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Lecture 1

Our textbook is:

Bannai, Bannai, Ito, Tanaka. Algebraic Combinatorics. De Gruyter Series in Discrete
Mathematics and Applications 5 (2021).

We will begin with Chapter 2. Chapter 1 an elementary introduction, and mostly discusses
special cases of the material in later chapters. Hopefully, we can cover Chapters 2–5.

In addition to the text, the following publications are handy references:

E. Bannai and T. Ito. Algebraic Combinatorics I: Association Schemes. Benjamin/Cummings,
London, 1984.

A. E. Brouwer, A. M. Cohen, and A. Neumaier. Distance-Regular Graphs. Springer-Verlag,
Berlin, 1989.

W. Martin, H. Tanaka. Commutative association schemes. European J. Combin. 30 (2009)
1497–1525.

P. Delsarte. An algebraic approach to the association schemes of coding theory. Philips
Research Reports Suppl. 10 (1973).

1 The definition of an association scheme

Let X denote a nonempty finite set. We will speak of the Cartesian product X × X =
{(x, y)|x, y ∈ X}.

Recall the natural numbers N = {0, 1, 2, . . .} and integers Z = {0,±1,±2, . . .}.

Definition 1.1. For d ∈ N, an association scheme of class d is a sequence X = (X, {Ri}di=0),
where X is a nonempty finite set, and {Ri}di=0 are nonempty subsets of X ×X such that:

(i) R0 = {(x, x)|x ∈ X};

(ii) X ×X = R0 ∪R1 ∪ · · · ∪Rd (disjoint union);

(iii) for 0 ≤ i ≤ d there exists i′ ∈ {0, 1, . . . , d} such that Rt
i = Ri′ , where

Rt
i = {(y, x)|(x, y) ∈ Ri};

(iv) for 0 ≤ i, j, k ≤ d there exists a natural number pki,j such that for all (x, y) ∈ Rk,

pki,j = |{z ∈ X|(x, z) ∈ Ri and (z, y) ∈ Rj}|.

The elements of X are called the vertices of X. We call Ri the ith relation of X. The relation
R0 is called trivial. We call pki,j an intersection number of X.

We mention two special cases of association schemes.
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Definition 1.2. Referring to the association scheme X in Definition 1.1,

(i) X is commutative whenever

pki,j = pkj,i (0 ≤ i, j, k ≤ d).

(ii) X is symmetric whenever

i′ = i (0 ≤ i ≤ d).

Lemma 1.3. A symmetric association scheme is commutative.

Proof. Referring to Definition 1.1, assume that X is symmetric. For 0 ≤ i, j, k ≤ d we show
that pki,j = pkj,i. Pick x, y ∈ X with (x, y) ∈ Rk. Then (y, x) ∈ Rt

k = Rk′ = Rk.
Since (x, y) ∈ Rk,

pkj,i = |{z ∈ X|(x, z) ∈ Rj and (z, y) ∈ Ri}|.

Since (y, x) ∈ Rk,

pki,j = |{z ∈ X|(y, z) ∈ Ri and (z, x) ∈ Rj}|.

For z ∈ X,

(x, z) ∈ Rj iff (z, x) ∈ Rj (z, y) ∈ Ri iff (y, z) ∈ Ri.

By these comments pki,j = pkj,i.

We give some examples of association schemes.

Consider a finite group G acting on a set X. This action is called transitive whenever for all
x, y ∈ X there exists g ∈ G such that xg = y.

Example 1.4. Let G denote a finite group acting transitively on a set X. Consider the
action of G on X ×X such that

(x, y)g = (xg, yg) g ∈ G, x, y ∈ X.

Let {Ri}di=0 denote the orbits of G on X ×X, ordered such that R0 = {(x, x)|x ∈ X}. Then
(X, {Ri}di=0) is an association scheme (not commutative in general).

