=0}^t$, and primitive idempotents $\{k_{\Omega}\widetilde{E}_i\}_{i=0}^t$.

Proof. By Proposition 2.4 and Lemmas 10.12, 10.16.

Definition 10.18. The association scheme in Proposition 10.17 is called the *quotient association scheme* of \mathcal{X} induced by the relation R_{Ω} . We denote this association scheme by Ω .

Lemma 10.19. The association schemes Q and X are related as follows:

(i)
$$q_{i,j}^k(\Omega) = q_{i,j}^k(X)$$
 $(0 \le i, j, k \le t);$

(ii)
$$m_i(\Omega) = m_i(X)$$
 $(0 \le i \le t);$

(iii)
$$|\tilde{X}| = \sum_{i=0}^{t} m_i$$
, where $m_i = m_i(\Omega) = m_i(X)$.

Proof. (i) For $0 \le i, j \le t$ we have

$$E_{i} \circ E_{j} = |X|^{-1} \sum_{k=0}^{d} q_{i,j}^{k}(X) E_{k}$$
$$= |X|^{-1} \sum_{k=0}^{t} q_{i,j}^{k}(X) E_{k}.$$

In the above equation we apply the map $A \mapsto \tilde{A}$ to each side; this yields

$$\tilde{E}_i \circ \tilde{E}_j = |X|^{-1} \sum_{k=0}^t q_{i,j}^k(\mathfrak{X}) \tilde{E}_k.$$

We also have

$$(k_{\Omega}\tilde{E}_i) \circ (k_{\Omega}\tilde{E}_j) = |\tilde{X}|^{-1} \sum_{k=0}^t q_{i,j}^k(\Omega) k_{\Omega}\tilde{E}_i.$$

Comparing the above equations using $k_{\Omega}|\tilde{X}| = |X|$, we get the result.

- (ii) Since $m_i = q_{i,\hat{i}}^0$.
- (iii) Apply Lemma 4.3(iii) to the association scheme Q.

Corollary 10.20. For the relation R_{Ω} ,

$$|X| = \left(\sum_{i=0}^{s} k_i\right) \left(\sum_{j=0}^{t} m_j\right).$$

Proof. By Lemma 10.19(iii) and since

$$|\tilde{X}| = k_{\Omega}^{-1}|X|, \qquad k_{\Omega} = \sum_{i=0}^{s} k_i.$$

Recall the eigenmatrices P,Q for \mathfrak{X} . Let \tilde{P} and \tilde{Q} denote the eigenmatrices for \mathfrak{Q} .

Proposition 10.21. The following (i)-(iv) hold.

- (i) For $0 \le i \le t$ the submatrix $Q|_{\Omega_i \times \Lambda}$ has all rows identical.
- (ii) For $0 \le i, j \le t$ the (i, j)-entry of \tilde{Q} is equal to the (α, j) -entry of Q, where $\alpha \in \Omega_i$.
- (iii) For $0 \le j \le t$ the submatrix $P|_{\{t+1,\dots,d\}\times\Omega_j}$ has row sum 0.
- (iv) For $0 \le i, j \le t$ the (i, j)-entry of \tilde{P} is equal to k_{Ω}^{-1} times the i^{th} row sum of $P|_{\Lambda \times \Omega_j}$.

 Proof. Similar to the proof of Proposition 10.7.

11 Distance-regular graphs and P-polynomial association schemes

In this section, we restrict our attention to symmetric association schemes.

