(iti) The map
Mo —= Malyxy

A Al}fxy

is an algebra isomorphism with respect to matriz multiplication and Hadamard multi-
plication.

(iv) The above map sends kg Aq to the trivial primitive idempotent for Y.

Proof. (i) By construction.

(il) By (i} above.

(iii) The map is a bijection because it sends the basis {A;}{_o of Mg to the basis {Ailyxy Yoo
of Mglyxy. The map is an algebra homomorphism by the block-diagonal nature of the
matrices in Mq.

(iv) By the comments above (39}, O

The algebra Mg is closed under the conjugate-transpose map. By Lemma 3.3 the algebra
Mg has a basis of primitive idempotents. One of these primitive idempotents is ka}‘AQ, in
view of Lemma 10.5(iv).

Lemma 10.6. For the subalgebra Mg, the primitive idempotents have the form {Ea, }i_o such
that:

() {As¥i, is a partition of {0,1,...,d} into nonempty sets;
(ii) EA:' == ZjEA{ Ej (0 S '[: S S);
(iii) 0 € Ag;
(iv) Ea, = kg Aa.

Proof. (i), (ii) Each primitive idempotent £ of Mg is a linear combination of {E;}lp In
this linear combination, each coeflicient is zero or one because E? = F. The result is a
routine consequence of this.

(i) There exists ¢ (0 < i < s) such that 0 € A;. After relabelling, we may assume that
i =0,

(iv) There exists ¢ (0 < ¢ < s) such that Ex, = kg Ap. We have ¢ = 0 by (ii) and
Aqd # 0. O]

Lecture 14

Recall the eigenmatrices P, @ for X. Let Pq, Qq denote the eigenmatrices for Y.
Proposition 10.7. The following (i)—(iv} hold.
(i) For 0 <i < s the submatriz P|p,xn has all rows identical.

(i) For0<1i,7 < s the (i,7)-entry of Pa is equal to the (o, j}-entry of P, where o € A

45




(it) For 0 < j < s the submatriv Q{s+1,..,apxn, has row sum 0.

(iv) For 0 < 4,5 < s the (4,5)-entry of Qo is equal to |[Y|/|X] times the i row sum of
QlQXAj'

Proof. (i), (i} For 0 < j < s we have A; = 5S¢ o Pi(i)E;. In this equation the right-hand
side is a linear combination of {Ea,}{_;. The result follows.
(i), (iv) For 0 < j < s we have

d d
EAJ- = Z By = \X]—l Z ZQ&(’i)Ai = I-X!m1 ZAi Z Qa(z)

Q€A a€h; i=0 €A
The matrix F,; is a linear combination of {A;}:_o- The result follows. O

We have been discussing the subscheme Y of X induced by an equivalence class Y of Rq.
Next we discuss the quotient association scheme induced by Rq. For the quotient association
scheme the vertex set consists of the equivalence classes of Hq.

For notational convenience, we abbreviate A = Ag. We have 0 € A. Write ¢ +1 = [A[.
Permuting {F;}¢, if necessary, we may assume without loss of generality that

A={0,1,...,t}.
By construction,
t
kolAa =) Ej;= Ey. (40)
§=0
Note that
E;E\ = Ej (0<j <)

Lemma 10.8. The following hold:
(i) f0<i,j<tandgl;>0then0<k<t (0=<i4k<d)
(il) for0<i<t we have 0 < 1 < t.

Proof. (i) In the equation Aqo Ag = Ag, use (40) to write each side as a linear combination
of the primitive idempotents of X.
(ii) By {40) and since Agq is symmetric. U

Lemma 10.9. The matrices {E;}t_, form a basis for a subalgebra N of M® that is closed
under matriz multiplication, complex conjugation, and the transpose map. With respect to
matriz multiplication, M3 is @ commutative algebra with multiplicative identity Ly .

Proof. By Lemma 10.8 and the construction. [

Lemma 10.10. The subalgebra M3, has a basis {Aq, }io such that:
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(D) {4}y 48 a partition of {0,1,...,d} inlo nonempty sets;
(ﬁ) A, = Zjeﬂi Aj (0<i< t)f
(111) AQAQZ = AQIAQ — kQAQl (0 S % S l'i),'
(IV) QO = Q.

Proof. (1), (ii) Because M5, is closed under Hadamard multiplication and contains J = | X | Eg.
(iii) Since Ex = k' Aq is the multiplicative identity for M3,

(iv) Permuting {§;}:_, if necessary, we may assume that 0 € {J. Since Ag e M}, Aq is a
linear combination of {Ag,}_g. In this linear combination each coefficient is 0 or 1, since
Ag has all entries 0 or 1. So £ is a union of some of {§};}i_5. We have 0 € (3 and 0 € {lo, s0
Qo C 2. We have

AQAQU w kﬂAQU.

Since 0 € g, the product Aqdy will contribute to AqAq,. But AgAy = Aql = Ag, s0 Aq
will contribute to AgAgq,. Therefore {3 = 1. 1

Recall the equivalence classes X1, X2, ..., X, of Rq. The subsets { X}, partition X.
Lemma 10.11. For 0 <4 <t consider the matriz Ag,.

(i) For1 < a,p <r the submaitriz Ag,

XoxXp has all entries 0 or all entries 1.

(i) Define an r x r matric D; with (o, B)-entry

1 if Ag,|x.xx, has all entries 1;
D- J’ fonand 1 o g8 ; 1 < | < |
i(& ) {0 if Aﬂi|Xa)<Xﬂ has all entries O ( <o,f< T)

Then Ag, = D; ® J, where J is kg X kq.

Proof. (i) The matrix Agq is block diagonal, with each diagonal block a copy of J. Hvery
entry of Ag, is 0 or 1. We have AgAg, = Ag,Aq = kaAgq,. The result follows by matrix
multiplication.

(ii) This is a reformulation of (i) above. O

We have a comiment.
Lemma 10.12. The following hold:
(i) Do=1I;
(i) the matriz Y°i_o D; has all entries 1.

Proof. (i) The matrix Ag is block diagonal, with each diagonal block a copy of J. Therefore
Aqg=I®J,s0 Dy=1.
(i1} The matrix Z?:o A; has all entries 1, and

d i i
SAi=) Ag =) Di®J
i=0 i=0 i={}
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Detine the sei
X ={X,Xs,..., %X}

We view D; € Mg(C) for 0 < ¢ <t. We are going to show that {D;}._, are the associate
matrices for a commutative association scheme with vertex set X. This association scheme
is the quotient scheme that was mentioned earlier.

Lemma 10.13. For A € M3, there exists a unique A € M5 (C) such that A = A®J.
Proof. By Lemma 10.11 and since {Aq, }_ is a basis for M3,

Lemma 10.14. The following (i)-(vii) hold for A, B € M} and a € C:

Proof. These are readily checked using Lemma 10.13.

Definition 10.15. Define the vector space ff}? = {A]A e M3}.

Lemma 10.16. The vector space J{f{j’\ is closed under Hadamard multiplication, matriz mul-
tiplication, complex conjugation, and the iranspose map. Moreover:

(i) The map
M — M3
A A

is an isomorphism of algebras with respect to Hadamard multiplication.

(i) The map
MS = M3
A koA
is an isomorphism of algebras with respect to matriz mulliplication.

Proof. Immediate from Lemma 10.14.
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