Lecture 11

9 Primitive association schemes

Throughout this section, we assume that $\mathcal{X} = (X, \{R_i\}_{i=0}^d)$ is a commutative association scheme with Bose-Mesner algebra \mathcal{M} , associate matrices $\{A_i\}_{i=0}^d$, and primitive idempotents $\{E_i\}_{i=0}^d$.

We will define a condition on \mathcal{X} called primitivity. To motivate this condition, assume for the moment that \mathcal{X} is the conjugacy-class association scheme for a finite group G. Then \mathcal{X} is primitive if and only if G is simple.

Definition 9.1. For $1 \le i \le d$ we view the pair (X, R_i) as a directed graph with vertex set X; vertices x, y satisfy $x \to y$ whenever $(x, y) \in R_i$.

Definition 9.2. For an integer $\ell \geq 0$, a path of length ℓ in a directed graph is a sequence of vertices $\{x_i\}_{i=0}^{\ell}$ such that $x_{i-1} \to x_i$ for $1 \leq i \leq \ell$. This path goes from x_0 to x_{ℓ} . For example, there is a path of length zero from any vertex to itself. A directed graph is said to be connected whenever for all vertices x, y there is a path from x to y.

Lemma 9.3. Consider the graph (X, R_i) from Definition 9.1. For $x, y \in X$ and $\ell \in \mathbb{N}$ the following are equal:

- (i) the number of paths of length ℓ from x to y;
- (ii) the (x, y)-entry of A_i^{ℓ} .

Proof. Routine.

Definition 9.4. The association scheme \mathcal{X} is called *primitive* whenever the directed graph (X, R_i) is connected for $1 \leq i \leq d$. We say that \mathcal{X} is *imprimitive* whenever \mathcal{X} is not primitive.

As we investigate primitivity, the following notation will be useful. For a subset $\Omega \subseteq \{0,1,\ldots,d\}$ define the relation

$$R_{\Omega} = \bigcup_{k \in \Omega} R_k. \tag{34}$$

We consider the case in which R_{Ω} is an equivalence relation. This happens if $\Omega = \{0\}$ or $\Omega = \{0, 1, ..., d\}$. We are going to show that X is imprimitive iff there exists $\{0\} \subseteq \Omega \subseteq \{0, 1, ..., d\}$ such that R_{Ω} is an equivalence relation.

Lemma 9.5. We refer to the graph (X, R_i) from Definition 9.1. For $x \in X$ the set

$$\Gamma^{(i)}(x) = \{ y \in X | \text{there exists a path from } x \text{ to } y \}$$

is described as follows:

(i) there exists a subset $\Omega \subseteq \{0, 1, ..., d\}$ such that

$$\Gamma^{(i)}(x) = \bigcup_{k \in \Omega} \Gamma_k(x).$$

- (ii) Ω is the minimal subset of $\{0,1,\ldots,d\}$ such that (a) $0 \in \Omega$; (b) for $0 \leq j,k \leq d$, if $j \in \Omega$ and $p_{i,j}^k > 0$ then $k \in \Omega$.
- (iii) Ω is independent of x.
- (iv) $|\Gamma^{(i)}(x)|$ is independent of x.

Proof. (i) Observe that

$$\Gamma^{(i)}(x) = \{ y \in X | \exists \ell \in \mathbb{N} \text{ such that } (A_i^{\ell})_{x,y} > 0 \}.$$

For $\ell \in \mathbb{N}$ the matrix A_i^{ℓ} is a linear combination of the associate matrices. The result follows.

- (ii) By the definition of the intersection numbers.
- (iii) By (ii) above.
- (iv) By (i) and (iii) above.

Corollary 9.6. We refer to the graph (X, R_i) from Definition 9.1. For $x, y \in X$ the following are equivalent:

- (i) there exists a path from x to y;
- (ii) there exists a path from y to x.

Proof. (i) \Rightarrow (ii) We have $y \in \Gamma^{(i)}(x)$. By construction $\Gamma^{(i)}(y) \subseteq \Gamma^{(i)}(x)$. In this inclusion, the two sets have the same size, so $\Gamma^{(i)}(x) = \Gamma^{(i)}(y)$. By this and since $x \in \Gamma^{(i)}(x)$ we see that $x \in \Gamma^{(i)}(y)$. Consequently there exists a path from y to x.

$$(ii) \Rightarrow (i)$$
 By symmetry.

