Spring 2023 Math 846

Algebraic Combinatorics: Association Schemes Paul Terwilliger

Lecture 1

Our textbook is:

Bannai, Bannai, Ito, Tanaka. Algebraic Combinatorics. De Gruyter Series in Discrete Mathematics and Applications 5 (2021).

We will begin with Chapter 2. Chapter 1 is an elementary introduction, and mostly discusses special cases of the material in later chapters. Hopefully, we can cover Chapters 2–5.

In addition to the text, the following publications are handy references:

E. Bannai and T. Ito. Algebraic Combinatorics I: Association Schemes. Benjamin/Cummings, London, 1984.

A. E. Brouwer, A. M. Cohen, and A. Neumaier. *Distance-Regular Graphs*. Springer-Verlag, Berlin, 1989.

W. Martin, H. Tanaka. Commutative association schemes. European J. Combin. 30 (2009) 1497–1525.

P. Delsarte. An algebraic approach to the association schemes of coding theory. *Philips Research Reports Suppl.* 10 (1973).

1 The definition of an association scheme

Let X denote a nonempty finite set. We will speak of the Cartesian product $X \times X = \{(x,y)|x,y \in X\}$.

Recall the natural numbers $\mathbb{N} = \{0, 1, 2, \ldots\}$ and integers $\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}$.

Definition 1.1. For $d \in \mathbb{N}$, an association scheme of class d is a sequence $\mathfrak{X} = (X, \{R_i\}_{i=0}^d)$, where X is a nonempty finite set, and $\{R_i\}_{i=0}^d$ are nonempty subsets of $X \times X$ such that:

- (i) $R_0 = \{(x, x) | x \in X\};$
- (ii) $X \times X = R_0 \cup R_1 \cup \cdots \cup R_d$ (disjoint union);
- (iii) for $0 \le i \le d$ there exists $i' \in \{0, 1, ..., d\}$ such that $R_i^t = R_{i'}$, where

$$R_i^t = \{(y, x) | (x, y) \in R_i\};$$

(iv) for $0 \le i, j, k \le d$ there exists a natural number $p_{i,j}^k$ such that for all $(x,y) \in R_k$,

$$p_{i,j}^k = |\{z \in X | (x,z) \in R_i \text{ and } (z,y) \in R_j\}|.$$

The elements of X are called the *vertices* of X. We call R_i the i^{th} relation of X. The relation R_0 is called *trivial*. We call $p_{i,j}^k$ an *intersection number* of X.

We mention two special cases of association schemes.

Definition 1.2. Referring to the association scheme \mathfrak{X} in Definition 1.1,

(i) X is *commutative* whenever

$$p_{i,j}^k = p_{j,i}^k$$
 $(0 \le i, j, k \le d).$

(ii) X is *symmetric* whenever

$$i' = i \qquad (0 \le i \le d).$$

Lemma 1.3. A symmetric association scheme is commutative.

Proof. Referring to Definition 1.1, assume that X is symmetric. For $0 \le i, j, k \le d$ we show that $p_{i,j}^k = p_{j,i}^k$. Pick $x, y \in X$ with $(x, y) \in R_k$. Then $(y, x) \in R_k^t = R_{k'} = R_k$. Since $(x, y) \in R_k$,

$$p_{j,i}^k = |\{z \in X | (x, z) \in R_j \text{ and } (z, y) \in R_i\}|.$$

Since $(y, x) \in R_k$,

$$p_{i,j}^k = |\{z \in X | (y, z) \in R_i \text{ and } (z, x) \in R_j\}|.$$

For $z \in X$,

$$(x,z) \in R_i \text{ iff } (z,x) \in R_i$$
 $(z,y) \in R_i \text{ iff } (y,z) \in R_i.$

By these comments $p_{i,j}^k = p_{j,i}^k$.

We give some examples of association schemes.

