Spring 2023 Math 846

Algebraic Combinatorics: Association Schemes Paul Terwilliger

Lecture 1

Our textbook is:

Bannai, Bannai, Ito, Tanaka. Algebraic Combinatorics. De Gruyter Series in Discrete Mathematics and Applications 5 (2021).

We will begin with Chapter 2. Chapter 1 an elementary introduction, and mostly discusses special cases of the material in later chapters. Hopefully, we can cover Chapters 2–5.

In addition to the text, the following publications are handy references:

E. Bannai and T. Ito. Algebraic Combinatorics I: Association Schemes. Benjamin/Cummings, London, 1984.

A. E. Brouwer, A. M. Cohen, and A. Neumaier. Distance-Regular Graphs. Springer-Verlag, Berlin, 1989.

W. Martin, H. Tanaka. Commutative association schemes. European J. Combin. 30 (2009) 1497–1525.

P. Delsarte. An algebraic approach to the association schemes of coding theory. Philips Research Reports Suppl. 10 (1973).

1 The definition of an association scheme

Let X denote a nonempty finite set. We will speak of the Cartesian product $X \times X =$ $\{(x, y)|x, y \in X\}.$

Recall the natural numbers $\mathbb{N} = \{0, 1, 2, \ldots\}$ and integers $\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}$.

Definition 1.1. For $d \in \mathbb{N}$, an association scheme of class d is a sequence $\mathfrak{X} = (X, \{R_i\}_{i=0}^d)$, where X is a nonempty finite set, and $\{R_i\}_{i=0}^d$ are nonempty subsets of $X \times X$ such that:

- (i) $R_0 = \{(x, x) | x \in X\};$
- (ii) $X \times X = R_0 \cup R_1 \cup \cdots \cup R_d$ (disjoint union);
- (iii) for $0 \le i \le d$ there exists $i' \in \{0, 1, ..., d\}$ such that $R_i^t = R_{i'}$, where

$$
R_i^t = \{(y, x) | (x, y) \in R_i\};
$$

(iv) for $0 \leq i, j, k \leq d$ there exists a natural number $p_{i,j}^k$ such that for all $(x, y) \in R_k$,

$$
p_{i,j}^k = |\{z \in X | (x, z) \in R_i \text{ and } (z, y) \in R_j\}|.
$$

The elements of X are called the vertices of X. We call R_i the ith relation of X. The relation R_0 is called *trivial*. We call $p_{i,j}^k$ an *intersection number* of \mathfrak{X} .

We mention two special cases of association schemes.

Definition 1.2. Referring to the association scheme $\mathfrak X$ in Definition 1.1,

(i) $\mathfrak X$ is *commutative* whenever

$$
p_{i,j}^k = p_{j,i}^k \qquad (0 \le i, j, k \le d).
$$

(ii) $\mathfrak X$ is *symmetric* whenever

$$
i' = i \qquad (0 \le i \le d).
$$

Lemma 1.3. A symmetric association scheme is commutative.

Proof. Referring to Definition 1.1, assume that X is symmetric. For $0 \leq i, j, k \leq d$ we show that $p_{i,j}^k = p_{j,i}^k$. Pick $x, y \in X$ with $(x, y) \in R_k$. Then $(y, x) \in R_k^t = R_{k'} = R_k$. Since $(x, y) \in R_k$,

$$
p_{j,i}^k = |\{z \in X | (x, z) \in R_j \text{ and } (z, y) \in R_i\}|.
$$

Since $(y, x) \in R_k$,

$$
p_{i,j}^k = |\{z \in X | (y, z) \in R_i \text{ and } (z, x) \in R_j\}|.
$$

For $z \in X$,

$$
(x, z) \in R_j \text{ iff } (z, x) \in R_j \qquad (z, y) \in R_i \text{ iff } (y, z) \in R_i.
$$

By these comments $p_{i,j}^k = p_{j,i}^k$.

We give some examples of association schemes.

