Lecture 11

9 Primitive association schemes

Throughout this section, we assume that X = (X, {R;}{;) is a commutative association
scheme with Bose-Mesner algebra M, associate matrices {A4;}% 4, and primitive idempotents

d
{Ei}i:O‘
We will define a condition on X called primitivity. To motivate this condition, assume for

the moment that X is the conjugacy-class association scheme for a finite group G, Then X
is primitive if and only if & is simple.

Definition 9.1. For 1 <4 < d we view the pair {X, R;) as a directed graph with vertex set
X; vertices m,y satisly @ — ¢ whenever (z,y) € R;.

Definition 9.2. For an integer £ > 0, a path of length € in a directed graph is a sequence
of vertices {a;}_, such that z; 4 — =; for 1 < 4 < £. This path goes from g to zp. For
example, there is a path of length zero from any vertex to itself. A directed graph is said to
be connected whenever for all vertices z, y there is a path from z to ¥.

Lemma 9.3. Consider the graph (X, R;) from Definition 9.1. For z,y € X and £ ¢ N the
following are equal:

(i) the number of paths of length ¢ from z to y;
(ii) the (z,y)-entry of Af.
Proof. Routine. O

Definition 9.4. The association scheme X is called primitive whenever the directed graph
(X, R;) is connected for 1 <14 < d. We say that X is émprimitive whenever X is not primitive.

As we investigate primitivity, the following notation will be useful. For a subset 2 C
{0,1,...,d} define the relation

Rq = Upea . (34)
We consider the case in which Rg is an equivalence relation. This happens if 2 = {0} or

Q={0,1,...,d}. We are going to show that X is imprimitive iff there exists {0} € 0 C
{0,1,...,d} such that Rq is an equivalence relation.

Lemma 9.5. We refer to the graph (X, R;) from Definition 9.1, For z € X the set
ID(z) = {y € X|there exists a path from = to ¥}

is descriibed as follows:
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(i) there exists a subset 2 € {0,1,...,d} such that
I'O(2) = Upeal'n().
(1) § is the minimal subset of {0,1,...,d} such that (a) 0 € Q; (b) for 0 < 5,k < d, ¥
7€ Q and pf; > 0 then k € Q.

(iii) Q is independent of x.

(iv) [T ()| 4s independent of x.
Proof. (1) Observe that

T (z) = {y € X|3€ € N such that (A, > 0}.

For £ € N the matrix A¢ is a linear combination of the associate matrices. The result follows.
(i) By the definition of the intersection numbers.

(i) By (ii) above.

(iv) By (1) and (iil) above. O

Corollary 9.6. We refer to the graph (X, R;} from Definition 9.1. Forz,y € X the following
are equivalent:

(i) there exists a path from z to y;
(ii) there exists a path fromy to x.

Proof. (i) = (ii) We have y € T®(2). By construction I'®(y) C T®(z). In this inclusion,
the two sets have the same size, so I'®(z) = I'"¥(y). By this and since z € I'¥(z) we see
that 2 € T (y), Consequently there exists a path from y to .

(i) => (i) By symmetry. 4

Corollary 9.7. We refer to the graph (X, R;) from Definition 9.1, and the corresponding
set ) from Lemma 9.5. Then k € Q implies k' € Q for 0 < k < d.

Proof. Assume that k € €2, Pick 2,y € X with (z,y) € Rp. By assumption, there exists
a path from z to 4. So there exists a path from y to z. We have (y,z) € Rp. By these
comments &' € Q. O

Lemma 9.8. We refer to the graph (X, R;) from Definition 9.1, and the corresponding set
Q from Lemma 9.5.

(i) The relation Ry from (34) is an equivalence relation,
(i) for x € X the set T (2) is the equivalence class of Rq that contains .
Proof. By Lemma 9.5 and Corollary 9.7. ]

We have been discussing the directed graph (X, R;). We now introduce a directed graph
with vertex set {0,1,...,d}.
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Definition 9.9. For 1 <4 < d we define a directed graph Ay, with vertex set {0,1,...,d};
vertices j, k satisfy 7 — k whenever pf,j > 0. Note that a vertex j of A4, hasaloop j — 7
whenever p} ; > G. We call A, the A;-distribution diagram for X.

The graph Ay, is related to the graph (X, R;) as follows.
Lemma 9.10. With the above notation, the following are equivalent for 0 < a,b < d:
(i) there ezists a path in A,, from a to b;
(ii) for all (x,y) € R, there ewists 2 € T'y(x) such that z € T (y);
(iii) for all (z,2) € Ry there emists y € To(w) such that z € T@(y);
(iv) there exists (z,y) € R, and there exists z € Ty(x) such that z € TO(y).

Proof. (i) = (ii) Call the path {a;}{_,. We have ap = @ and a; = b. There exists a path
{y;}io In (X, R;) such that yo = y and y; € Fo;{z) for 0 < § < £, Define z = y. By
construction z € I'y(z) and z € T(y), |

(ii) = (iv) Clear.

(i) = (iii) Similar to the proof of (i) = (ii).

(iil) = (iv) Clear.

(iv) = (i) There exists a path in (X, B;) from y to 2. Call the path {y; }5-:9. We have 99 = v
and yg = 2. For 0 <j < /f define a; € {0,1,...,d} such that y; € I';;(z). Note that ap = a
and a; = b. By construction the sequence {%‘}gzo is a path in A4, from a to b. |

Corollary 9.11. We refer to the distribution diagram A,, from Definition 9.9. For 0 <
a, b < d the following are equivalent:

(1) there exists a path from a to b;
(i) there emists a path from b to a.
Proof. By Corollary 9.6 and Lemma 9.10(i),{iv). O

Lemma 9.12. We refer to the distribution diagram A,, from Definition 9.9. The following
sets are equal:

(i) the connected component of A4, that contains 0;

(ii) the set Q from Lemma 9.5.
Proof. By Lemma 9.10 with a = 0. 7
Corollary 9.13. For 1 <1 < d the following are equivalent:

(1) the graph Aa, is connected,

(if) the graph (X, R;) is connected.

Preoof. By Lemma 9.12 and the construction, [
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