Lecture 15

Proposition 10.17. 3\7(7\ s the Bose-Mesner algebra of a commutative association scheme
with vertex set X, associate matrices {D;}i_,, and primitive idempotents {kqE;}_,.

Proof. By Proposition 2.4 and Lemmas 10.12, 10.16.

Definition 10.18. The association scheme in Proposiiton 10.17 is called the quotient as-
sociation scheme of X induced by the relation Rg. We denote this association scheme by

Q.

Lemma 10.19. The association schemes Q and X are related as follows:
(i) mi(Q) = m;(X) (0<i<t);
(iil) |X| = S2F_gm, where m; = m;(Q) = m;(X).

Proof. (i) For 0 <i,j <t we have
d
EioE; = |X[') g, (X) B,
k=0
t
— XY (0B
k=0
In the above equation we apply the map A — A to each side; this yields
—~ o~ t i~
Eio By = XY g (X) By
k=0
We also have
~ o~ ~ t ~
(kQEZ) o (kQEJ) = [X[_l Z qf”,j(Q)kQEz
k=0

Comparing the above equations using kg|);’ | = | X|, we get the result.
(it) Since m; = ¢..
(iii) Apply Lemma 4.3(iii) to the association scheme Q.

Corollary 10.20. For the relation Rq,
s t
=0 §=0
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Proof. By Lemma 10.19(iii) and since

X = kg'1X, ko= k.
i=0

Recall the eigenmatrices P,Q for X. Let P and Q denote the eigenmatrices for Q.
Proposition 10.21. The following (i)—(iv) hold.

(i) For 0 <14 <t the submatriz Qlo,xa has all rows identical.

)
(i) For 0 <4,j <t the (i,5)-entry of Q is equal to the (a, j)-entry of Q, where o € ;.
(iii) For 0 < j <t the submatriz Pli1,..ayxa; has row sum 0.

(iv) For 0 <i,5 <t the (i,7)-entry of P is equal to kg* times the i row sum of Plaxg;-

Proof. Similar to the proof of Proposition 10.7. O

11 Distance-regular graphs and P-polynomial associa-
tion schemes

In this section, we restrict our attention to symmetric association schemes.

Throughout this section, X = (X, {R;}%,) denotes a symmetic association scheme with
Bose-Mesner algebra M, associate matrices {A;}¢ ,, and primitive idempotents {F;}&,. To
avoid trivialities, we assume that d > 1. Since the matrices in M are symmetric, we have

i =1, i =i (0 <i<d).
Consequently
F(j)eR, Qi) €R (0<i,j<d).

Definition 11.1. The ordering {R;}¢, is called P-polynomial whenever the following hold
for 0<id,5,k<d:

(i) pf ;= 0if one of 4,7, k is greater than the sum of the other two;
(ii) pi‘ ; # 0if one of 4, 7, k is equal to the sum of the other two.

We say that X is P-polynomial whenever there exists a P-polynomial ordering of the relations.
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Lemma 11.2. Assume that the ordering { R;}%_, is P-polynomial.
matriz has the form

apg C1 0
by a1 ¢
by - -
Bl = i , . )
Cd
0 ba-1 aqg

where we abbreviate

Then the first intersection

cl:pil,i—l(l <1 <d), ai:pii(ogiﬁd), bi:pé,ﬂ—l(l <i<d-1)

Moreover {c;}L, and {b;}%=} are nonzero.

Proof. By the definition of the intersection matrices.

O

Until further notice, assume that the ordering {R;}%, is P-polynomial. We abbreviate

A = A;. Note that ag =0 and ¢; = 1.

Lemma 11.3. We have

AA; = b1 A+ aiAs + 1A (1<i<d-1),

AAg = bg_1Aq1 + agAq.

Proof. This is A;A; = 3¢, pf ;A with j = 1.

]

Let A denote an indeterminate. Let R[A] denote the R-algebra of polynomials in A that have

all coefficients in R.