Consider a finite group G acting on a set X. This action is called *transitive* whenever for all $x, y \in X$ there exists $g \in G$ such that $x^g = y$.

Example 1.4. Let G denote a finite group acting transitively on a set X. Consider the action of G on $X \times X$ such that

$$(x,y)^g = (x^g,y^g) g \in G, \quad x,y \in X.$$

Let $\{R_i\}_{i=0}^d$ denote the orbits of G on $X \times X$, ordered such that $R_0 = \{(x, x) | x \in X\}$. Then $(X, \{R_i\}_{i=0}^d)$ is an association scheme (not commutative in general).

Proof. We check the axioms in Definition 1.1.

- (i), (ii) Clear.
- (iii) For $0 \le i \le d$, R_i^t is an orbit of G on $X \times X$.
- (iv) Let $0 \le i, j, k \le d$ and $(x, y) \in R_k$. We show that for $g \in G$, the following sets have the same size:

$$\{z \in X | (x, z) \in R_i \text{ and } (z, y) \in R_i\},\tag{1}$$

$$\{w \in X | (x^g, w) \in R_i \text{ and } (w, y^g) \in R_j\}.$$
(2)

This holds because the map $z \mapsto z^g$ gives a bijection from (1) to (2).

Consider a finite group G acting on a set X. This action is called *generously transitive* whenever for all $x, y \in X$ there exists $g \in G$ such that $x^g = y$ and $y^g = x$.

Example 1.5. Referring to Example 1.4, the following are equivalent:

- (i) the action of G on X is generously transitive;
- (ii) for all $x, y \in X$ the ordered pairs (x, y) and (y, x) are in the same orbit of G on $X \times X$;
- (iii) the association scheme $(X, \{R_i\}_{i=0}^d)$ is symmetric.

Proof. Routine.
$$\Box$$

Example 1.6. (Hamming association scheme H(d,q)). Fix integers $d,q \geq 1$. Fix a set F with |F| = q. Define a set

$$X = F \times F \times \cdots \times F$$
 (*d* copies).

For $x = (x_1, x_2, \dots, x_d) \in X$ and $y = (y_1, y_2, \dots, y_d) \in X$, define their Hamming distance

$$\partial(x,y) = |\{i|1 \le i \le d, \ x_i \ne y_i\}|.$$

For $0 \le i \le d$ define

$$R_i = \{(x, y) | x, y \in X, \ \partial(x, y) = i\}.$$

Then $(X, \{R_i\}_{i=0}^d)$ is a symmetric association scheme, denoted H(d, q).

Proof. This is a special case of Example 1.5, with G defined as follows. Let S_q denote the symmetric group on F, which consists of the permutations of F. Consider the direct sum $S = S_q \oplus S_q \oplus \cdots \oplus S_q$ (d copies). Then S acts on X by permuting each copy of F. Next consider the symmetric group S_d . This group acts on X by permuting the coordinates $1, 2, \ldots, d$. The group G consists of the permutations of X obtained by applying an element of S followed by an element of S_d . The group G is generously transitive on G. It is routine to check that $\{R_i\}_{i=0}^d$ are the orbits of G on G on

Lecture 2

Example 1.7. (Johnson association scheme J(v,d)). Fix integers $v,d \geq 1$ with $d \leq v/2$. Fix a set V with |V| = v. Let the set X consist of the subsets of V that have cardinality d. For $0 \leq i \leq d$ define

$$R_i = \{(x, y) | x, y \in X, |x \cap y| = d - i\}.$$

Then $(X, \{R_i\}_{i=0}^d)$ is a symmetric association scheme, denoted J(v, d).

Proof. This is a special case of Example 1.5, where $G = S_v$ is the symmetric group on V. The action of G on V induces an action of G on X. The action of G on X is generously transitive. It is routine to check that $\{R_i\}_{i=0}^d$ are the orbits of G on $X \times X$.

