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Overview

This survey talk has two parts. In Part I, we review the
subconstituent algebra T of a graph.

We will discuss the Q-polynomial assumption, under which T is
well behaved.

Motivated by the first part, in Part II we discuss a linear-algebraic
object called a tridiagonal pair.

A tridiagonal pair consists of two diagonalizable linear
transformations on a nonzero finite-dimensional vector space, that
each act in a (block)-tridiagonal fashion on the eigenspaces of the
other one.

We will discuss the classification of tridiagonal pairs, and describe
in detail a special case called a Leonard pair.
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Part I. The subconstituent algebra of a graph

Throughout this talk, all vector spaces and algebras are understood
to be over C.

All algebras are understood to be associative and have a
multiplicative identity.
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Preliminaries

Let X denote a nonempty finite set.

The algebra MatX (C) consists of the matrices that have rows and
columns indexed by X and all entries in C.

The vector space V = CX consists of the column vectors with rows
indexed by X and all entries in C.

MatX (C) acts on V by left multiplication.
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Preliminaries, cont.

Endow V with a Hermitian inner product

〈u, v〉 = utv (u, v ∈ V ).

For each x ∈ X let x̂ denote the vector in V that has a 1 in
coordinate x and 0 in all other coordinates.

The vectors {x̂ |x ∈ X} form an orthonormal basis for V .

Paul Terwilliger
The subconstituent algebra of a graph, the Q-polynomial property, and tridiagonal pairs of linear transformations



The graph Γ

Let Γ = (X ,R) denote a finite, undirected, connected graph,
without loops or multiple edges, with vertex set X , adjacency
relation R, and path-length distance function ∂.

For an integer i ≥ 0 and x ∈ X , define the set

Γi (x) = {y ∈ X |∂(x , y) = i}.

We abbreviate Γ(x) = Γ1(x).
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The graphs of interest

Our main case of interest is when Γ is “highly regular” in a certain
way.

A good example to keep in mind is the D-dimensional
hypercube, also called the binary Hamming graph H(D, 2).

Note that H(2, 2) is a 4-cycle; this will be used as a running
example.
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The adjacency matrix

Let A ∈ MatX (C) denote the (0, 1)-adjacency matrix of Γ.

For x ∈ X ,

Ax̂ =
∑

y∈Γ(x)

ŷ .

Example

For H(2, 2),

A =


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 .
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The adjacency algebra M

Let M denote the subalgebra of MatX (C) generated by A.

M is called the adjacency algebra of Γ.

M is commutative and finite-dimensional.

Example

For H(2, 2), M has a basis

I ,A, J

where the matrix J has every entry 1.
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The primitive idempotents

The matrix A is real and symmetric, so A is diagonalizable and its
eigenvalues are real.

Let {θi}di=0 denote an ordering of the distinct eigenvalues of A.

For 0 ≤ i ≤ d let the matrix Ei ∈ MatX (C) act as the identity on
the θi -eigenspace of A, and as zero on every other eigenspace of A.

We call Ei the primitive idempotent of A (or Γ) associated with
θi .
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The primitive idempotents, cont.

We have

EiEj = δi ,jEi (0 ≤ i , j ≤ d),

I =
d∑

i=0

Ei ,

A =
d∑

i=0

θiEi .

The matrices {Ei}di=0 form a basis for M.
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The primitive idempotents, cont.

Example

For H(2, 2) we have θ0 = 2, θ1 = 0, θ2 = −2. Moreover

E0 = 1/4J,

E1 = 1/4


2 0 0 −2
0 2 −2 0
0 −2 2 0
−2 0 0 2

 ,

E2 = 1/4


1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1

 .
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The eigenspaces of A

The vector space V decomposes as

V =
d∑

i=0

EiV (orthogonal direct sum).

For 0 ≤ i ≤ d the subspace EiV is the θi -eigenspace of A.
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Fix a vertex x of Γ

Until further notice
fix x ∈ X .

We call x the base vertex.

Define D = D(x) by

D = max{∂(x , y) | y ∈ X}.

