We show that $C_1 = C$. Suppose $C_1 \subseteq C$. Since C is connected, there exists $r \in C_1$ and $s \in C \setminus C_1$ such that $s \to r$. We examine the r-coordinate in $B_i^t v = k_i v$; this gives

$$k_i = \sum_{j=0}^{d} (B_i^t)_{r,j} v_j = \sum_{j=0}^{d} (B_i)_{j,r} v_j = \sum_{j=0}^{d} p_{i,j}^r v_j.$$
(36)

For $0 \leq j \leq d$ we have $p_{i,j}^r = 0$ if $j \notin C$ and $|v_j| \leq 1$ if $j \in C$; therefore $p_{i,j}^r |v_j| \leq p_{i,j}^r$. Consequently

$$k_i = \left| \sum_{j=0}^d p_{i,j}^r v_j \right| \le \sum_{j=0}^d p_{i,j}^r |v_j| \le \sum_{j=0}^d p_{i,j}^r = k_i.$$
 (37)

Combining (36), (37) we obtain $v_j = 1$ for all $j \in C$ such that $j \to r$. This fails for j = s, so we have a contradiction. Therefore $C_1 = C$, so $v_r = 1$ for $r \in C$. In particular $v_r = v_s$ for $r, s \in C$.

(b) \Rightarrow (a) This holds because B_i^t has constant row sum k_i .

We have shown that (a), (b) are equivalent. Consequently $\dim W = m$, and the result follows.

(ii) Similar to the proof of (i) above.

Lecture 13

Proposition 9.18. The following are equivalent:

- (i) there exists $i \in \{1, 2, ..., d\}$ such that Δ_{A_i} is disconnected;
- (ii) there exists $j \in \{1, 2, ..., d\}$ such that Δ_{E_j} is disconnected.

Proof. For $1 \le i, j \le d$ we have

$$\frac{P_i(j)}{k_i} = \frac{\overline{Q_j(i)}}{m_i}.$$

Therefore, $P_i(j) = k_i$ if and only if $Q_j(i) = m_j$. The result follows from this and Proposition 9.17.

Proposition 9.19. The following are equivalent:

- (i) the association scheme X is primitive;
- (ii) the distribution diagram Δ_{A_i} is connected for $1 \leq i \leq d$;
- (iii) the representation diagram Δ_{E_j} is connected for $1 \leq j \leq d$.

Proof. By Definition 9.4, Corollary 9.13, and Proposition 9.18.

Problem 9.20. For a finite group G, show that the following are equivalent:

- (i) the conjugacy–class association scheme for G is primitive;
- (ii) G is simple.

10 Subschemes and quotient schemes

Throughout this section, we assume that $\mathfrak{X} = (X, \{R_i\}_{i=0}^d)$ is a commutative association scheme with Bose-Mesner algebra \mathfrak{M} , associate matrices $\{A_i\}_{i=0}^d$, and primitive idempotents $\{E_i\}_{i=0}^d$.

Throughout this section, we assume that \mathcal{X} is imprimitive. By Proposition 9.14 there exists a subset $\{0\} \subseteq \Omega \subseteq \{0, 1, ..., d\}$ such that R_{Ω} is an equivalence relation. Recall that

$$R_{\Omega} = \bigcup_{k \in \Omega} R_k$$
.

Write $s+1=|\Omega|$. Permuting the relations $\{R_i\}_{i=0}^d$ if necessary, we may assume without loss of generality that

$$\Omega = \{0, 1, \dots, s\}.$$

Lemma 10.1. The following hold:

- (i) if $0 \le i, j \le s$ and $p_{i,j}^k > 0$ then $0 \le k \le s$ $(0 \le i, j, k \le d)$;
- (ii) for $0 \le i \le s$ we have $0 \le i' \le s$.

Proof. (i) The relation R_{Ω} is transitive.

(ii) The relation R_{Ω} is symmetric.

Lemma 10.2. Let $Y \subseteq X$ denote an equivalence class of R_{Ω} . Then:

- (i) $\mathcal{Y} = (Y, \{R_i|_{Y\times Y}\}_{i=0}^s)$ is a commutative association scheme;
- (ii) $p_{i,j}^k(\mathcal{Y}) = p_{i,j}^k(\mathcal{X})$ $(0 \le i, j, k \le s);$
- (iii) $k_i(\mathcal{Y}) = k_i(\mathcal{X})$ $(0 \le i \le s);$
- (iv) $|Y| = \sum_{i=0}^{s} k_i$ where $k_i = k_i(\mathfrak{X}) = k_i(\mathfrak{Y})$.

Proof. (i) We check that Y satisfies the four conditions in Definition 1.1.

- The trivial relation for y is $R_0|_{Y\times Y} = \{(y,y)|y\in Y\}.$
- The relations $\{R_i|_{Y\times Y}\}_{i=0}^s$ partition $Y\times Y$, because for $(x,y)\in Y\times Y$ we have $(x,y)\in R_{\Omega}$, so there exists $i\in\Omega=\{0,1,\ldots,s\}$ such that $(x,y)\in R_i$. This i is unique by construction.
- For $0 \le i \le s$ we have $0 \le i' \le s$ and

$$(R_i|_{Y\times Y})^t = R_{i'}|_{Y\times Y}.$$

• For $0 \le i, j, k \le s$ and $x, y \in Y$ with $(x, y) \in R_k$,

$$p_{i,j}^{k}(X) = |\{z \in X | (x, z) \in R_{i}, (z, y) \in R_{j}\}|$$

= $|\{z \in Y | (x, z) \in R_{i}|_{Y \times Y}, (z, y) \in R_{j}|_{Y \times Y}\}|$
= $p_{i,j}^{k}(Y)$.

(ii) This was obtained in the proof of (i) above.