Example 1.8. (Conjugacy classes of a finite group G). Let G denote a finite group. Elements $x, y \in G$ are called *conjugate* whenever there exists $g \in G$ such that $gxg^{-1} = y$. Conjugacy is an equivalence relation, and the equivalence classes are called conjugacy classes. let $\{C_i\}_{i=0}^d$ denote the conjugacy classes, ordered such that $C_0 = \{1\}$ (the identity element of G). Define X = G. For $0 \le i \le d$ define

$$R_i = \{(x, y) | x, y \in G, y^{-1}x \in C_i\}.$$

Then $(X, \{R_i\}_{i=0}^d)$ is a commutative association scheme.

Proof. We apply Example 1.4. The group G acts on X = G by left and right multiplication. The left action is $G \times X \to X$, $(g, x) \mapsto gx$. The right action is $G \times X \to X$, $(h, x) \mapsto xh^{-1}$. The two actions commute. Combining the two actions, we get an action of $G \oplus G$ on X such that (g, h) sends $x \mapsto gxh^{-1}$ for all $(g, h) \in G \oplus G$ and $x \in X$. The action of $G \oplus G$ on X is transitive. Next we check that the orbits of $G \oplus G$ on $X \times X$ are $\{R_i\}_{i=0}^d$. Pick any $(x, y) \in X \times X$ and $(u, v) \in X \times X$ that are in the same orbit of $G \oplus G$. We show that $y^{-1}x$ and $y^{-1}u$ are conjugate. By assumption, there exists $(g, h) \in G \oplus G$ such that $gxh^{-1} = u$ and $gyh^{-1} = v$. We have

$$v^{-1}u = (gyh^{-1})^{-1}(gxh^{-1}) = hy^{-1}g^{-1}gxh^{-1} = hy^{-1}xh^{-1}$$

so $y^{-1}x$ and $v^{-1}u$ are conjugate. Conversely, pick any $(x,y) \in X \times X$ and $(u,v) \in X \times X$ such that $y^{-1}x$ and $v^{-1}u$ are conjugate. We show that (x,y) and (u,v) are in the same orbit of $G \oplus G$ on $X \times X$. By assumption there exists $h \in G$ such that $v^{-1}u = hy^{-1}xh^{-1}$. Rearranging this equation, we obtain $uhx^{-1} = vhy^{-1}$; denote this common value by g. We have $gxh^{-1} = u$ and $gyh^{-1} = v$. Therefore $(g,h) \in G \oplus G$ sends (x,y) to (u,v). Consequently (x,y) and (u,v) are in the same orbit of $G \oplus G$ on $X \times X$. We have shown that $(X, \{R_i\}_{i=0}^d)$ is an association scheme. Next, we check that this association scheme is commutative. For $0 \le i, j, k \le d$ we show that $p_{i,j}^k = p_{j,i}^k$. Pick $(x,y) \in R_k$. Note that xy^{-1} is conjugate to $y^{-1}x$, so $(y^{-1}, x^{-1}) \in R_k$. Consider the following sets:

$$\{z \in X | (x, z) \in R_i \text{ and } (z, y) \in R_j\},\tag{3}$$

$$\{w \in X | (y^{-1}, w) \in R_i \text{ and } (w, x^{-1}) \in R_i\}.$$
 (4)

The sets (3) and (4) have cardinality $p_{i,j}^k$ and $p_{j,i}^k$ respectively. These cardinalities are the same, because the map $z \mapsto z^{-1}$ gives a bijection from (3) to (4). We have shown that $(X, \{R_i\}_{i=0}^d)$ is commutative.

Problem 1.9. Referring to the association scheme in Example 1.8, assume that G is the symmetric group S_n . For small n = 2, 3, 4, ... describe the conjugacy classes and find the intersection numbers.