Consider a finite group G acting on a set X. This action is called *transitive* whenever for all $x, y \in X$ there exists $g \in G$ such that $x^g = y$.

Example 1.4. Let G denote a finite group acting transitively on a set X. Consider the action of G on $X \times X$ such that

$$
(x, y)^g = (x^g, y^g) \qquad \qquad g \in G, \quad x, y \in X.
$$

Let ${R_i}_{i=0}^d$ denote the orbits of G on $X \times X$, ordered such that $R_0 = \{(x, x) | x \in X\}$. Then $(X, \{R_i\}_{i=0}^d)$ is an association scheme (not commutative in general).

Proof. We check the axioms in Definition 1.1.

 (i) , (ii) Clear.

(iii) For $0 \leq i \leq d$, R_i^t is an orbit of G on $X \times X$.

(iv) Let $0 \leq i, j, k \leq d$ and $(x, y) \in R_k$. We show that for $g \in G$, the following sets have the same size:

$$
\{z \in X | (x, z) \in R_i \text{ and } (z, y) \in R_j\},\tag{1}
$$

$$
\{w \in X | (x^g, w) \in R_i \text{ and } (w, y^g) \in R_j \}.
$$
\n(2)

This holds because the map $z \mapsto z^g$ gives a bijection from (1) to (2).

 \Box

 \Box

Consider a finite group G acting on a set X. This action is called *generously transitive* whenever for all $x, y \in X$ there exists $g \in G$ such that $x^g = y$ and $y^g = x$.

Example 1.5. Referring to Example 1.4, the following are equivalent:

- (i) the action of G on X is generously transitive;
- (ii) for all $x, y \in X$ the ordered pairs (x, y) and (y, x) are in the same orbit of G on $X \times X$;
- (iii) the association scheme $(X, \{R_i\}_{i=0}^d)$ is symmetric.

Proof. Routine.

Example 1.6. (Hamming association scheme $H(d,q)$). Fix integers $d, q \geq 1$. Fix a set F with $|F| = q$. Define a set

$$
X = F \times F \times \cdots \times F \qquad (d \text{ copies}).
$$

For $x = (x_1, x_2, \ldots, x_d) \in X$ and $y = (y_1, y_2, \ldots, y_d) \in X$, define their *Hamming distance*

$$
\partial(x, y) = |\{i | 1 \le i \le d, \ x_i \neq y_i\}|.
$$

For $0 \leq i \leq d$ define

$$
R_i = \{(x, y) | x, y \in X, \ \partial(x, y) = i\}.
$$

Then $(X, \{R_i\}_{i=0}^d)$ is a symmetric association scheme, denoted $H(d, q)$.

Proof. This is a special case of Example 1.5, with G defined as follows. Let S_q denote the symmetric group on F , which consists of the permutations of F . Consider the direct sum $S = S_q \oplus S_q \oplus \cdots \oplus S_q$ (d copies). Then S acts on X by permuting each copy of F. Next consider the symmetric group S_d . This group acts on X by permuting the coordinates $1, 2, \ldots, d$. The group G consists of the permutations of X obtained by applying an element of S followed by an element of S_d . The group G is generously transitive on X. It is routine to check that $\{R_i\}_{i=0}^d$ are the orbits of G on $X \times X$. \Box

Example 1.7. (Johnson association scheme $J(v, d)$). Fix integers $v, d \geq 1$ with $d \leq v/2$. Fix a set V with $|V| = v$. Let the set X consist of the subsets of V that have cardinality d. For $0 \leq i \leq d$ define

$$
R_i = \{(x, y)|x, y \in X, \ |x \cap y| = d - i\}.
$$

Then $(X, \{R_i\}_{i=0}^d)$ is a symmetric association scheme, denoted $J(v, d)$.