We call D the diameter of Γ with respect to x .
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The dual primitive idempotents

For 0 ≤ i ≤ D let E ∗i = E ∗i (x) denote the diagonal matrix in
MatX (C) with (y , y)-entry

(E ∗i )y ,y =

{
1, if ∂(x , y) = i ;

0, if ∂(x , y) 6= i .
(y ∈ X ).

We call E ∗i the ith dual primitive idempotent of Γ with respect
to x .
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The dual primitive idempotents, cont.

Example

For H(2, 2),

E ∗0 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , E ∗1 =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 ,

E ∗2 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 .

Paul Terwilliger
The subconstituent algebra of a graph, the Q-polynomial property, and tridiagonal pairs of linear transformations



The dual adjacency algebra.

The {E ∗i }Di=0 satisfy

E ∗i E
∗
j = δi ,jE

∗
i (0 ≤ i , j ≤ D),

I =
D∑
i=0

E ∗i .

The matrices {E ∗i }Di=0 form a basis for a commutative subalgebra
of MatX (C) denoted M∗ = M∗(x).

We call M∗ the dual adjacency algebra of Γ with respect to x .
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The subconstituents of Γ with respect to x

The vector space V decomposes as

V =
D∑
i=0

E ∗i V (orthogonal direct sum).

The above summands are the common eigenspaces for M∗.

For 0 ≤ i ≤ D,

E ∗i V = Span{ŷ |y ∈ Γi (x)}.

We call E ∗i V the ith subconstituent of Γ with respect to x .
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The subconstituent algebra T

So far, we defined the adjacency algebra M and the dual adjacency
algebra M∗. We now combine M and M∗ to get a larger algebra.

Definition (Ter 92)

Let T = T (x) denote the subalgebra of MatX (C) generated by M
and M∗. We call T the subconstituent algebra of Γ with
respect to x .

T is finite-dimensional.

T is noncommutative in general.
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The algebra T is semi-simple

By a T -module we mean a subspace W ⊆ V such that
TW ⊆W .

The algebra T is closed under the conjugate-transpose map.

So for each T -module W , its orthogonal complement W⊥ is a
T -module.

Therefore, the T -module V is an orthogonal direct sum of
irreducible T -modules.

This means that T is semi-simple.
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The algebra T is semi-simple, cont.

Since T is semi-simple, by the Wedderburn theory T is isomorphic
to a direct sum of matrix algebras.

Example

For H(2, 2),

T ' Mat3(C)⊕ C.

Moreover dim(T ) = 10.
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The algebra T is semisimple, cont.

Example (Junie Go 2002)

For H(D, 2),

T ' MatD+1(C)⊕MatD−1(C)⊕MatD−3(C)⊕ · · ·

Moreover dim(T ) =
(D+3

3

)
.
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A research problem

The above comments motivate the following research problem.

Problem

(i) How does the Wedderburn decomposition of T reflect the
combinatorial properties of Γ?

(ii) For which graphs Γ is this decomposition particularly nice?
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The dual adjacency matrix

We now describe a family of graphs for which the Wedderburn
decomposition of T is nice.

These graphs possess a certain matrix called a dual adjacency
matrix.

We will define this type of matrix shortly.
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Some relations in T

By the triangle inequality

AE ∗i V ⊆ E ∗i−1V + E ∗i V + E ∗i+1V (0 ≤ i ≤ D),

where E ∗−1 = 0 and E ∗D+1 = 0.

This is reformulated as follows.

Lemma

For 0 ≤ i , j ≤ D,

E ∗i AE
∗
j = 0 if |i − j ] > 1.
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The dual adjacency matrix

Definition

Referring to the graph Γ, consider a matrix A∗ ∈ MatX (C) that
satisfies the following conditions:

(i) A∗ generates M∗;

(ii) for 0 ≤ i , j ≤ d ,

EiA
∗Ej = 0 if |i − j ] > 1.

We call A∗ a dual adjacency matrix of Γ (with respect to x and
the given ordering {Ei}di=0 of the primitive idempotents).

A dual adjacency matrix A∗ is diagonal.
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The dual adjacency matrix, cont.

For a dual adjacency matrix A∗ the eigenspaces are

E ∗i V (0 ≤ i ≤ D).