Problem 1.10. Find the intersection numbers of the Hamming association scheme H(2,4). Show that H(2,4) contains four vertices that are mutually in relation one (4-clique). Construct an association scheme that has the same intersection numbers as H(2,4) and has no 4-clique. This association scheme is called the Shrikhande scheme.

Problem 1.11. (Cyclotomic association schemes, I). Let GF(q) denote a finite field with q elements. Let $GF(q)^*$ denote the multiplicative group. This group consists of the nonzero elements of GF(q), and the group operation is multiplication. It is known that $GF(q)^*$ is cyclic; let ω denote a generator of $GF(q)^*$. Define X = GF(q). Define $R_0 = \{(x, x) | x \in X\}$. For $1 \le i \le q-1$ define $R_i = \{(x, y) | x, y \in X, x-y=\omega^{i-1}\}$. Show that $(X, \{R_i\}_{i=0}^{q-1})$ is a commutative association scheme.

Problem 1.12. (Cyclotomic association schemes, II). We refer to Problem 1.11. Let d denote a divisor of q-1 and define r=(q-1)/d. Let $H_r=\langle \omega^d \rangle$ denote the subgroup of $\mathrm{GF}(q)^*$ generated by ω^d . Note that $|H_r|=r$. For $1 \leq i \leq d$ define the coset $C_i=\omega^{i-1}H_r$. For notational convenience, define the set $C_0=\{0\}$. Define $X=\mathrm{GF}(q)$. Define $R_0=\{(x,x)|x\in X\}$. For $1\leq i\leq d$ define $R_i=\{(x,y)|x,y\in X,\ x-y\in C_i\}$. Show that $(X,\{R_i\}_{i=0}^d)$ is a commutative association scheme.

2 The Bose-Mesner algebra

In this section we consider association schemes using linear algebra. We start with some notation.

Let \mathbb{C} denote the field of complex numbers. Let X denote a nonempty finite set. Let $M_X(\mathbb{C})$ denote the algebra over \mathbb{C} consisting of the matrices that have rows and columns indexed by X and all entries in \mathbb{C} . Let $I \in M_X(\mathbb{C})$ denote the identity matrix. The matrix $J \in M_X(\mathbb{C})$ has all entries 1. Let $A \in M_X(\mathbb{C})$. For $x, y \in X$ the (x, y)-entry of A is denoted $A_{x,y}$ or A(x, y). The transpose of A is denoted A^t or tA . For $A, B \in M_X(\mathbb{C})$ define a matrix $A \circ B \in M_X(\mathbb{C})$ with (x, y)-entry $A_{x,y}B_{x,y}$ for $x, y \in X$. We call $A \circ B$ the entrywise product or Hadamard product of A and B.

Let $\mathfrak{X} = (X, \{R_i\}_{i=0}^d)$ denote an association scheme. For $0 \leq i \leq d$ define $A_i \in M_X(\mathbb{C})$ that has entries

$$A_i(x,y) = \begin{cases} 1 & \text{if } (x,y) \in R_i; \\ 0 & \text{if } (x,y) \notin R_i \end{cases}$$
 $x,y \in X.$

We call A_i the i^{th} associate matrix for \mathfrak{X} , or the adjacency matrix of \mathfrak{X} for R_i . In terms of these matrices, the conditions (i)–(iv) in Definition 1.1 become:

- (i) $A_0 = I$;
- (ii) $J = \sum_{i=0}^{d} A_i$;
- (iii) for $0 \le i \le d$ there exists $i' \in \{0, 1, ..., d\}$ such that $A_i^t = A_{i'}$;
- (iv) for $0 \le i, j \le d$ there exist natural numbers $p_{i,j}^k$ $(0 \le k \le d)$ such that

