We show that ¢ = C. Suppose C1 & C. Since C is connected, there exists r € Cj and

=y

s € C\C, such that s — r. We examine the r-coordinate in Bfv = k;v; this gives

d d da
k=Y (BDrgvs = > _(Bi)isvs = ) 05505 (36)
—0 §=0 =0

J

For 0 < 7 < d we have p}

s =0ifj & C and |y;] < 1if § € C; therefore p;|v;| < pi;.
Consequentiy

by =

d
7" 1)
P Y5
=0

Combining (36), (37) we obtain v; == 1 for all § € C such that j — r. This fails for j = s,
so we have a contradiction. Therefore ¢ = C, so v, = 1 for r € C. In particular v, = v, for
r,s € C. _

(b) = (a) This holds because B} has constant row sum ;.

We have shown that (a), (b) are equivalent. Consequently dimW = m, and the result
follows.

(i) Similar to the proof of (i) above. O

d d
<D Pl < vk =k (37)
=0 §=0

Lecture 13

Proposition 9.18. The following are equivalent:
(i) there exists i € {1,2,...,d} such that Ay, is disconnected;
(i) there exists j € {1,2,...,d} such that Ag, is disconnected.
Proof. For 1 <1,7 < d we have

RG) _ 30

k; my

Therefore, P;(5) = k; if and only if @;(¢) = m;. The result follows from this and Proposition
9.17. m

Proposition 9.19. The following are equivalent:
(i) the association scheme X is primitive;
(i) the distribution diagram A4, is connected for 1 <14 < d;
(iii) the representation diagram Ag; is connected for 1 < j < d.
Proof. By Definition 9.4, Coroliary 9.13, and Proposition 9.18. O
Problem 9.20. For a finite group &, show that the following are equivalent:

(1) the conjugacy—class association scheme for (7 is primitive;

(i) G is simple.
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10 Subschemes and quotient schemes

Throughout this section, we assume that X = (X,{R;}{,) is a commutative association
scheme with Bose-Mesner algebra M, associate matrices {A;}{.,, and primitive idempotents

{E}ee
Throughout this section, we assume that X is imprimitive. By Proposition 9.14 there exists
a subset {0} C ©Q C {0,1,...,d} such that Ry is an equivalence relation. Recall that

Ro = Upealty.

Write s +1 = |Q2|. Permuting the relations { R;}L, if necessary, we may assume without loss
of generality that

0=1{0,1,...,s}.
Lemma 10.1. The following hold:
(i) f0<i,j<sandpl,>0then0<k<s (0<4,4,k<d)
(il) for 0 <¢ < s we have 0 <4 < s,

Proof. (i) The relation Rg is transitive.
(i) The relation Rg is symmetric. m

Lemma 10.2. Let Y C X denote an equivalence class of Rg. Then:
(1} Y= (Y, {Rilyxv}io) is o commutative association scheme;
(i) pf;(¥) =pf;(X)  (0<d5k<s);
(i) A5 (Y) = E:(X) (0 <14 <s);
(iv) Y| =200 ki where by = k;i(X) = ki(Y).
Proof. (i) We check that Y satisfies the four conditions in Definition 1.1,
e The trivial relation for Y is Rolyxy = {(v, ¥}y € Y'}.

e The relations {R;]yxy }ioo partition Y x Y, because for (z,y) € Y xY we have (z,y) €
Raq, so there exists 1 € = {0,1,..., s} such that (2,y) € R;. This 4 is unique by
construction.

o Tor 0 <i < swehave 0 <# < sand
i
(Rilyxy) = Relyxy.
e For 0<4,7,k <sand zycY with {z,y) € Ry,

pfj(DC) = |{z € Xi(z,2) € B, (z,y)} € Rj}|
= i{z cY|(z,2) € Bilyxy, (%,¥) € R,
mp?,j(H)-

YXY}
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(ii} This was obtained in the proof of (i) above.
(iii) Since k; = ;.
(iv) Clear. O

Definition 10.3. The association scheme Y in Lemma 10.2 is called the subscheme of X
induced on Y.

Consider the subscheme Y = (Y, {Rijy v }=o) from Lemma 10.2. Our next general goal is
to describe how the Bose-Mesner algebra of Y is related to M.

For notational convenience, define

oS ey
i=0 =0
Note that
AjoAq = Ay (0<i<s).
Moreover
Aqgo Ag = Aqg. (38)

Lemma 10.4. The matrices {A}e_, form a basis for a subalgebra Mg of M that is closed
under Hadamard multiplication, complez conjugation, and the transpose map. With respect
to Hadamard multiplication, Mq 18 an algebra with multiplicative identity Aq.

Proof. By Lemma 10.1 and the construction. £]

By construction, the algebra Mg in Lemma 10.4 is commutative.

Let X1, Xs,..., X, denote an ordering of the equivalence classes of Rg. We have |X;| = ko
for 1 <4 < r. The sets {X;}}_; partition of X, so

r = ko' | X].

Relative to the partition {X;}]_, , every matrix in Mg is block-diagonal, with each diagonal
block of dimension kg % ka. For example Aq is block diagonal, with each diagonal block a
copy of J with dimension kg X kq. We have J? = kqJ. Therefore

(Aq)? = koAq. (39)

Lemma 10.5. Let Y C X denote an equivalence class of Rq, and consider the association
scheme Y = (Y, {Rilyxy }i—g) from Lemma 10.2.

(i) The associate matrices of Y are {Ailyxy Hoo

(ii) The Bose-Mesner algebra of ¥ is Malyxy .

44




(iii) The map

Ma = Mal|yxy
Ay Alyyy

s an algebra isomorphism with respect to matriz multiplication and Hadamard multi-
plication.

iv) The above map sends ko' Aq to the trivial primitive idempotent fory.
0

Proof. (i) By construction.

(it} By (i) above.

(iii) The map is a bijection because it sends the basis {A;}{_, of Mg to the basis {A;|yxy i
of Mqlyxy. The map is an algebra homomorphism by the block-diagonal nature of the
matrices in Mq.

(iv) By the comments above (39). O

The algebra Mgq is closed under the conjugate-transpose map. By Lemma 3.3 the algebra
Mg has a basis of primitive idempotents. One of these primitive idempotents is k;{lAg, in
view of Lemma 10.5(iv).

Lemma 10.6. For the subalgebra Mg the primitive idempotents have the form {Ea, }i.q such
that:

(1) {As}e, is a partition of {0,1,...,d} into nonempty sets;
(ii) Ea, = ZjEAi E; (0 <i<s)
(iV) EAU = ]{61}‘19

Proof. {i), (ii) Each primitive idempotent E of Mg is a linear combination of {E;}4_o. In
this linear combination, each coefficient is zero or one because E? = FE. The result is a
routine consequence of this.

(iii) There exists ¢ {0 < ¢ < s) such that 0 € A;. After relabelling, we may assume that
1 =0

(iv) There exists i (0 < 4 < s) such that £y, = k;'Aq. We have ¢ — 0 by (iii) and
Aqd #0. 0

Recall the eigenmatrices P, Q) for X. Let P, Qo denote the eigenmatrices for Y.
Proposition 10.7. The following (1)—(iv) hold.

(i) For 0 <i < s the submatriz Pis,xq has all rows identical.

(ii) For 0 <14,5 < s the (4,)-entry of Py is equal to the (o, j)-entry of P, where o € A;.

(ili) For 0 < j < s the submatrit Q|(s11,..ayxa,; has row sum 0.

45