The matrix A∗ acts on the eigenspaces of A as follows:

A∗EiV ⊆ Ei−1V + EiV + Ei+1V (0 ≤ i ≤ d),

where E−1 = 0 and Ed+1 = 0.
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An example

Example

H(2, 2) has a dual adjacency matrix

A∗ =


2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −2

 .

Example (Junie Go 2002)

The hypercube H(D, 2) has a dual adjacency matrix

A∗ =
D∑
i=0

(D − 2i)E ∗i .
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How A,A∗ are related

We now consider how the adjacency matrix A and any dual
adjacency matrix A∗ are related.

Example (Junie Go 2002)

For the hypercube H(D, 2) we have

A2A∗ − 2AA∗A + A∗A2 = 4A∗,

A∗2A− 2A∗AA∗ + AA∗2 = 4A.

More generally we have the following.
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The tridiagonal relations

Theorem (Ito+Tanabe+T, 2001)

For the graph Γ with adjacency matrix A and dual adjacency
matrix A∗, there exist complex scalars β, γ, γ∗, %, %∗ such that

A3A∗ − (β + 1)A2A∗A + (β + 1)AA∗A2 − A∗A3

= γ(A2A∗ − A∗A2) + %(AA∗ − A∗A),

A∗3A− (β + 1)A∗2AA∗ + (β + 1)A∗AA∗2 − AA∗3

= γ∗(A∗2A− AA∗2) + %∗(A∗A− AA∗).

These equations are called the tridiagonal relations.
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The Q-polynomial property

Definition

The graph Γ is called Q-polynomial (with respect to x and the
given ordering of the primitive idempotents) whenever Γ has a
dual adjacency matrix with respect to x and {Ei}di=0.

For example, the hypercube H(D, 2) is Q-polynomial with respect
to every vertex.

We now give some more examples.
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Q-polynomial examples

The following graphs are Q-polynomial with respect to every
vertex:

• strongly-regular graph

• cycle

• Hamming graph

• Johnson graph

• Grassmann graph

• Dual polar space graph

• Bilinear forms graph

• Alternating forms graph

• Hermitian forms graph

• Quadratic forms graph

See the book Distance-Regular Graphs by Brouwer, Cohen,
Neumaier.
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How A and A∗ are related

To summarize so far, for our graph Γ the adjacency matrix A and
any dual adjacency matrix A∗ generate T . Moreover A,A∗ act on
each other’s eigenspaces in the following tridiagonal way:

AE ∗i V ⊆ E ∗i−1V + E ∗i V + E ∗i+1V (0 ≤ i ≤ D),

where E ∗−1 = 0 and E ∗D+1 = 0;

A∗EiV ⊆ Ei−1V + EiV + Ei+1V (0 ≤ i ≤ d),

where E−1 = 0 and Ed+1 = 0.

To investigate this situation, we reformulate it using the language
of linear algebra.
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Part II: Tridiagonal pairs and Leonard pairs

We now define a linear-algebraic object called a tridiagonal pair.

Going forward, V will denote a nonzero vector space with finite
dimension.

We consider a pair of linear transformations A : V → V and
A∗ : V → V .
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Definition of a tridiagonal pair

We call A,A∗ a tridiagonal pair on V whenever:

• Each of A,A∗ is diagonalizable on V .

• There exists an ordering {Vi}di=0 of the eigenspaces of A such
that

A∗Vi ⊆ Vi−1 + Vi + Vi+1 (0 ≤ i ≤ d),

where V−1 = 0 and Vd+1 = 0.

• There exists an ordering {V ∗i }Di=0 of the eigenspaces of A∗

such that

AV ∗i ⊆ V ∗i−1 + V ∗i + V ∗i+1 (0 ≤ i ≤ D),

where V ∗−1 = 0 and V ∗D+1 = 0.

• There does not exist a subspace W ⊆ V such that AW ⊆W
and A∗W ⊆W and W 6= 0 and W 6= V .
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The diameter

Referring to our definition of a tridigonal pair,

it turns out that d = D; we call this common value the diameter
of the pair.
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Each irreducible T -module gives a tridiagonal pair

Briefly returning to the graph Γ, the adjacency matrix and any
dual adjacency matrix act on each irreducible T -module as a
tridiagonal pair.