$$A_i A_j = \sum_{k=0}^d p_{i,j}^k A_k.$$

The scheme \mathfrak{X} is commutative if and only if

$$A_i A_j = A_j A_i \qquad (0 \le i \le d).$$

The scheme \mathfrak{X} is symmetric if and only if

$$A_i^t = A_i \qquad (0 \le i \le d).$$

By the above conditions (i)–(iv), the matrices $\{A_i\}_{i=0}^d$ form a basis for a subalgebra \mathcal{M} of $M_X(\mathbb{C})$ that contains J and is closed under transpose. Note that \mathcal{M} is closed under Hadamard multiplication, because

$$A_i \circ A_j = \delta_{i,j} A_i \qquad (0 \le i, j \le d).$$

We call \mathcal{M} the adjacency algebra of \mathcal{X} . If \mathcal{X} is commutative, then we call \mathcal{M} the Bose-Mesner algebra of \mathcal{X} .

Our next goal is to define adjacency algebras in a more abstract way.

Lemma 2.1. Let M denote a nonzero subspace of the vector space $M_X(\mathbb{C})$. Assume that M is closed under Hadamard multiplication. Then M has a basis $\{A_i\}_{i=0}^d$ such that $A_i \circ A_j = \delta_{i,j}A_i$ for $0 \le i, j \le d$. This basis is unique up to permutation of A_0, A_1, \ldots, A_d .

Proof. For $A \in \mathcal{M}$ define the support set

$$Sup(A) = \{(x, y) | x, y \in X, A_{x,y} \neq 0\}.$$

For nonzero $\alpha \in \mathbb{C}$ we have

$$Sup(\alpha A) = Sup(A).$$

For $A, B \in \mathcal{M}$ we have

$$Sup(A \circ B) = Sup(A) \cap Sup(B).$$

For $A \in \mathcal{M}$, we say that A is minimal whenever (i) $A \neq 0$; and (ii) there does not exist a nonzero $B \in \mathcal{M}$ such that $Sup(B) \subsetneq Sup(A)$. Assume that $A \in \mathcal{M}$ is minimal. Then for all $B \in \mathcal{M}$, either $Sup(A) \subseteq Sup(B)$ or $Sup(A) \cap Sup(B) = \emptyset$. For minimal elements $A, B \in \mathcal{M}$, either Sup(A) = Sup(B) or $Sup(A) \cap Sup(B) = \emptyset$. For minimal elements $A, B \in \mathcal{M}$ such that Sup(A) = Sup(B), there exists a nonzero $\alpha \in \mathbb{C}$ such that $B = \alpha A$; otherwise there exists a linear combination of A, B that is nonzero and has its support properly contained in the common support of A and B. For a minimal element $A \in \mathcal{M}$ the nonzero entries of A are all the same; otherwise the previous assertion is contradicted with $B = A \circ A$. A minimal element $A \in \mathcal{M}$ is called normalized whenever its nonzero entries are equal to 1. Every minimal element of \mathcal{M} is a scalar multiple of a normalized minimal element. Let $\{A_i\}_{i=0}^d$ denote an ordering of the normalized minimal elements of \mathcal{M} . By construction $A_i \circ A_j = \delta_{i,j} A_i$ for $0 \le i, j \le d$. Consequently $\{A_i\}_{i=0}^d$ are linearly independent. For $A \in \mathcal{M}$ we have

$$A \in \operatorname{Span}\{A_i | 0 \le i \le d, \operatorname{Sup}(A_i) \subseteq \operatorname{Sup}(A)\}.$$

By these comments $\{A\}_{i=0}^d$ is a basis for the vector space \mathcal{M} . The uniqueness assertion is clear.

Lemma 2.2. For $A \in M_X(\mathbb{C})$ the following are equivalent:

- (i) the diagonal entries of A are all the same;
- (ii) $I \circ A$ is a scalar multiple of I.

Proof. Routine. \Box

Definition 2.3. A subspace \mathcal{M} of $M_X(\mathbb{C})$ is homogeneous whenever each $A \in \mathcal{M}$ satisfies the equivalent conditions (i), (ii) in Lemma 2.2.

