(iii) The map

$$\mathcal{M}_{\Omega} \to \mathcal{M}_{\Omega}|_{Y \times Y}$$
$$A \mapsto A|_{Y \times Y}$$

is an algebra isomorphism with respect to matrix multiplication and Hadamard multiplication.

(iv) The above map sends $k_{\Omega}^{-1}A_{\Omega}$ to the trivial primitive idempotent for \forall .

Proof. (i) By construction.

(ii) By (i) above.

(iii) The map is a bijection because it sends the basis $\{A_i\}_{i=0}^s$ of \mathcal{M}_{Ω} to the basis $\{A_i|_{Y\times Y}\}_{i=0}^s$ of $\mathcal{M}_{\Omega}|_{Y\times Y}$. The map is an algebra homomorphism by the block-diagonal nature of the matrices in \mathcal{M}_{Ω} .

(iv) By the comments above (39).

The algebra \mathcal{M}_{Ω} is closed under the conjugate-transpose map. By Lemma 3.3 the algebra \mathcal{M}_{Ω} has a basis of primitive idempotents. One of these primitive idempotents is $k_{\Omega}^{-1}A_{\Omega}$, in view of Lemma 10.5(iv).

Lemma 10.6. For the subalgebra \mathfrak{M}_{Ω} the primitive idempotents have the form $\{E_{\Lambda_i}\}_{i=0}^s$ such that:

- (i) $\{\Lambda_i\}_{i=0}^s$ is a partition of $\{0,1,\ldots,d\}$ into nonempty sets;
- (ii) $E_{\Lambda_i} = \sum_{j \in \Lambda_i} E_j$ $(0 \le i \le s);$
- (iii) $0 \in \Lambda_0$;
- (iv) $E_{\Lambda_0} = k_{\Omega}^{-1} A_{\Omega}$.

Proof. (i), (ii) Each primitive idempotent E of \mathcal{M}_{Ω} is a linear combination of $\{E_j\}_{j=0}^d$. In this linear combination, each coefficient is zero or one because $E^2 = E$. The result is a routine consequence of this.

(iii) There exists i ($0 \le i \le s$) such that $0 \in \Lambda_i$. After relabelling, we may assume that i = 0.

(iv) There exists i $(0 \le i \le s)$ such that $E_{\Lambda_i} = k_{\Omega}^{-1} A_{\Omega}$. We have i = 0 by (iii) and $A_{\Omega} J \ne 0$.

Lecture 14

Recall the eigenmatrices P, Q for \mathfrak{X} . Let P_{Ω}, Q_{Ω} denote the eigenmatrices for \mathcal{Y} .

Proposition 10.7. The following (i)-(iv) hold.

- (i) For $0 \le i \le s$ the submatrix $P|_{\Lambda_i \times \Omega}$ has all rows identical.
- (ii) For $0 \le i, j \le s$ the (i, j)-entry of P_{Ω} is equal to the (α, j) -entry of P, where $\alpha \in \Lambda_i$.

- (iii) For $0 \le j \le s$ the submatrix $Q|_{\{s+1,\dots,d\}\times\Lambda_j}$ has row sum 0.
- (iv) For $0 \le i, j \le s$ the (i, j)-entry of Q_{Ω} is equal to |Y|/|X| times the i^{th} row sum of

Proof. (i), (ii) For $0 \le j \le s$ we have $A_j = \sum_{i=0}^d P_j(i) E_i$. In this equation the right-hand side is a linear combination of $\{E_{\Lambda_i}\}_{i=0}^s$. The result follows.

(iii), (iv) For $0 \le j \le s$ we have

$$E_{\Lambda_j} = \sum_{\alpha \in \Lambda_j} E_{\alpha} = |X|^{-1} \sum_{\alpha \in \Lambda_j} \sum_{i=0}^d Q_{\alpha}(i) A_i = |X|^{-1} \sum_{i=0}^d A_i \sum_{\alpha \in \Lambda_j} Q_{\alpha}(i).$$

The matrix E_{Λ_i} is a linear combination of $\{A_i\}_{i=0}^s$. The result follows.

We have been discussing the subscheme \mathcal{Y} of \mathcal{X} induced by an equivalence class Y of R_{Ω} . Next we discuss the quotient association scheme induced by R_{Ω} . For the quotient association scheme the vertex set consists of the equivalence classes of R_{Ω} .