Proof. We check the axioms in Definition 1.1.
(i), (ii) Clear.
(iii) For 0 ≤ i ≤ d, Rt

i is an orbit of G on X ×X.
(iv) Let 0 ≤ i, j, k ≤ d and (x, y) ∈ Rk. We show that for g ∈ G, the following sets have the
same size:

{z ∈ X|(x, z) ∈ Ri and (z, y) ∈ Rj}, (1)

{w ∈ X|(xg, w) ∈ Ri and (w, yg) ∈ Rj}. (2)

This holds because the map z 7→ zg gives a bijection from (1) to (2).
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Consider a finite group G acting on a set X. This action is called generously transitive
whenever for all x, y ∈ X there exists g ∈ G such that xg = y and yg = x.

Example 1.5. Referring to Example 1.4, the following are equivalent:

(i) the action of G on X is generously transitive;

(ii) for all x, y ∈ X the ordered pairs (x, y) and (y, x) are in the same orbit of G on X×X;

(iii) the association scheme (X, {Ri}di=0) is symmetric.

Proof. Routine.

Example 1.6. (Hamming association scheme H(d, q)). Fix integers d, q ≥ 1. Fix a set F
with |F | = q. Define a set

X = F × F × · · · × F (d copies).

For x = (x1, x2, . . . , xd) ∈ X and y = (y1, y2, . . . , yd) ∈ X, define their Hamming distance

∂(x, y) = |{i|1 ≤ i ≤ d, xi 6= yi}|.

For 0 ≤ i ≤ d define

Ri = {(x, y)|x, y ∈ X, ∂(x, y) = i}.

Then (X, {Ri}di=0) is a symmetric association scheme, denoted H(d, q).

Proof. This is a special case of Example 1.5, with G defined as follows. Let Sq denote
the symmetric group on F , which consists of the permutations of F . Consider the direct
sum S = Sq ⊕ Sq ⊕ · · · ⊕ Sq (d copies). Then S acts on X by permuting each copy of F .
Next consider the symmetric group Sd. This group acts on X by permuting the coordinates
1, 2, . . . , d. The group G consists of the permutations of X obtained by applying an element
of S followed by an element of Sd. The group G is generously transitive on X. It is routine
to check that {Ri}di=0 are the orbits of G on X ×X.

Example 1.7. (Johnson association scheme J(v, d)). Fix integers v, d ≥ 1 with d ≤ v/2.
Fix a set V with |V | = v. Let the set X consist of the subsets of V that have cardinality d.
For 0 ≤ i ≤ d define

Ri = {(x, y)|x, y ∈ X, |x ∩ y| = d− i}.

Then (X, {Ri}di=0) is a symmetric association scheme, denoted J(v, d).

Proof. This is a special case of Example 1.5, where G = Sv is the symmetric group on V .
The action of G on V induces an action of G on X. The action of G on X is generously
transitive. It is routine to check that {Ri}di=0 are the orbits of G on X ×X.
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Example 1.8. (Conjugacy classes of a finite groupG). LetG denote a finite group. Elements
x, y ∈ G are called conjugate whenever there exists g ∈ G such that gxg−1 = y. Conjugacy is
an equivalence relation, and the equivalence classes are called conjugacy classes. let {Ci}di=0

denote the conjugacy classes, ordered such that C0 = {1} (the identity element of G). Define
X = G. For 0 ≤ i ≤ d define

Ri = {(x, y)|x, y ∈ G, y−1x ∈ Ci}.

Then (X, {Ri}di=0) is a commutative association scheme.

Proof. We apply Example 1.4. The group G acts on X = G by left and right multiplication.
The left action is G×X → X, (g, x) 7→ gx. The right action is G×X → X, (h, x) 7→ xh−1.
The two actions commute. Combining the two actions, we get an action of G ⊕ G on X
such that (g, h) sends x 7→ gxh−1 for all (g, h) ∈ G ⊕ G and x ∈ X. The action of G ⊕ G
on X is transitive. Next we check that the orbits of G⊕G on X ×X are {Ri}di=0. Pick any
(x, y) ∈ X ×X and (u, v) ∈ X ×X that are in the same orbit of G⊕G. We show that y−1x
and v−1u are conjugate. By assumption, there exists (g, h) ∈ G ⊕ G such that gxh−1 = u
and gyh−1 = v. We have