Throughout this section, $\mathcal{X} = (X, \{R_i\}_{i=0}^d)$ denotes a symmetric association scheme with Bose-Mesner algebra \mathcal{M} , associate matrices $\{A_i\}_{i=0}^d$, and primitive idempotents $\{E_i\}_{i=0}^d$. To avoid trivialities, we assume that $d \geq 1$. Since the matrices in \mathcal{M} are symmetric, we have

$$i'=i,$$
 $\hat{i}=i$ $(0 \le i \le d).$

Consequently

$$P_i(j) \in \mathbb{R}, \qquad Q_i(j) \in \mathbb{R} \qquad (0 \le i, j \le d).$$

Definition 11.1. The ordering $\{R_i\}_{i=0}^d$ is called *P-polynomial* whenever the following hold for $0 \le i, j, k \le d$:

- (i) $p_{i,j}^k = 0$ if one of i, j, k is greater than the sum of the other two;
- (ii) $p_{i,j}^k \neq 0$ if one of i, j, k is equal to the sum of the other two.

We say that \mathcal{X} is P-polynomial whenever there exists a P-polynomial ordering of the relations.

Lemma 11.2. Assume that the ordering $\{R_i\}_{i=0}^d$ is P-polynomial. Then the first intersection matrix has the form

where we abbreviate

$$c_i = p_{1,i-1}^i (1 \le i \le d), \qquad a_i = p_{1,i}^i (0 \le i \le d), \qquad b_i = p_{1,i+1}^i (1 \le i \le d-1).$$

Moreover $\{c_i\}_{i=1}^d$ and $\{b_i\}_{i=0}^{d-1}$ are nonzero.

Proof. By the definition of the intersection matrices.

Until further notice, assume that the ordering $\{R_i\}_{i=0}^d$ is P-polynomial. We abbreviate $A = A_1$. Note that $a_0 = 0$ and $c_1 = 1$.

Lemma 11.3. We have

$$AA_{i} = b_{i-1}A_{i-1} + a_{i}A_{i} + c_{i+1}A_{i+1}$$
 (1 \le i \le d - 1),

$$AA_{d} = b_{d-1}A_{d-1} + a_{d}A_{d}.$$

Proof. This is $A_i A_j = \sum_{k=0}^d p_{i,j}^k A_k$ with j=1.

Let λ denote an indeterminate. Let $\mathbb{R}[\lambda]$ denote the \mathbb{R} -algebra of polynomials in λ that have all coefficients in \mathbb{R} .

Definition 11.4. We define some polynomials $\{v_i\}_{i=0}^{d+1}$ in $\mathbb{R}[\lambda]$ such that

$$v_0 = 1,$$
 $v_1 = \lambda,$
 $\lambda v_i = b_{i-1}v_{i-1} + a_iv_i + c_{i+1}v_{i+1}$ $(1 \le i \le d),$

where $c_{d+1} = 1$.

Lemma 11.5. The following (i)-(iv) hold:

- (i) $\deg v_i = i \quad (0 \le i \le d+1);$
- (ii) the coefficient of λ^i in v_i is $(c_1c_2\cdots c_i)^{-1}$ $(0 \le i \le d+1)$;
- (iii) $v_i(A) = A_i \quad (0 \le i \le d);$
- (iv) $v_{d+1}(A) = 0$.

Proof. (i), (ii) By Definition 11.4.

(iii), (iv) Compare Lemma 11.3 and Definition 11.4.

Corollary 11.6. The following hold:

- (i) the algebra M is generated by A;
- (ii) the minimal polynomial of A is $c_1c_2\cdots c_dv_{d+1}$.

Proof. By Lemma 11.5 and since $\{A_i\}_{i=0}^d$ is a basis for \mathfrak{M} .

Recall that

$$A_i = \sum_{j=0}^{d} P_i(j)E_j \qquad (0 \le i \le d).$$

Define

$$\theta_j = P_1(j) \qquad (0 \le j \le d).$$

Note that

$$A = \sum_{j=0}^{d} \theta_j E_j. \tag{41}$$

П

Lemma 11.7. The following (i)–(iii) hold:

- (i) the scalars $\{\theta_j\}_{j=0}^d$ are mutually distinct, and these are the roots of the polynomial v_{d+1} ;
- (ii) the eigenspaces of A are $\{E_j V\}_{j=0}^d$;
- (iii) for $0 \le j \le d$, θ_j is the eigenvalue of A for E_jV .

