Lecture 12

Proposition 9.14. The following are equivalent:

- (i) the association scheme X is imprimitive;
- (ii) there exists a subset $\{0\} \subseteq \Omega \subseteq \{0, 1, ..., d\}$ such that R_{Ω} is an equivalence relation.

Proof. (i) \Rightarrow (ii) There exists a relation R_i ($1 \le i \le d$) such that the graph (X, R_i) is not connected. Consider the corresponding set Ω from Lemma 9.10. By Lemma 9.8 the relation R_{Ω} is an equivalence relation. By construction $\{0\} \subsetneq \Omega \subsetneq \{0, 1, \ldots, d\}$.

(ii) \Rightarrow (i) There exists $i \in \Omega$ with $i \neq 0$. Each equivalence class of R_{Ω} is a disjoint union of connected components for (X, R_i) . The relation R_{Ω} has more than one equivalence class, so (X, R_i) is not connected. Therefore X is imprimitive.

Earlier we used the intersection numbers to define the distribution diagrams of \mathfrak{X} . Next we use the Krein parameters to define the representation diagrams of \mathfrak{X} .

Definition 9.15. For $1 \leq i \leq d$ we define a directed graph Δ_{E_i} with vertex set $\{0, 1, \ldots, d\}$; vertices j, k satisfy $j \to k$ whenever $q_{i,j}^k > 0$. Note that a vertex j of Δ_{E_i} has a loop $j \to j$ whenever $q_{i,j}^j > 0$. We call Δ_{E_i} the E_i -representation diagram for \mathfrak{X} .

Lemma 9.16. We refer to the representation diagram Δ_{E_i} from Definition 9.15. For $0 \le a, b \le d$ the following are equivalent:

- (i) there exists a path from a to b;
- (ii) there exists a path from b to a.

Proof. (i) \Rightarrow (ii) Fix $x \in X$, and consider the dual Bose-Mesner algebra $\mathcal{M}^* = \mathcal{M}^*(x)$. Since A_i^* is nonzero and diagonalizable, there exists $t \in \mathbb{N}$ such that $\operatorname{tr}((A_i^*)^{t+1}) \neq 0$. Recall that $\{A_i^*\}_{i=0}^d$ is a basis for \mathcal{M}^* . Also recall that $A_0^* = I$. For $1 \leq j \leq d$ we have

$$\operatorname{tr}(A_j^*) = \operatorname{tr} \sum_{\ell=0}^d Q_j(\ell) E_\ell^* = \sum_{\ell=0}^d Q_j(\ell) k_\ell = m_j \sum_{\ell=0}^d \overline{P_\ell(j)} = m_j \sum_{\ell=0}^d P_\ell(0) \overline{P_\ell(j)} k_\ell^{-1} = 0.$$

Write $(A_i^*)^t = \sum_{j=0}^d \alpha_j A_j^*$ and $(A_i^*)^{t+1} = \sum_{j=0}^d \beta_j A_j^*$. So $A_i^* \sum_{j=0}^d \alpha_j A_j^* = \sum_{j=0}^d \beta_j A_j^*$. We have $\beta_0 \neq 0$ since the trace of $(A_i^*)^{t+1}$ is nonzero. Observe that

$$\beta_0 = \sum_{j=0}^d \alpha_j q_{i,j}^0 = \sum_{j=0}^d \alpha_j \delta_{i,j} m_j = \alpha_i m_i.$$

By these comments $\alpha_i \neq 0$. Without loss, we may assume that $a \to b$ in Δ_{E_i} . So $q_{i,a}^b \neq 0$. Observe that $q_{b,\hat{i}}^a \neq 0$, so $E_b A_{\hat{i}}^* E_a \neq 0$. Therefore

$$E_b(A_i^*)^t E_a = \sum_{j=0}^d \alpha_j E_b A_j^* E_a = \alpha_i E_b A_i^* E_a + \text{orthogonal terms} \neq 0.$$

Observe that

$$E_b(A_i^*)^t E_a = E_b A_i^* \left(\sum_{b_1=0}^d E_{b_1} \right) A_i^* \left(\sum_{b_2=0}^d E_{b_2} \right) A_i^* \cdots A_i^* \left(\sum_{b_{t-1}=0}^d E_{b_{t-1}} \right) A_i^* E_a$$

$$= \sum_{b_1} E_b A_i^* E_{b_1} A_i^* E_{b_2} A_i^* \cdots A_i^* E_{b_{t-1}} A_i^* E_a,$$

where the sum is over all paths $b, b_1, b_2, \ldots, b_{t-1}, a$ in Δ_{E_i} . Such a path exists because $E_b(A_i^*)^t E_a \neq 0$. We have shown that there exists a path in Δ_{E_i} from b to a. (ii) \Rightarrow (i) By symmetry.