(iii) Since $k_i = p_{i,i'}^0$.

Definition 10.3. The association scheme \mathcal{Y} in Lemma 10.2 is called the *subscheme of* \mathcal{X} induced on Y.

Consider the subscheme $\mathcal{Y} = (Y, \{R_i|_{Y\times Y}\}_{i=0}^s)$ from Lemma 10.2. Our next general goal is to describe how the Bose-Mesner algebra of \mathcal{Y} is related to \mathcal{M} .

For notational convenience, define

$$k_{\Omega} = \sum_{i=0}^{s} k_i,$$
 $A_{\Omega} = \sum_{i=0}^{s} A_i.$

Note that

$$A_i \circ A_{\Omega} = A_i$$
 $(0 \le i \le s).$

Moreover

$$A_{\Omega} \circ A_{\Omega} = A_{\Omega}. \tag{38}$$

Lemma 10.4. The matrices $\{A_i\}_{i=0}^s$ form a basis for a subalgebra \mathcal{M}_{Ω} of \mathcal{M} that is closed under Hadamard multiplication, complex conjugation, and the transpose map. With respect to Hadamard multiplication, \mathcal{M}_{Ω} is an algebra with multiplicative identity A_{Ω} .

By construction, the algebra \mathcal{M}_{Ω} in Lemma 10.4 is commutative.

Let X_1, X_2, \ldots, X_r denote an ordering of the equivalence classes of R_{Ω} . We have $|X_i| = k_{\Omega}$ for $1 \leq i \leq r$. The sets $\{X_i\}_{i=1}^r$ partition of X, so

$$r = k_{\Omega}^{-1}|X|.$$

Relative to the partition $\{X_i\}_{i=1}^r$, every matrix in \mathcal{M}_{Ω} is block-diagonal, with each diagonal block of dimension $k_{\Omega} \times k_{\Omega}$. For example A_{Ω} is block diagonal, with each diagonal block a copy of J with dimension $k_{\Omega} \times k_{\Omega}$. We have $J^2 = k_{\Omega}J$. Therefore

$$(A_{\Omega})^2 = k_{\Omega} A_{\Omega}. \tag{39}$$

Lemma 10.5. Let $Y \subseteq X$ denote an equivalence class of R_{Ω} , and consider the association scheme $\mathcal{Y} = (Y, \{R_i|_{Y \times Y}\}_{i=0}^s)$ from Lemma 10.2.

- (i) The associate matrices of \mathcal{Y} are $\{A_i|_{Y\times Y}\}_{i=0}^s$.
- (ii) The Bose-Mesner algebra of \mathcal{Y} is $\mathcal{M}_{\Omega}|_{Y\times Y}$.

(iii) The map

$$\mathcal{M}_{\Omega} \to \mathcal{M}_{\Omega}|_{Y \times Y}$$
$$A \mapsto A|_{Y \times Y}$$

is an algebra isomorphism with respect to matrix multiplication and Hadamard multiplication.

(iv) The above map sends $k_{\Omega}^{-1}A_{\Omega}$ to the trivial primitive idempotent for \forall .

Proof. (i) By construction.

- (ii) By (i) above.
- (iii) The map is a bijection because it sends the basis $\{A_i\}_{i=0}^s$ of \mathcal{M}_{Ω} to the basis $\{A_i|_{Y\times Y}\}_{i=0}^s$ of $\mathcal{M}_{\Omega}|_{Y\times Y}$. The map is an algebra homomorphism by the block-diagonal nature of the matrices in \mathcal{M}_{Ω} .

(iv) By the comments above (39).

The algebra \mathcal{M}_{Ω} is closed under the conjugate-transpose map. By Lemma 3.3 the algebra \mathcal{M}_{Ω} has a basis of primitive idempotents. One of these primitive idempotents is $k_{\Omega}^{-1}A_{\Omega}$, in view of Lemma 10.5(iv).

Lemma 10.6. For the subalgebra \mathcal{M}_{Ω} the primitive idempotents have the form $\{E_{\Lambda_i}\}_{i=0}^s$ such that:

- (i) $\{\Lambda_i\}_{i=0}^s$ is a partition of $\{0,1,\ldots,d\}$ into nonempty sets;
- (ii) $E_{\Lambda_i} = \sum_{j \in \Lambda_i} E_j$ $(0 \le i \le s);$
- (iii) $0 \in \Lambda_0$;
- (iv) $E_{\Lambda_0} = k_{\Omega}^{-1} A_{\Omega}$.

Proof. (i), (ii) Each primitive idempotent E of \mathcal{M}_{Ω} is a linear combination of $\{E_j\}_{j=0}^d$. In this linear combination, each coefficient is zero or one because $E^2 = E$. The result is a routine consequence of this.

- (iii) There exists i ($0 \le i \le s$) such that $0 \in \Lambda_i$. After relabelling, we may assume that i = 0.
- (iv) There exists i ($0 \le i \le s$) such that $E_{\Lambda_i} = k_{\Omega}^{-1} A_{\Omega}$. We have i = 0 by (iii) and $A_{\Omega} J \ne 0$.

Recall the eigenmatrices P, Q for \mathfrak{X} . Let P_{Ω}, Q_{Ω} denote the eigenmatrices for \mathfrak{Y} .

Proposition 10.7. The following (i)-(iv) hold.

- (i) For $0 \le i \le s$ the submatrix $P|_{\Lambda_i \times \Omega}$ has all rows identical.
- (ii) For $0 \le i, j \le s$ the (i, j)-entry of P_{Ω} is equal to the (α, j) -entry of P, where $\alpha \in \Lambda_i$.
- (iii) For $0 \le j \le s$ the submatrix $Q|_{\{s+1,\dots,d\}\times\Lambda_j}$ has row sum 0.