Proposition 2.4. Let M denote a subspace of the vector space $M_X(\mathbb{C})$ that satisfies (i)–(v) below:

- (i) $I, J \in \mathcal{M}$;
- (ii) M is closed under matrix multiplication;
- (iii) M is closed under Hadamard multiplication;
- (iv) \mathcal{M} is closed under the transpose map;
- (v) M is homogeneous.

Then there exists an association scheme $\mathfrak{X}=(X,\{R_i\}_{i=0}^d)$ that has adjacency algebra \mathfrak{M} . Also, \mathfrak{X} is commutative if and only if AB=BA for all $A,B\in \mathfrak{M}$. Moreover, \mathfrak{X} is symmetric if and only if $A^t=A$ for all $A\in \mathfrak{M}$.

Proof. Since \mathcal{M} is closed under Hadamard multiplication, by Lemma 2.1 there exists a basis $\{A_i\}_{i=0}^d$ for \mathcal{M} such that $A_i \circ A_j = \delta_{i,j}A_i$ for $0 \le i,j \le d$. Since \mathcal{M} contains J, we have $J = \sum_{i=0}^d A_i$. Since \mathcal{M} is homogeneous and contains I, we see that one of the matrices $\{A_i\}_{i=0}^d$ must equal I; without loss we many assume that $A_0 = I$. Since \mathcal{M} is closed under the transpose map, \mathcal{M} contains the matrices $\{A_i^t\}_{i=0}^d$. Observe that the matrices $\{A_i^t\}_{i=0}^d$ form a basis for \mathcal{M} , and satisfy $A_i^t \circ A_j^t = \delta_{i,j}A_i^t$ for $0 \le i,j \le d$. By the uniqueness assertion in Lemma 2.1, the sequence $\{A_i^t\}_{i=0}^d$ is a permutation of the sequence $\{A_i\}_{i=0}^d$. In other words, for $0 \le i \le d$ there exists $i' \in \{0,1,\ldots,d\}$ such that $A_i^t = A_{i'}$. Since \mathcal{M} is closed under matrix multiplication, for $0 \le i,j \le d$ there exist scalars $p_{i,j}^k \in \mathbb{C}$ $(0 \le k \le d)$ such that

$$A_i A_j = \sum_{k=0}^d p_{i,j}^k A_k.$$

For $0 \le k \le d$ we have $p_{i,j}^k \in \mathbb{N}$ because the nonzero entries of A_i, A_j, A_k are equal to 1. For $0 \le i \le d$ define

$$R_i = \{(x, y) | A_i(x, y) = 1\}.$$

By the above comments, the sequence $(X, \{R_i\}_{i=0}^d)$ is an association scheme, with associate matrices $\{A_i\}_{i=0}^d$ and adjacency algebra \mathcal{M} . The assertions about commutativity and symmetry are clear.

3 Commutative association schemes

Throughout this section, we assume that $\mathfrak{X} = (X\{R_i\}_{i=0}^d)$ is a commutative association scheme. By assumption,

$$p_{i,j}^k = p_{j,i}^k$$
 $(0 \le i, j, k \le d).$

Recall that for $x, y \in X$ and $0 \le i \le d$,

$$(x,y) \in R_i$$
 iff $(y,x) \in R_{i'}$.

For $x \in X$ and $0 \le i \le d$ define

$$\Gamma_i(x) = \{ y \in X | (x, y) \in R_i \}.$$

For $0 \le i, j, k \le d$ and $(x, y) \in R_k$,

$$p_{i,j}^k = |\Gamma_i(x) \cap \Gamma_{j'}(y)|.$$

Define

$$k_i = p_{i,i'}^0 \qquad (0 \le i \le d).$$
 (5)

For $x \in X$,

$$k_i = |\Gamma_i(x)| \qquad (0 \le i \le d).$$

Lemma 3.1. We have

- (i) $k_0 = 1$;
- (ii) $k_i = k_{i'}$ $(0 \le i \le d);$
- (iii) $|X| = \sum_{i=0}^{d} k_i$.