Proof. This is a special case of Example 1.5, where $G = S_v$ is the symmetric group on V. The action of G on V induces an action of G on X. The action of G on X is generously transitive. It is routine to check that $\{R_i\}_{i=0}^d$ are the orbits of G on $X \times X$. \Box

 \Box

Example 1.8. (Conjugacy classes of a finite group G). Let G denote a finite group. Elements $x, y \in G$ are called *conjugate* whenever there exists $g \in G$ such that $gxg^{-1} = y$. Conjugacy is an equivalence relation, and the equivalence classes are called conjugacy classes. let $\{C_i\}_{i=0}^d$ denote the conjugacy classes, ordered such that $C_0 = \{1\}$ (the identity element of G). Define $X = G$. For $0 \leq i \leq d$ define

$$
R_i = \{(x, y) | x, y \in G, y^{-1}x \in C_i\}.
$$

Then $(X, \{R_i\}_{i=0}^d)$ is a commutative association scheme.

Proof. We apply Example 1.4. The group G acts on $X = G$ by left and right multiplication. The left action is $G \times X \to X$, $(g, x) \mapsto gx$. The right action is $G \times X \to X$, $(h, x) \mapsto xh^{-1}$. The two actions commute. Combining the two actions, we get an action of $G \oplus G$ on X such that (g, h) sends $x \mapsto g x h^{-1}$ for all $(g, h) \in G \oplus G$ and $x \in X$. The action of $G \oplus G$ on X is transitive. Next we check that the orbits of $G \oplus G$ on $X \times X$ are $\{R_i\}_{i=0}^d$. Pick any $(x, y) \in X \times X$ and $(u, v) \in X \times X$ that are in the same orbit of $G \oplus G$. We show that $y^{-1}x$ and $v^{-1}u$ are conjugate. By assumption, there exists $(g, h) \in G \oplus G$ such that $gxh^{-1} = u$ and $q y h^{-1} = v$. We have

$$
v^{-1}u = (gyh^{-1})^{-1}(gxh^{-1}) = hy^{-1}g^{-1}gxh^{-1} = hy^{-1}xh^{-1}
$$

so $y^{-1}x$ and $v^{-1}u$ are conjugate. Conversely, pick any $(x, y) \in X \times X$ and $(u, v) \in X \times X$ such that $y^{-1}x$ and $v^{-1}u$ are conjugate. We show that (x, y) and (u, v) are in the same orbit of $G \oplus G$ on $X \times X$. By assumption there exists $h \in G$ such that $v^{-1}u = hy^{-1}xh^{-1}$. Rearranging this equation, we obtain $uhx^{-1} = vhy^{-1}$; denote this common value by g. We have $gxh^{-1} = u$ and $gyh^{-1} = v$. Therefore $(g, h) \in G \oplus G$ sends (x, y) to (u, v) . Consequently (x, y) and (u, v) are in the same orbit of $G \oplus G$ on $X \times X$. We have shown that $(X, \{R_i\}_{i=0}^d)$ is an association scheme. Next, we check that this association scheme is commutative. For $0 \leq i, j, k \leq d$ we show that $p_{i,j}^k = p_{j,i}^k$. Pick $(x, y) \in R_k$. Note that xy^{-1} is conjugate to $y^{-1}x$, so $(y^{-1}, x^{-1}) \in R_k$. Consider the following sets:

$$
\{z \in X | (x, z) \in R_i \text{ and } (z, y) \in R_j\},\tag{3}
$$

$$
\{w \in X | (y^{-1}, w) \in R_j \text{ and } (w, x^{-1}) \in R_i \}.
$$
\n(4)

The sets (3) and (4) have cardinality $p_{i,j}^k$ and $p_{j,i}^k$ respectively. These cardinalities are the same, because the map $z \mapsto z^{-1}$ gives a bijection from (3) to (4). We have shown that $(X, \{R_i\}_{i=0}^d)$ is commutative. \Box

Problem 1.9. Referring to the association scheme in Example 1.8, assume that G is the symmetric group S_n . For small $n = 2, 3, 4, \ldots$ describe the conjugacy classes and find the intersection numbers.