Corollary 9.7. We refer to the graph (X, R_i) from Definition 9.1, and the corresponding set Ω from Lemma 9.5. Then $k \in \Omega$ implies $k' \in \Omega$ for $0 \le k \le d$.

Proof. Assume that $k \in \Omega$. Pick $x, y \in X$ with $(x, y) \in R_k$. By assumption, there exists a path from x to y. So there exists a path from y to x. We have $(y, x) \in R_{k'}$. By these comments $k' \in \Omega$.

Lemma 9.8. We refer to the graph (X, R_i) from Definition 9.1, and the corresponding set Ω from Lemma 9.5.

- (i) The relation R_{Ω} from (34) is an equivalence relation;
- (ii) for $x \in X$ the set $\Gamma^{(i)}(x)$ is the equivalence class of R_{Ω} that contains x.

Proof. By Lemma 9.5 and Corollary 9.7.

We have been discussing the directed graph (X, R_i) . We now introduce a directed graph with vertex set $\{0, 1, \ldots, d\}$.

Definition 9.9. For $1 \leq i \leq d$ we define a directed graph Δ_{A_i} with vertex set $\{0, 1, \ldots, d\}$; vertices j, k satisfy $j \to k$ whenever $p_{i,j}^k > 0$. Note that a vertex j of Δ_{A_i} has a loop $j \to j$ whenever $p_{i,j}^j > 0$. We call Δ_{A_i} the A_i -distribution diagram for \mathfrak{X} .

The graph Δ_{A_i} is related to the graph (X, R_i) as follows.

Lemma 9.10. With the above notation, the following are equivalent for $0 \le a, b \le d$:

- (i) there exists a path in Δ_A , from a to b;
- (ii) for all $(x, y) \in R_a$ there exists $z \in \Gamma_b(x)$ such that $z \in \Gamma^{(i)}(y)$;
- (iii) for all $(x, z) \in R_b$ there exists $y \in \Gamma_a(x)$ such that $z \in \Gamma^{(i)}(y)$;
- (iv) there exists $(x,y) \in R_a$ and there exists $z \in \Gamma_b(x)$ such that $z \in \Gamma^{(i)}(y)$.

Proof. (i) \Rightarrow (ii) Call the path $\{a_j\}_{j=0}^{\ell}$. We have $a_0 = a$ and $a_{\ell} = b$. There exists a path $\{y_j\}_{j=0}^{\ell}$ in (X, R_i) such that $y_0 = y$ and $y_j \in \Gamma_{a_j}(x)$ for $0 \le j \le \ell$. Define $z = y_{\ell}$. By construction $z \in \Gamma_b(x)$ and $z \in \Gamma^{(i)}(y)$.

- $(ii) \Rightarrow (iv)$ Clear.
- (i) \Rightarrow (iii) Similar to the proof of (i) \Rightarrow (ii).
- $(iii) \Rightarrow (iv)$ Clear.
- (iv) \Rightarrow (i) There exists a path in (X, R_i) from y to z. Call the path $\{y_j\}_{j=0}^{\ell}$. We have $y_0 = y$ and $y_{\ell} = z$. For $0 \le j \le \ell$ define $a_j \in \{0, 1, \ldots, d\}$ such that $y_j \in \Gamma_{a_j}(x)$. Note that $a_0 = a$ and $a_{\ell} = b$. By construction the sequence $\{a_j\}_{j=0}^{\ell}$ is a path in Δ_{A_i} from a to b.

Corollary 9.11. We refer to the distribution diagram Δ_{A_i} from Definition 9.9. For $0 \le a, b \le d$ the following are equivalent:

- (i) there exists a path from a to b;
- (ii) there exists a path from b to a.

Proof. By Corollary 9.6 and Lemma 9.10(i),(iv).

Lemma 9.12. We refer to the distribution diagram Δ_{A_i} from Definition 9.9. The following sets are equal:

- (i) the connected component of Δ_{A_i} that contains 0;
- (ii) the set Ω from Lemma 9.5.

Proof. By Lemma 9.10 with a = 0.

Corollary 9.13. For $1 \le i \le d$ the following are equivalent:

- (i) the graph Δ_{A_i} is connected;
- (ii) the graph (X, R_i) is connected.

Proof. By Lemma 9.12 and the construction.