For notational convenience, we abbreviate $\Lambda = \Lambda_0$. We have $0 \in \Lambda$. Write $t + 1 = |\Lambda|$. Permuting $\{E_i\}_{i=0}^d$ if necessary, we may assume without loss of generality that

$$\Lambda = \{0, 1, \dots, t\}.$$

By construction,

$$k_{\Omega}^{-1}A_{\Omega} = \sum_{j=0}^{t} E_j = E_{\Lambda}. \tag{40}$$

Note that

$$E_j E_{\Lambda} = E_j \qquad (0 \le j \le t).$$

Lemma 10.8. The following hold:

(i) if
$$0 \le i, j \le t$$
 and $q_{i,j}^k > 0$ then $0 \le k \le t$ $(0 \le i, j, k \le d)$;

(ii) for $0 \le i \le t$ we have $0 \le \hat{i} \le t$.

Proof. (i) In the equation $A_{\Omega} \circ A_{\Omega} = A_{\Omega}$, use (40) to write each side as a linear combination of the primitive idempotents of \mathfrak{X} .

(ii) By (40) and since
$$A_{\Omega}$$
 is symmetric.

Lemma 10.9. The matrices $\{E_i\}_{i=0}^t$ form a basis for a subalgebra $\mathcal{M}_{\Lambda}^{\circ}$ of \mathcal{M}° that is closed under matrix multiplication, complex conjugation, and the transpose map. With respect to matrix multiplication, $\mathcal{M}_{\Lambda}^{\circ}$ is a commutative algebra with multiplicative identity E_{Λ} .

Proof. By Lemma 10.8 and the construction.

Lemma 10.10. The subalgebra $\mathcal{M}_{\Lambda}^{\circ}$ has a basis $\{A_{\Omega_i}\}_{i=0}^t$ such that:

- (i) $\{\Omega_i\}_{i=0}^t$ is a partition of $\{0,1,\ldots,d\}$ into nonempty sets;
- (ii) $A_{\Omega_i} = \sum_{j \in \Omega_i} A_j$ $(0 \le i \le t);$
- (iii) $A_{\Omega}A_{\Omega_i} = A_{\Omega_i}A_{\Omega} = k_{\Omega}A_{\Omega_i}$ $(0 \le i \le t);$
- (iv) $\Omega_0 = \Omega$.

Proof. (i), (ii) Because $\mathcal{M}^{\circ}_{\Lambda}$ is closed under Hadamard multiplication and contains $J = |X|E_0$.

(iii) Since $E_{\Lambda} = k_{\Omega}^{-1} A_{\Omega}$ is the multiplicative identity for $\mathcal{M}_{\Lambda}^{\circ}$.

(iv) Permuting $\{\Omega_i\}_{i=0}^t$ if necessary, we may assume that $0 \in \Omega_0$. Since $A_{\Omega} \in \mathcal{M}_{\Lambda}^{\circ}$, A_{Ω} is a linear combination of $\{A_{\Omega_i}\}_{i=0}^t$. In this linear combination each coefficient is 0 or 1, since A_{Ω} has all entries 0 or 1. So Ω is a union of some of $\{\Omega_i\}_{i=0}^t$. We have $0 \in \Omega$ and $0 \in \Omega_0$, so $\Omega_0 \subseteq \Omega$. We have

$$A_{\Omega}A_{\Omega_0}=k_{\Omega}A_{\Omega_0}.$$

Since $0 \in \Omega_0$, the product $A_{\Omega}A_0$ will contribute to $A_{\Omega}A_{\Omega_0}$. But $A_{\Omega}A_0 = A_{\Omega}I = A_{\Omega}$, so A_{Ω} will contribute to $A_{\Omega}A_{\Omega_0}$. Therefore $\Omega_0 = \Omega$.

Recall the equivalence classes X_1, X_2, \ldots, X_r of R_{Ω} . The subsets $\{X_i\}_{i=1}^r$ partition X.

Lemma 10.11. For $0 \le i \le t$ consider the matrix A_{Ω_i} .