Problem 1.10. Find the intersection numbers of the Hamming association scheme $H(2, 4)$. Show that $H(2, 4)$ contains four vertices that are mutually in relation one (4-clique). Construct an association scheme that has the same intersection numbers as $H(2, 4)$ and has no 4-clique. This association scheme is called the Shrikhande scheme.

Problem 1.11. (Cyclotomic association schemes, I). Let $GF(q)$ denote a finite field with q elements. Let $GF(q)^*$ denote the multiplicative group. This group consists of the nonzero elements of $GF(q)$, and the group operation is multiplication. It is known that $GF(q)^*$ is cyclic; let ω denote a generator of $GF(q)^*$. Define $X = GF(q)$. Define $R_0 = \{(x, x) | x \in X\}$. For $1 \leq i \leq q-1$ define $R_i = \{(x, y)|x, y \in X, x-y=\omega^{i-1}\}\$. Show that $(\tilde{X}, \{R_i\}_{i=0}^{q-1})$ is a commutative association scheme.

Problem 1.12. (Cyclotomic association schemes, II). We refer to Problem 1.11. Let d denote a divisor of $q-1$ and define $r = (q-1)/d$. Let $H_r = \langle \omega^d \rangle$ denote the subgroup of $GF(q)^*$ generated by ω^d . Note that $|H_r| = r$. For $1 \le i \le d$ define the coset $C_i =$ $\omega^{i-1}H_r$. For notational convenience, define the set $C_0 = \{0\}$. Define $X = \text{GF}(q)$. Define $R_0 = \{(x, x) | x \in X\}$. For $1 \le i \le d$ define $R_i = \{(x, y) | x, y \in X, x - y \in C_i\}$. Show that $(X, \{R_i\}_{i=0}^d)$ is a commutative association scheme.

2 The Bose-Mesner algebra

In this section we consider association schemes using linear algebra. We start with some notation.

Let C denote the field of complex numbers. Let X denote a nonempty finite set. Let $M_X(\mathbb{C})$ denote the algebra over C consisting of the matrices that have rows and columns indexed by X and all entries in \mathbb{C} . Let $I \in M_X(\mathbb{C})$ denote the identity matrix. The matrix $J \in M_X(\mathbb{C})$ has all entries 1. Let $A \in M_X(\mathbb{C})$. For $x, y \in X$ the (x, y) -entry of A is denoted $A_{x,y}$ or $A(x, y)$. The transpose of A is denoted A^t or ^tA. For $A, B \in M_X(\mathbb{C})$ define a matrix $A \circ B \in M_X(\mathbb{C})$ with (x, y) -entry $A_{x,y}B_{x,y}$ for $x, y \in X$. We call $A \circ B$ the *entrywise product* or Hadamard product of A and B.

Let $\mathfrak{X} = (X, \{R_i\}_{i=0}^d)$ denote an association scheme. For $0 \leq i \leq d$ define $A_i \in M_X(\mathbb{C})$ that has entries

$$
A_i(x, y) = \begin{cases} 1 & \text{if } (x, y) \in R_i; \\ 0 & \text{if } (x, y) \notin R_i \end{cases} \qquad x, y \in X.
$$

We call A_i the ith associate matrix for X, or the adjacency matrix of X for R_i . In terms of these matrices, the conditions (i) – (iv) in Definition 1.1 become:

- (i) $A_0 = I$;
- (ii) $J = \sum_{i=0}^{d} A_i;$
- (iii) for $0 \le i \le d$ there exists $i' \in \{0, 1, \ldots, d\}$ such that $A_i^t = A_{i'}$;
- (iv) for $0 \leq i, j \leq d$ there exist natural numbers $p_{i,j}^k$ $(0 \leq k \leq d)$ such that