This motivates us to understand tridiagonal pairs.
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The classification of tridiagonal pairs

After 10 years of work and several dozen papers, my collaborators
Tatsuro Ito, Kazumasa Nomura and I classified up to isomorphism
the tridiagonal pairs; see

T. Ito, K. Nomura, P. Terwilliger The classification of the sharp
tridiagonal pairs. Linear Algebra Appl. 435 (2011) 1857–1884.

The classification is a bit involved, so I will skip over it.

Instead, I will give the general idea by discussing the following
special case.
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Leonard pairs

Definition

A Leonard pair on V is a tridiagonal pair A,A∗ on V such that
for each of A,A∗ every eigenspace has dimension one.

The name Leonard pair is in honor of Douglas Leonard (Auburn
U.) whose 1982 theorem about the q-Racah polynomials motivated
this topic.
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Leonard pairs and Leonard systems

When working with a Leonard pair, it is helpful to consider a
closely related object called a Leonard system.

We will define a Leonard system over the next few slides.
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Standard orderings

Let A,A∗ denote a Leonard pair on V with diameter d .

An ordering {Vi}di=0 of the eigenspaces of A is called standard
whenever

A∗Vi ⊆ Vi−1 + Vi + Vi+1 (0 ≤ i ≤ d),

where V−1 = 0 and Vd+1 = 0.

In this case, the ordering {Vd−i}di=0 is also standard and no further
ordering is standard.

A similar discussion applies to A∗.
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Primitive idempotents

Given an eigenspace of a diagonalizable linear transformation, the
corresponding primitive idempotent acts as the identity on that
eigenspace, and as zero on every other eigenspace.
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Leonard systems

Definition

By a Leonard system on V we mean a sequence

Φ = (A; {Ei}di=0;A∗; {E ∗i }di=0)

that satisfies the following:

• A,A∗ is a Leonard pair on V ;

• {Ei}di=0 is a standard ordering of the primitive idempotents of
A;

• {E ∗i }di=0 is a standard ordering of the primitive idempotents of
A∗.

Until further notice, we fix a Leonard system Φ on V as above.
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The relatives of Φ

Using Φ we get some more Leonard systems on V :

Φ∗ = (A∗; {E ∗i }di=0;A; {Ei}di=0),

Φ↓ = (A; {Ei}di=0;A∗; {E ∗d−i}di=0),

Φ⇓ = (A; {Ed−i}di=0;A∗; {E ∗i }di=0).

We call these Leonard systems the relatives of Φ.
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The eigenvalues and dual eigenvalues

Definition

For 0 ≤ i ≤ d let θi (resp. θ∗i ) denote the eigenvalue of A (resp.
A∗) associated with Ei (resp. E ∗i ).

By construction

θi 6= θj , θ∗i 6= θ∗j if i 6= j (0 ≤ i , j ≤ d).

We call the sequence {θi}di=0 (resp. {θ∗i }di=0) the eigenvalue
sequence (resp. dual eigenvalue sequence) of Φ.
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The Φ-standard basis

Next, we use Φ to obtain an attractive basis for V .

Lemma

Pick 0 6= ξ ∈ E0V .

(i) For 0 ≤ i ≤ d the vector E ∗i ξ is nonzero and hence a basis for
E ∗i V .

(ii) The vectors {E ∗i ξ}di=0 form a basis for V .

(iii) ξ =
∑d

i=0 E
∗
i ξ.
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The Φ-standard basis, cont.

Definition

For 0 6= ξ ∈ E0V the basis {E ∗i ξ}di=0 of V is called Φ-standard.
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The intersection numbers of Φ

Lemma

With respect to a Φ-standard basis for V the matrices representing
A and A∗ are

A :



a0 b0 0
c1 a1 b1

c2 · ·
· · ·
· · bd−1

0 cd ad

 ,

A∗ : diag(θ∗0, θ
∗
1, . . . , θ

∗
d),

where bi−1ci 6= 0 for 1 ≤ i ≤ d.
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The intersection numbers of Φ, cont.