Proof. Routine.

Proposition 3.2. We have

- (i) $p_{i,0}^k = \delta_{i,k}$ $(0 \le i, k \le d);$
- (ii) $p_{0,j}^k = \delta_{j,k}$ $(0 \le j, k \le d);$
- (iii) $p_{i,j}^0 = \delta_{i,j'} k_i$ $(0 \le i, j \le d);$
- (iv) $p_{i,j}^k = p_{i',j'}^{k'}$ $(0 \le i, j, k \le d);$
- (v) $k_i = \sum_{j=0}^{d} p_{i,j}^k$ $(0 \le i, k \le d);$
- (vi) $k_{\ell} p_{i,j}^{\ell} = k_{i} p_{\ell,j'}^{i} = k_{j} p_{i',\ell}^{j}$ $(0 \le i, j, \ell \le d);$

(vii)
$$\sum_{\alpha=0}^{d} p_{i,j}^{\alpha} p_{k,\alpha}^{\ell} = \sum_{\alpha=0}^{d} p_{k,i}^{\alpha} p_{\alpha,j}^{\ell}$$
 $(0 \le i, j, k, \ell \le d)$.

Proof. (i)–(iv) Routine.

(v) Fix $(x, y) \in R_k$. Partition $\Gamma_i(x)$ according to how its elements are related to y. This gives

$$\Gamma_i(x) = \bigcup_{j=0}^d (\Gamma_i(x) \cap \Gamma_{j'}(y))$$
 (disjoint union).

In this equation, take the cardinality of each side.

- (vi) The three common values are equal to $|X|^{-1}$ times the number of 3-tuples (x, y, z) such that $(x, y) \in R_{\ell}$ and $(x, z) \in R_i$ and $(z, y) \in R_j$.
- (vii) In the equation $A_k(A_iA_j)=(A_kA_i)A_j$, write each side as a linear combination of $\{A_\ell\}_{\ell=0}^d$, and compare coefficients.

As we study the Bose-Mesner algebra of \mathfrak{X} , we will use the following linear algebra result.

Lemma 3.3. Let \mathcal{M} denote a nonzero subspace of the vector space $M_X(\mathbb{C})$. Assume that:

- (i) M is closed under matrix multiplication;
- (ii) AB = BA for all $A, B \in \mathcal{M}$;
- (iii) M is closed under the conjugate-transpose map.

Then \mathcal{M} has a basis $\{E_i\}_{i=0}^d$ such that $E_iE_j = \delta_{i,j}E_i$ for $0 \leq i,j \leq d$. This basis is unique up to permutation of E_0, E_1, \ldots, E_d .

Definition 3.4. Referring to Lemma 3.3, we call $\{E_i\}_{i=0}^d$ the primitive idempotents of \mathcal{M} .

Lemma 3.5. For the subspace \mathfrak{M} in Lemma 3.3, its primitive idempotents satisfy $\overline{E}_i^t = E_i$ for $0 \le i \le d$.

Proof. The subspace \mathcal{M} contains \overline{E}_i^t for $0 \leq i \leq d$. The matrices $\{\overline{E}_i^t\}_{i=0}^d$ form a basis for \mathcal{M} , and $\overline{E}_i^t\overline{E}_j^t = \delta_{i,j}\overline{E}_i^t$ for $0 \leq i,j \leq d$. By the uniqueness statement in Lemma 3.3, the sequence $\{\overline{E}_i^t\}_{i=0}^d$ is a permutation of the sequence $\{E_i\}_{i=0}^d$. For $0 \leq i \leq d$ we have $\overline{E}_i^tE_i \neq 0$, so $\overline{E}_i^t = E_i$.

Lemma 3.6. We refer to the subspace \mathfrak{M} in Lemma 3.3.