$$
A_i A_j = \sum_{k=0}^d p_{i,j}^k A_k.
$$

The scheme $\mathfrak X$ is commutative if and only if

$$
A_i A_j = A_j A_i \qquad (0 \le i \le d).
$$

The scheme $\mathfrak X$ is symmetric if and only if

$$
A_i^t = A_i \qquad (0 \le i \le d).
$$

By the above conditions (i)–(iv), the matices $\{A_i\}_{i=0}^d$ form a basis for a subalgebra M of $M_X(\mathbb{C})$ that contains J and is closed under transpose. Note that M is closed under Hadamard multiplication, because

$$
A_i \circ A_j = \delta_{i,j} A_i \qquad (0 \le i, j \le d).
$$

We call M the *adjacency algebra* of \mathfrak{X} . If X is commutative, then we call M the *Bose-Mesner* algebra of X.

Our next goal is to define adjacency algebras in a more abstract way.

Lemma 2.1. Let M denote a nonzero subspace of the vector space $M_X(\mathbb{C})$. Assume that M is closed under Hadamard multiplication. Then M has a basis $\{A_i\}_{i=0}^d$ such that $A_i \circ A_j = \delta_{i,j} A_i$ for $0 \leq i, j \leq d$.

Proof. For $A \in \mathcal{M}$ define the support set

$$
Sup(A) = \{(x, y)|x, y \in X, A_{x,y} \neq 0\}.
$$

For nonzero $\alpha \in \mathbb{C}$ we have

$$
Sup(\alpha A) = Sup(A).
$$

For $A, B \in \mathcal{M}$ we have

$$
Sup(A \circ B) = Sup(A) \cap Sup(B).
$$

For $A \in \mathcal{M}$, we say that A is minimal whenever (i) $A \neq 0$; and (ii) there does not exist a nonzero $B \in \mathcal{M}$ such that $\text{Sup}(B) \subsetneq \text{Sup}(A)$. Assume that $A \in \mathcal{M}$ is minimal. Then for all $B \in \mathcal{M}$, either $\text{Sup}(A) \subseteq \text{Sup}(B)$ or $\text{Sup}(A) \cap \text{Sup}(B) = \emptyset$. For minimal elements $A, B \in \mathcal{M}$, either $\text{Sup}(A) = \text{Sup}(B)$ or $\text{Sup}(A) \cap \text{Sup}(B) = \emptyset$. For minimal elements $A, B \in \mathcal{M}$ such that $\text{Sup}(A) = \text{Sup}(B)$, there exists a nonzero $\alpha \in \mathbb{C}$ such that $B = \alpha A$; otherwise there exists a linear combination of A, B that is nonzero and has its support properly contained in the common support of A and B. For a minimal element $A \in \mathcal{M}$ the nonzero entries of A are all the same; otherwise the previous assertion is contradicted with $B = A \circ A$. A minimal element $A \in \mathcal{M}$ is called *normalized* whenever its nonzero entries are equal to 1. Every minimal element of M is a scalar multiple of a normalized minimal element. Let $\{A_i\}_{i=0}^d$ denote an ordering of the normalized minimal elements of M. By construction $A_i \circ A_j = \delta_{i,j} A_i$ for $0 \le i, j \le d$. Consequently $\{A_i\}_{i=0}^d$ are linearly independent. For $A \in \mathcal{M}$ we have

$$
A \in \text{Span}\{A_i | 0 \le i \le d, \ \text{Sup}(A_i) \subseteq \text{Sup}(A)\}.
$$

By these comments $\{A\}_{i=0}^d$ is a basis for the vector space M.

 \Box

Proposition 2.2. Let M denote a subspace of the vector space $M_X(\mathbb{C})$ that satisfies (i)–(v) below:

- (i) M is closed under matrix multiplication;
- (ii) M is closed under Hadamard multiplication;
- (iii) M is closed under the transpose map;
- (iv) for all $A \in \mathcal{M}$ the diagonal entries of A are all the same;
- (v) $I, J \in \mathcal{M}$.

Then there exists an association scheme $(X, \{R_i\}_{i=0}^d)$ that has adjacency algebra M.