Definition

We call {ai}di=0, {bi}d−1
i=0 , {ci}di=1 the intersection numbers of Φ.

Lemma

We have

ci + ai + bi = θ0 (0 ≤ i ≤ d),

where c0 = 0 and bd = 0.

Next, we interchange the roles of A,A∗.
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The dual intersection numbers of Φ

Lemma

With respect to a Φ∗-standard basis for V , the matrices
representing A and A∗ are

A : diag(θ0, θ1, . . . , θd),

A∗ :



a∗0 b∗0 0
c∗1 a∗1 b∗1

c∗2 · ·
· · ·
· · b∗d−1

0 c∗d a∗d


where b∗i−1c

∗
i 6= 0 for 1 ≤ i ≤ d.
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The dual intersection numbers of Φ, cont.

Definition

We call {a∗i }di=0, {b∗i }
d−1
i=0 , {c∗i }di=1 the dual intersection

numbers of Φ.

Lemma

We have

c∗i + a∗i + b∗i = θ∗0 (0 ≤ i ≤ d),

where c∗0 = 0 and b∗d = 0.
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Some polynomials

Next, we bring in some polynomials.

Let λ denote an indeterminate. Let the algebra C[λ] consist of the
polynomials in λ that have all coefficients in C.
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Some polynomials, cont.

Definition

We define some polynomials {ui}di=0 in C[λ] such that

u0 = 1,

λui = ciui−1 + aiui + biui+1 (0 ≤ i ≤ d − 1),

where u−1 = 0.

The polynomial ui has degree i for 0 ≤ i ≤ d .
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More polynomials

Definition

We define some polynomials {u∗i }di=0 in C[λ] such that

u∗0 = 1,

λu∗i = c∗i u
∗
i−1 + a∗i u

∗
i + b∗i u

∗
i+1 (0 ≤ i ≤ d − 1),

where u∗−1 = 0.

The polynomial u∗i has degree i for 0 ≤ i ≤ d .
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The significance of the polynomials

The polynomials {ui}di=0 and {u∗i }di=0 have the following
significance.

Lemma

For 0 ≤ i ≤ d we have

ui (A)E ∗0V = E ∗i V , u∗i (A∗)E0V = EiV .
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Askey-Wilson duality

The polynomials {ui}di=0 and {u∗i }di=0 are related to each other in
the following way.

Lemma

For 0 ≤ i , j ≤ d,

ui (θj) = u∗j (θ∗i ).

This relationship is called Askey-Wilson duality.
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The first and second split sequence

Shortly, we will give explicit formula for the intersection numbers
and dual intersection numbers of Φ.

To obtain these formula, it is convenient to bring in some
additional scalar parameters.

These parameters form two sequences, called the first split
sequence and second split sequence.

We will define these sequences on the next slides.
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The first split sequence

Lemma

There exist nonzero complex scalars {ϕi}di=1 and a basis for V
with respect to which

A :



θ0 0
1 θ1

1 θ2

· ·
· ·

0 1 θd

 ,

A∗ :



θ∗0 ϕ1 0
θ∗1 ϕ2

θ∗2 ·
· ·
· ϕd

0 θ∗d

 .
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The first split sequence, cont.

Definition

The sequence {ϕi}di=1 is called the first split sequence of Φ.

Next, we apply the previous lemma and definition to the Leonard
system Φ⇓.
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The second split sequence

Lemma

There exist nonzero complex scalars {φi}di=1 and a basis for V
with respect to which

A :



θd 0
1 θd−1

1 θd−2

· ·
· ·

0 1 θ0

 ,

A∗ :



θ∗0 φ1 0
θ∗1 φ2

θ∗2 ·
· ·
· φd

0 θ∗d

 .
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The second split sequence, cont.

Definition

The sequence {φi}di=1 is called the second split sequence of Φ.
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The parameter array of Φ

Definition

By the parameter array of Φ we mean the sequence(
{θi}di=0; {θ∗i }di=0; {ϕi}di=1; {φi}di=1

)
where

• {θi}di=0 is the eigenvalue sequence of Φ;

• {θ∗i }di=0 is the dual eigenvalue sequence of Φ;

• {ϕi}di=1 is the first split sequence of Φ;

• {φi}di=1 is the second split sequence of Φ.
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The significance of the parameter array

The parameter array of Φ has the following significance.