v−1u =
(
gyh−1

)−1(
gxh−1

)
= hy−1g−1gxh−1 = hy−1xh−1

so y−1x and v−1u are conjugate. Conversely, pick any (x, y) ∈ X ×X and (u, v) ∈ X ×X
such that y−1x and v−1u are conjugate. We show that (x, y) and (u, v) are in the same
orbit of G ⊕ G on X ×X. By assumption there exists h ∈ G such that v−1u = hy−1xh−1.
Rearranging this equation, we obtain uhx−1 = vhy−1; denote this common value by g. We
have gxh−1 = u and gyh−1 = v. Therefore (g, h) ∈ G⊕G sends (x, y) to (u, v). Consequently
(x, y) and (u, v) are in the same orbit of G⊕G on X×X. We have shown that (X, {Ri}di=0)
is an association scheme. Next, we check that this association scheme is commutative. For
0 ≤ i, j, k ≤ d we show that pki,j = pkj,i. Pick (x, y) ∈ Rk. Note that xy−1 is conjugate to
y−1x, so (y−1, x−1) ∈ Rk. Consider the following sets:

{z ∈ X|(x, z) ∈ Ri and (z, y) ∈ Rj}, (3)

{w ∈ X|(y−1, w) ∈ Rj and (w, x−1) ∈ Ri}. (4)

The sets (3) and (4) have cardinality pki,j and pkj,i respectively. These cardinalities are the
same, because the map z 7→ z−1 gives a bijection from (3) to (4). We have shown that
(X, {Ri}di=0) is commutative.

Problem 1.9. Referring to the association scheme in Example 1.8, assume that G is the
symmetric group Sn. For small n = 2, 3, 4, .. describe the conjugacy classes and find the
intersection numbers.

Problem 1.10. Find the intersection numbers of the Hamming association scheme H(2, 4).
Show that H(2, 4) contains four vertices that are mutually in relation one (4-clique). Con-
struct an association scheme that has the same intersection numbers as H(2, 4) and has no
4-clique. This association scheme is called the Shrikhande scheme.

5



Problem 1.11. (Cyclotomic association schemes, I). Let GF(q) denote a finite field with q
elements. Let GF(q)∗ denote the multiplicative group. This group consists of the nonzero
elements of GF(q), and the group operation is multiplication. It is known that GF(q)∗ is
cyclic; let ω denote a generator of GF(q)∗. Define X = GF(q). Define R0 = {(x, x)|x ∈ X}.
For 1 ≤ i ≤ q − 1 define Ri = {(x, y)|x, y ∈ X, x− y = ωi−1}. Show that (X, {Ri}q−1i=0 ) is a
commutative association scheme.

Problem 1.12. (Cyclotomic association schemes, II). We refer to Problem 1.11. Let d
denote a divisor of q − 1 and define r = (q − 1)/d. Let Hr = 〈ωd〉 denote the subgroup
of GF(q)∗ generated by ωd. Note that |Hr| = r. For 1 ≤ i ≤ d define the coset Ci =
ωi−1Hr. For notational convenience, define the set C0 = {0}. Define X = GF(q). Define
R0 = {(x, x)|x ∈ X}. For 1 ≤ i ≤ d define Ri = {(x, y)|x, y ∈ X, x − y ∈ Ci}. Show that
(X, {Ri}di=0) is a commutative association scheme.

2 The Bose-Mesner algebra

In this section we consider association schemes using linear algebra. We start with some
notation.

Let C denote the field of complex numbers. Let X denote a nonempty finite set. Let MX(C)
denote the algebra over C consisting of the matrices that have rows and columns indexed by
X and all entries in C. Let I ∈MX(C) denote the identity matrix. The matrix J ∈MX(C)
has all entries 1. Let A ∈ MX(C). For x, y ∈ X the (x, y)-entry of A is denoted Ax,y

or A(x, y). The transpose of A is denoted At or tA. For A,B ∈ MX(C) define a matrix
A ◦B ∈MX(C) with (x, y)-entry Ax,yBx,y for x, y ∈ X. We call A ◦B the entrywise product
or Hadamard product of A and B.