- (i) Assume that $I \in \mathcal{M}$. Then $I = \sum_{i=0}^{d} E_i$.
- (ii) Assume that $J \in \mathcal{M}$. Then $|X|^{-1}J$ is a primitive idempotent of \mathcal{M} (denoted E_0).
- (iii) Assume that \mathfrak{M} is closed under both the transpose map and complex conjugation. Then for $0 \leq i \leq d$ there exists $\hat{i} \in \{0, 1, \ldots, d\}$ such that $E_i^t = E_{\hat{i}} = \overline{E}_i$.

Proof. (i) There exists scalars $\{\alpha_i\}_{i=0}^d$ in $\mathbb C$ such that $I = \sum_{i=0}^d \alpha_i E_i$. For $0 \le i \le d$ we have

$$E_i = E_i I = E_i \sum_{j=0}^{d} \alpha_j E_j = \alpha_i E_i,$$

so $\alpha_i = 1$.

(ii) There exists scalars $\{\beta_i\}_{i=0}^d$ in $\mathbb C$ such that $J=\sum_{i=0}^d\beta_iE_i$. At least one of $\{\beta_i\}_{i=0}^d$ is nonzero. Without loss, we may assume $\beta_0\neq 0$. We have $JE_0=\beta_0E_0$. Note that $J^2=|X|J$, so

$$JE_0 = |X|^{-1}J^2E_0 = |X|^{-1}JE_0J = |X|^{-1}sJ,$$

where s is the sum of all the entries of E_0 . By these comments E_0 is a scalar multiple of J. Using $E_0^2 = E_0$ we obtain $E_0 = |X|^{-1}J$.

(iii) The subspace \mathcal{M} contains E_i^t for $0 \leq i \leq d$. The matrices $\{E_i^t\}_{i=0}^d$ form a basis for \mathcal{M} such that $E_i^t E_j^t = \delta_{i,j} E_i^t$ for $0 \leq i, j \leq d$. By the uniqueness statement in Lemma 3.3, the sequence $\{E_i^t\}_{i=0}^d$ is a permutation of the sequence $\{E_i\}_{i=0}^d$. In other words, for $0 \leq i \leq d$ there exists $\hat{i} \in \{0, 1, \ldots, d\}$ such that $E_i^t = E_{\hat{i}}$. By Lemma 3.5 we have $\overline{E}_i = E_i^t = E_{\hat{i}}$. \square

We return our attention to the commutative association scheme $\mathfrak{X} = (X, \{R_i\}_{i=0}^d)$.

Proposition 3.7. The Bose-Mesner algebra \mathcal{M} of \mathcal{X} has a basis $\{E_i\}_{i=0}^d$ that satisfies

- (i) $E_0 = |X|^{-1}J$;
- (ii) $E_i E_j = \delta_{i,j} E_i$ for $0 \le i, j \le d$;
- (iii) $I = \sum_{i=0}^{d} E_i$;
- (iv) for $0 \le i \le d$ there exists $\hat{i} \in \{0, 1, ..., d\}$ such that $E_i^t = E_{\hat{i}} = \overline{E}_i$.

Proof. Note that \mathcal{M} satisfies the conditions of Lemma 3.3 and Lemma 3.6.

The matrices $\{E_i\}_{i=0}^d$ form a basis for \mathcal{M} . Since \mathcal{M} is closed under Hadamard multiplication, for $0 \leq i, j \leq d$ there exist $q_{i,j}^k \in \mathbb{C}$ $(0 \leq k \leq d)$ such that

$$E_i \circ E_j = |X|^{-1} \sum_{k=0}^d q_{i,j}^k E_k.$$
 (6)

The scalars $q_{i,j}^k$ are called the *Krein parameters* of \mathfrak{X} . Shortly we will show that $q_{i,j}^k$ is real and nonnegative for $0 \leq i, j, k \leq d$.