Lemma

The Leonard system Φ is uniquely determined up to isomorphism
by its parameter array.
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The significance of the parameter array, cont.

The previous lemma suggests that we can write the intersection
numbers, the dual intersection numbers, and the polynomials
{ui}di=0, {u∗i }di=0 in terms of the parameter array.

We will do this in the upcoming slides.
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The intersection numbers and dual intersection numbers in
terms of the parameter array

Next, for Φ we give the intersection numbers and dual intersection
numbers in terms of the parameter array.

For 0 ≤ i ≤ d − 1,

bi = ϕi+1
(θ∗i − θ∗0)(θ∗i − θ∗1) · · · (θ∗i − θ∗i−1)

(θ∗i+1 − θ∗0)(θ∗i+1 − θ∗1) · · · (θ∗i+1 − θ∗i )
,

b∗i = ϕi+1
(θi − θ0)(θi − θ1) · · · (θi − θi−1)

(θi+1 − θ0)(θi+1 − θ1) · · · (θi+1 − θi )
.
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The intersection numbers and dual intersection numbers in
terms of the parameter array, cont.

For 1 ≤ i ≤ d ,

ci = φi
(θ∗i − θ∗d)(θ∗i − θ∗d−1) · · · (θ∗i − θ∗i+1)

(θ∗i−1 − θ∗d)(θ∗i−1 − θ∗d−1) · · · (θ∗i−1 − θ∗i )
,

c∗i = φd−i+1
(θi − θd)(θi − θd−1) · · · (θi − θi+1)

(θi−1 − θd)(θi−1 − θd−1) · · · (θi−1 − θi )
.
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The polynomials {ui}di=0 and {u∗i }di=0 in terms of the
parameter array

Next, for Φ we express the polynomials {ui}di=0 and {u∗i }di=0 in
terms of the parameter array.

For 0 ≤ i ≤ d ,

ui (λ) =

i∑
n=0

(θ∗i − θ∗0 )(θ∗i − θ∗1 ) · · · (θ∗i − θ∗n−1)(λ− θ0)(λ− θ1) · · · (λ− θn−1)

ϕ1ϕ2 · · ·ϕn
,

u∗i (λ) =

i∑
n=0

(θi − θ0)(θi − θ1) · · · (θi − θn−1)(λ− θ∗0 )(λ− θ∗1 ) · · · (λ− θ∗n−1)

ϕ1ϕ2 · · ·ϕn
.
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Askey-Wilson duality, revisited

The above forms imply the Askey-Wilson duality that we
encountered earlier.

For 0 ≤ i , j ≤ d the common value of ui (θj) = u∗j (θ∗i ) is

min(i,j)∑
n=0

(θ∗i − θ∗0 )(θ∗i − θ∗1 ) · · · (θ∗i − θ∗n−1)(θj − θ0)(θj − θ1) · · · (θj − θn−1)

ϕ1ϕ2 · · ·ϕn
.
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The classification of Leonard systems

We are now ready to give the classification theorem for Leonard
systems.
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The classification of Leonard systems

Theorem (Ter 2001)

Given complex scalars
(
{θi}di=0; {θ∗i }di=0; {ϕi}di=1; {φi}di=1

)
(∗),

there exists a Leonard system Φ with parameter array (∗) iff

• θi 6= θj , θ∗i 6= θ∗j if i 6= j , (0 ≤ i , j ≤ d);

• ϕi 6= 0, φi 6= 0 (1 ≤ i ≤ d);

• ϕi = φ1

i−1∑
h=0

θh − θd−h

θ0 − θd
+ (θ∗i − θ∗0 )(θi−1 − θd) (1 ≤ i ≤ d);

• φi = ϕ1

i−1∑
h=0

θh − θd−h

θ0 − θd
+ (θ∗i − θ∗0 )(θd−i+1 − θ0) (1 ≤ i ≤ d);

• the scalars

θi−2 − θi+1

θi−1 − θi
,

θ∗i−2 − θ∗i+1

θ∗i−1 − θ∗i

are equal and independent of i for 2 ≤ i ≤ d − 1.
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The classification of Leonard systems, cont.