Definition 11.4. We define some polynomials {v;}¢*} in R[] such that

UO:L 1)1:/\7

Av; = bi_10;1 + V5 + Cip1Vip (1<i<d),

where ¢4 = 1.
Lemma 11.5. The following (1)—(iv) hold:
(i) degvi =1 (0<i<d+1);

(ii) the coefficient of ' in v; is (cica-++ ;)™ (0<i<d+1);

)
)
(iii) vi(A)=4; (0<i<d);
(iv) var1(4) = 0.

Proof. (i), (ii) By Definition 11.4.
(iii), (iv) Compare Lemma 11.3 and Definition 11.4.
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Corollary 11.6. The following hold:

(i) the algebra M is generated by A;

(ii) the minimal polynomial of A is cicy -+ - CqUay1 .
Proof. By Lemma 11.5 and since {4;}Z, is a basis for M. O
Recall that

d
A=Y PGB (0<i<d
§=0
Define
0; = P1(j) (0<j<d)
Note that
d
A=Y "0E;. (41)
j=0

Lemma 11.7. The following (1)—(iii) hold:
(i) the scalars {6;}9_, are mutually distinct, and these are the roots of the polynomial vgy:;
(ii) the eigenspaces of A are {E;V}9_;

(iii) for 0 < j < d, 0; is the eigenvalue of A for E;V.

Proof. (i) The roots of vy, are mutually distinet by Corollary 11.6(ii) and since A is diag-
onalizable. These roots are {6;}¢, by (41) .
(i), (iii) By (41). O

Lemma 11.8. We have

Fi(7) = vi() (0<4,5<d)
Proof. We have
d d
Y R()E; = A =vi(A) = vi(6))E;
j=0 §=0

O

We have been describing some features of the P-polynomial association scheme X. Next, we
use these features to characterize the P-polynomial property. Going forward, we no longer
assume that the ordering {R;}¢_, is P-polynomial.

We make some definitions. A matrix B € My,1(R) is called tridiagonal whenever
Bi;=0 if |i—j|>1 (0<4,7 <d).
Assume that B is tridiagonal. Then B is called irreducible whenever

B 1 #0, Bi_1; #0 (1<i<d).
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Theorem 11.9. For the symmetric association scheme X = (X, {R;}L,) the following are
equivalent:

(i) the ordering {R;}_, is P-polynomial;
(i) the first intersection matriz By is irreducible tridiagonal;

(iil) there ewist polynomials {v;}¢ o in R[] such that v; has degree i and A; = v (A) for
0<12<d, where A= Ay; 4

(iv) there exist polynomials {v;}{y in R[\] such that v; has degree i (0<% <d) and
where 0; = Py(7) for 0 < j <d.

Proof. (i) = (ii) By Lemma 11.2.
(i) = (iif) In the proof of Lemma 11.5, we only used the fact that B; is irreducible tridiag-
onal.

(iii) ¢ (iv) Use

d
A=Y " P(j)E; (0<i<d)
§=0
and A = Z;l:o 0;E;.
(iii) = (i) Recall that
kept; = kip', = kypl, (0<1i,4,¢<d).

It suffices to show that for 0 < 4,5 < d with 4 + 7 <d,
4= max{£|0 < ¢ < d, p}; > 0}. (42)

In the equation

d
AA5 = A

£=0

we view each side as a polynomial in A. By comparing the degrees we routinely obtain
(42). O

Next, we explain how P-polynomial association schemes are related to distance-regular
graphs.

Let I' = (X, R) denote a finite, undirected, connected graph, without loops or multiple edges,
with vertex set X and adjacency relation R. Vertices z, y are adjacent whenever (z,y) € R.
To avoid trivialities, we assume that | X| > 2. Let 0 denote the path-length distance function
for T', and define d = max{d(z,y)|z,y € X}. We call d the diameter of I. For z € X and
an integer 7 > 0 define I'y(z) = {y € X|0(z,y) = i}. We abbreviate I'(z) = I'y(z). For an

53