To motivate the next result, we make some observations. Pick an integer i $(1 \le i \le d)$. Recall that

$$P_i(0) = k_i,$$
 $Q_i(0) = m_i,$ $|P_i(j)| \le k_i,$ $|Q_i(j)| \le m_i$ $(0 \le j \le d).$

The intersection matrix B_i has all entries real and nonnegative. It is diagonalizable, and its characteristic polynomial has roots $\{P_i(j)\}_{j=0}^d$. The dual intersection matrix B_i^* has all entries real and nonnegative. It is diagonalizable, and its characteristic polynomial has roots $\{Q_i(j)\}_{j=0}^d$. Recall the distribution diagram Δ_{A_i} and the representation diagram Δ_{E_i} . The following result is a special case of the Frobenius theory for nonnegative matrices.

Proposition 9.17. With the above notation,

(i) the number of connected components of Δ_{A_i} is equal to

$$|\{j|0 \le j \le d, P_i(j) = k_i\}|;$$
 (35)

(ii) the number of connected components of Δ_{E_i} is equal to

$$|\{j|0 \le j \le d, \ Q_i(j) = m_i\}|.$$

Proof. (i) Let W denote the k_i -eigenspace for B_i^t . The dimension of W is equal to (35). Let m denote the number of connected components for Δ_{A_i} . We will show that dim W=m. For $0 \leq r, s \leq d$ define $r \sim s$ whenever r, s are in the same connected component of Δ_{A_i} . Let $v = (v_0, v_1, \ldots, v_d)^t \in \mathbb{C}^{d+1}$. We show that the following are equivalent:

- (a) $v \in W$;
- (b) $v_r = v_s \text{ if } r \sim s \ (0 \le r, s \le d).$
- (a) \Rightarrow (b) Let $C \subseteq \{0, 1, ..., d\}$ denote a connected component of Δ_{A_i} . We show that $v_r = v_s$ for $r, s \in C$. First assume that $v_r = 0$ for $r \in C$. Then certainly $v_r = v_s$ for $r, s \in C$. Next assume that $\{v_r\}_{r \in C}$ are not all 0. Multiplying v by a nonzero scalar if necessary, we may assume that $|v_r| \leq 1$ for $r \in C$, and also $v_r = 1$ for some $r \in C$. Define $C_1 = \{r \in C | v_r = 1\}$.

We show that $C_1 = C$. Suppose $C_1 \subsetneq C$. Since C is connected, there exists $r \in C_1$ and $s \in C \setminus C_1$ such that $s \to r$. We examine the r-coordinate in $B_i^t v = k_i v$; this gives

$$k_i = \sum_{j=0}^{d} (B_i^t)_{r,j} v_j = \sum_{j=0}^{d} (B_i)_{j,r} v_j = \sum_{j=0}^{d} p_{i,j}^r v_j.$$
(36)

For $0 \leq j \leq d$ we have $p_{i,j}^r = 0$ if $j \notin C$ and $|v_j| \leq 1$ if $j \in C$; therefore $p_{i,j}^r |v_j| \leq p_{i,j}^r$. Consequently

$$k_i = \left| \sum_{j=0}^d p_{i,j}^r v_j \right| \le \sum_{j=0}^d p_{i,j}^r |v_j| \le \sum_{j=0}^d p_{i,j}^r = k_i.$$
 (37)

Combining (36), (37) we obtain $v_j = 1$ for all $j \in C$ such that $j \to r$. This fails for j = s, so we have a contradiction. Therefore $C_1 = C$, so $v_r = 1$ for $r \in C$. In particular $v_r = v_s$ for $r, s \in C$.

(b) \Rightarrow (a) This holds because B_i^t has constant row sum k_i .

We have shown that (a), (b) are equivalent. Consequently $\dim W = m$, and the result follows.

Proposition 9.18. The following are equivalent:

- (i) there exists $i \in \{1, 2, ..., d\}$ such that Δ_{A_i} is disconnected;
- (ii) there exists $j \in \{1, 2, ..., d\}$ such that Δ_{E_j} is disconnected.

Proof. For $1 \leq i, j \leq d$ we have

$$\frac{P_i(j)}{k_i} = \frac{\overline{Q_j(i)}}{m_i}.$$

Therefore, $P_i(j) = k_i$ if and only if $Q_j(i) = m_j$. The result follows from this and Proposition 9.17.

Proposition 9.19. The following are equivalent:

- (i) the association scheme X is primitive;
- (ii) the distribution diagram Δ_{A_i} is connected for $1 \leq i \leq d$;
- (iii) the representation diagram Δ_{E_j} is connected for $1 \leq j \leq d$.

Proof. By Definition 9.4, Corollary 9.13, and Proposition 9.18.

Problem 9.20. For a finite group G, show that the following are equivalent:

- (i) the conjugacy–class association scheme for G is primitive;
- (ii) G is simple.