Proof. (i) The roots of v_{d+1} are mutually distinct by Corollary 11.6(ii) and since A is diagonalizable. These roots are $\{\theta_j\}_{i=0}^d$ by (41).

Lemma 11.8. We have

$$P_i(j) = v_i(\theta_j) \qquad (0 \le i, j \le d).$$

Proof. We have

$$\sum_{j=0}^{d} P_i(j)E_j = A_i = v_i(A) = \sum_{j=0}^{d} v_i(\theta_j)E_j.$$

We have been describing some features of the P-polynomial association scheme \mathfrak{X} . Next, we use these features to characterize the P-polynomial property. Going forward, we no longer assume that the ordering $\{R_i\}_{i=0}^d$ is P-polynomial.

We make some definitions. A matrix $B \in M_{d+1}(\mathbb{R})$ is called *tridiagonal* whenever

$$B_{i,j} = 0$$
 if $|i - j| > 1$ $(0 \le i, j \le d)$.

Assume that B is tridiagonal. Then B is called *irreducible* whenever

$$B_{i,i-1} \neq 0, \qquad B_{i-1,i} \neq 0$$
 $(1 \le i \le d).$

Theorem 11.9. For the symmetric association scheme $\mathfrak{X} = (X, \{R_i\}_{i=0}^d)$ the following are equivalent:

- (i) the ordering $\{R_i\}_{i=0}^d$ is P-polynomial;
- (ii) the first intersection matrix B_1 is irreducible tridiagonal;
- (iii) there exist polynomials $\{v_i\}_{i=0}^d$ in $\mathbb{R}[\lambda]$ such that v_i has degree i and $A_i = v_i(A)$ for $0 \le i \le d$, where $A = A_1$;
- (iv) there exist polynomials $\{v_i\}_{i=0}^d$ in $\mathbb{R}[\lambda]$ such that v_i has degree i $(0 \le i \le d)$ and

$$P_i(j) = v_i(\theta_j) \qquad (0 \le i, j \le d),$$

where $\theta_j = P_1(j)$ for $0 \le j \le d$.

Proof. (i) \Rightarrow (ii) By Lemma 11.2.

(ii) \Rightarrow (iii) In the proof of Lemma 11.5, we only used the fact that B_1 is irreducible tridiagonal.

(iii) ⇔ (iv) Use

$$A_i = \sum_{j=0}^{d} P_i(j)E_j \qquad (0 \le i \le d)$$

and $A = \sum_{j=0}^{d} \theta_j E_j$. (iii) \Rightarrow (i) Recall that

$$k_{\ell} p_{i,j}^{\ell} = k_{i} p_{j,\ell}^{i} = k_{j} p_{\ell,i}^{j}$$
 $(0 \le i, j, \ell \le d).$

It suffices to show that for $0 \le i, j \le d$ with $i + j \le d$,

$$i + j = \max\{\ell | 0 \le \ell \le d, \ p_{i,j}^{\ell} > 0\}. \tag{42}$$

In the equation

$$A_i A_j = \sum_{\ell=0}^d p_{i,j}^\ell A_\ell,$$

we view each side as a polynomial in A. By comparing the degrees we routinely obtain (42).

Next, we explain how P-polynomial association schemes are related to distance-regular graphs.

Let $\Gamma = (X, \mathbb{R})$ denote a finite, undirected, connected graph, without loops or multiple edges, with vertex set X and adjacency relation \mathbb{R} . Vertices x, y are adjacent whenever $(x, y) \in \mathbb{R}$. To avoid trivialities, we assume that $|X| \geq 2$. Let ∂ denote the path-length distance function for Γ , and define $d = \max\{\partial(x,y)|x,y \in X\}$. We call d the diameter of Γ . For $x \in X$ and an integer $i \geq 0$ define $\Gamma_i(x) = \{y \in X | \partial(x,y) = i\}$. We abbreviate $\Gamma(x) = \Gamma_1(x)$. For an