Theorem (Ter 2001)

...(Continued)... Moreover, if Φ exists then Φ is unique up to
isomorphism of Leonard systems.

The solutions (∗) to the classification theorem can be expressed in
parametric form.

To illustrate, we give the most general solution.
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The q-Racah polynomials

Referring to the classification theorem, the most general solution is

θi = θ0 + h(1− qi )(1− sqi+1)q−i ,

θ∗i = θ∗0 + h∗(1− qi )(1− s∗qi+1)q−i

for 0 ≤ i ≤ d and

ϕi = hh∗q1−2i (1− qi )(1− qi−d−1)(1− r1q
i )(1− r2q

i ),

φi = hh∗q1−2i (1− qi )(1− qi−d−1)(r1 − s∗qi )(r2 − s∗qi )/s∗

for 1 ≤ i ≤ d , where r1r2 = ss∗qd+1.
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The q-Racah polynomials, cont.

For this solution,

b0 =
h(1− q−d)(1− r1q)(1− r2q)

1− s∗q2
,

bi =
h(1− qi−d)(1− s∗qi+1)(1− r1q

i+1)(1− r2q
i+1)

(1− s∗q2i+1)(1− s∗q2i+2)
(1 ≤ i ≤ d − 1),

ci =
h(1− qi )(1− s∗qi+d+1)(r1 − s∗qi )(r2 − s∗qi )

s∗qd(1− s∗q2i )(1− s∗q2i+1)
(1 ≤ i ≤ d − 1),

cd =
h(1− qd)(r1 − s∗qd)(r2 − s∗qd)

s∗qd(1− s∗q2d)
.

To get {b∗i }
d−1
i=0 and {c∗i }di=1, in the above formulas exchange

h↔ h∗, s ↔ s∗ and preserve r1, r2, q.
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The q-Racah polynomials, cont.

For the above solution, the polynomials {ui}di=0 and {u∗i }di=0 look
as follows.

For 0 ≤ i , j ≤ d the common value of ui (θj) = u∗j (θ∗i ) is

min(i ,j)∑
n=0

(q−i ; q)n(s∗qi+1; q)n(q−j ; q)n(sqj+1; q)nq
n

(r1q; q)n(r2q; q)n(q−d ; q)n(q; q)n
,

where

(a; q)n := (1− a)(1− aq)(1− aq2) · · · (1− aqn−1)

for n = 0, 1, 2 . . .
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The q-Racah polynomials, cont.

The above sum is a basic hypergeometric series; the notation is

4φ3

(
q−i , s∗qi+1, q−j , sqj+1

r1q, r2q, q−d

∣∣∣∣ q, q).
For this solution the polynomials {ui}di=0 and {u∗i }di=0 are in the
q-Racah class.
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The Askey scheme of orthogonal polynomials

For the classification of Leonard systems, altogether the solutions
fall into 12 families. These families correspond to the following
classes of orthogonal polynomials:

q-Racah,
q-Hahn,
dual q-Hahn,
q-Krawtchouk,
dual q-Krawtchouk,
quantum q-Krawtchouk,
affine q-Krawtchouk,
Racah,
Hahn,
dual-Hahn,
Krawtchouk,
Bannai/Ito.
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The Askey scheme of orthogonal polynomials, cont.

The above polynomial classes form the terminating branch of
the Askey scheme of orthogonal polynomials.

Roughly speaking, the Leonard systems are the same thing (in
disguise) as the orthogonal polynomials from the terminating
branch of the Askey scheme.
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Conclusion

We have seen how Leonard pairs arise in connection with the
subconstituent algebra of a graph.

In fact, Leonard pairs arise in many areas of mathematics and
physics.

Indeed, Leonard pairs arise wherever the following polynomials are
found:

q-Racah, q-Hahn, dual q-Hahn, q-Krawtchouk, dual
q-Krawtchouk, quantum q-Krawtchouk, affine q-Krawtchouk,
Racah, Hahn, dual-Hahn, Krawtchouk, Bannai/Ito.
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