Let X = (X, {Ri}di=0) denote an association scheme. For 0 ≤ i ≤ d define Ai ∈ MX(C) that
has entries

Ai(x, y) =

{
1 if (x, y) ∈ Ri;

0 if (x, y) 6∈ Ri

x, y ∈ X.

We call Ai the ith associate matrix for X, or the adjacency matrix of X for Ri. In terms of
these matrices, the conditions (i)–(iv) in Definition 1.1 become:

(i) A0 = I;

(ii) J =
∑d

i=0Ai;

(iii) for 0 ≤ i ≤ d there exists i′ ∈ {0, 1, . . . , d} such that At
i = Ai′ ;

(iv) for 0 ≤ i, j ≤ d there exist natural numbers pki,j (0 ≤ k ≤ d) such that

AiAj =
d∑

k=0

pki,jAk.
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The scheme X is commutative if and only if

AiAj = AjAi (0 ≤ i ≤ d).

The scheme X is symmetric if and only if

At
i = Ai (0 ≤ i ≤ d).

By the above conditions (i)–(iv), the matices {Ai}di=0 form a basis for a subalgebra M of
MX(C) that contains J and is closed under transpose. Note that M is closed under Hadamard
multiplication, because

Ai ◦ Aj = δi,jAi (0 ≤ i, j ≤ d).

We call M the adjacency algebra of X. If X is commutative, then we call M the Bose-Mesner
algebra of X.

Our next goal is to define adjacency algebras in a more abstract way.

Lemma 2.1. Let M denote a nonzero subspace of the vector space MX(C). Assume that M is
closed under Hadamard multiplication. Then M has a basis {Ai}di=0 such that Ai◦Aj = δi,jAi

for 0 ≤ i, j ≤ d.

Proof. For A ∈M define the support set

Sup(A) = {(x, y)|x, y ∈ X, Ax,y 6= 0}.

For nonzero α ∈ C we have

Sup(αA) = Sup(A).

For A,B ∈M we have

Sup(A ◦B) = Sup(A) ∩ Sup(B).

For A ∈ M, we say that A is minimal whenever (i) A 6= 0; and (ii) there does not exist a
nonzero B ∈M such that Sup(B) ( Sup(A). Assume that A ∈M is minimal. Then for all
B ∈M, either Sup(A) ⊆ Sup(B) or Sup(A)∩Sup(B) = ∅. For minimal elements A,B ∈M,
either Sup(A) = Sup(B) or Sup(A) ∩ Sup(B) = ∅. For minimal elements A,B ∈ M such
that Sup(A) = Sup(B), there exists a nonzero α ∈ C such that B = αA; otherwise there
exists a linear combination of A,B that is nonzero and has its support properly contained in
the common support of A and B. For a minimal element A ∈M the nonzero entries of A are
all the same; otherwise the previous assertion is contradicted with B = A ◦ A. A minimal
element A ∈ M is called normalized whenever its nonzero entries are equal to 1. Every
minimal element of M is a scalar multiple of a normalized minimal element. Let {Ai}di=0

denote an ordering of the normalized minimal elements of M. By construction Ai◦Aj = δi,jAi

for 0 ≤ i, j ≤ d. Consequently {Ai}di=0 are linearly independent. For A ∈M we have

A ∈ Span{Ai|0 ≤ i ≤ d, Sup(Ai) ⊆ Sup(A)}.

By these comments {A}di=0 is a basis for the vector space M.
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Proposition 2.2. Let M denote a subspace of the vector space MX(C) that satisfies (i)–(v)
below:

(i) M is closed under matrix multiplication;

(ii) M is closed under Hadamard multiplication;

(iii) M is closed under the transpose map;

(iv) for all A ∈M the diagonal entries of A are all the same;

(v) I, J ∈M.

Then there exists an association scheme (X, {Ri}di=0) that has adjacency algebra M.
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