- (i) For $1 \leq \alpha, \beta \leq r$ the submatrix $A_{\Omega_i}|_{X_{\alpha} \times X_{\beta}}$ has all entries 0 or all entries 1.
- (ii) Define an $r \times r$ matrix D_i with (α, β) -entry

$$D_{i}(\alpha,\beta) = \begin{cases} 1 & \text{if } A_{\Omega_{i}}|_{X_{\alpha} \times X_{\beta}} \text{ has all entries 1;} \\ 0 & \text{if } A_{\Omega_{i}}|_{X_{\alpha} \times X_{\beta}} \text{ has all entries 0} \end{cases}$$
 $(1 \le \alpha, \beta \le r).$

Then $A_{\Omega_i} = D_i \otimes J$, where J is $k_{\Omega} \times k_{\Omega}$.

Proof. (i) The matrix A_{Ω} is block diagonal, with each diagonal block a copy of J. Every entry of A_{Ω_i} is 0 or 1. We have $A_{\Omega}A_{\Omega_i}=A_{\Omega_i}A_{\Omega}=k_{\Omega}A_{\Omega_i}$. The result follows by matrix multiplication.

(ii) This is a reformulation of (i) above.

We have a comment.

Lemma 10.12. The following hold:

- (i) $D_0 = I$;
- (ii) the matrix $\sum_{i=0}^{t} D_i$ has all entries 1.

Proof. (i) The matrix A_{Ω} is block diagonal, with each diagonal block a copy of J. Therefore $A_{\Omega} = I \otimes J$, so $D_0 = I$.

(ii) The matrix $\sum_{i=0}^{d} A_i$ has all entries 1, and

$$\sum_{i=0}^{d} A_i = \sum_{i=0}^{t} A_{\Omega_i} = \sum_{i=0}^{t} D_i \otimes J.$$

Define the set

$$\tilde{X} = \{X_1, X_2, \dots, X_r\}.$$

We view $D_i \in M_{\tilde{X}}(\mathbb{C})$ for $0 \leq i \leq t$. We are going to show that $\{D_i\}_{i=0}^t$ are the associate matrices for a commutative association scheme with vertex set \tilde{X} . This association scheme is the quotient scheme that was mentioned earlier.

Lemma 10.13. For $A \in \mathcal{M}_{\Lambda}^{\circ}$ there exists a unique $\tilde{A} \in M_{\tilde{X}}(\mathbb{C})$ such that $A = \tilde{A} \otimes J$.

Proof. By Lemma 10.11 and since $\{A_{\Omega_i}\}_{i=0}^t$ is a basis for $\mathcal{M}_{\Lambda}^{\circ}$.

Lemma 10.14. The following (i)–(vii) hold for $A, B \in \mathcal{M}^{\circ}_{\Lambda}$ and $\alpha \in \mathbb{C}$:

- (i) $\widetilde{A+B} = \widetilde{A} + \widetilde{B}$;
- (ii) $\widetilde{\alpha A} = \alpha \widetilde{A}$;
- (iii) $\widetilde{A \circ B} = \widetilde{A} \circ \widetilde{B}$;
- (iv) $\widetilde{AB} = k_{\Omega} \widetilde{A} \widetilde{B}$;
- (v) $\tilde{A} = 0$ iff A = 0;
- (vi) $\widetilde{A^t} = \widetilde{A}^t$;
- (vii) $\overline{\tilde{A}} = \widetilde{\overline{A}}$.

Proof. These are readily checked using Lemma 10.13.

Definition 10.15. Define the vector space $\tilde{\mathcal{M}}_{\Lambda}^{\circ} = {\tilde{A}|A \in \mathcal{M}_{\Lambda}^{\circ}}$.

Lemma 10.16. The vector space $\tilde{\mathbb{M}}_{\Lambda}^{\circ}$ is closed under Hadamard multiplication, matrix multiplication, complex conjugation, and the transpose map. Moreover:

(i) The map

$$\mathcal{M}_{\Lambda}^{\circ} \to \tilde{\mathcal{M}}_{\Lambda}^{\circ}$$
 $A \mapsto \tilde{A}$

is an isomorphism of algebras with respect to Hadamard multiplication.

(ii) The map

$$\mathcal{M}_{\Lambda}^{\circ} \to \tilde{\mathcal{M}}_{\Lambda}^{\circ}$$

$$A \mapsto k_{\Omega}\tilde{A}$$

is an isomorphism of algebras with respect to matrix multiplication.

Proof. Immediate from Lemma 10.14.