The S_3 -symmetric tridiagonal algebra

Paul Terwilliger

University of Wisconsin-Madison

Overview

In this talk, we first review the **tridiagonal algebra** T.

We then introduce a generalization of T, called the S_3 -symmetric tridiagonal algebra \mathbb{T} .

Given a Q-polynomial distance-regular graph Γ , we turn the tensor power $V^{\otimes 3}$ of the standard module V into a \mathbb{T} -module.

We describe a certain irreducible \mathbb{T} -submodule Λ of $V^{\otimes 3}$, said to be **fundamental**.

Preliminaries

We review some notation.

Let \mathbb{F} denote a field.

Every vector space and tensor product, is understood to be over \mathbb{F} .

Every algebra without the Lie prefix, is understood to be associative, over \mathbb{F} , and have a multiplicative identity.

Preliminaries, cont.

Let
$$0 \neq q \in \mathbb{F}$$
.

For elements B, C in any algebra, define

$$[B, C] = BC - CB,$$
 $[B, C]_q = qBC - q^{-1}CB.$

The Tridiagonal algebra

We now recall the tridiagonal algebra.

Definition (Ter 2001)

For $\beta, \gamma, \gamma^*, \varrho, \varrho^* \in \mathbb{F}$ the algebra $T = T(\beta, \gamma, \gamma^*, \varrho, \varrho^*)$ is defined by generators A, A^* and relations

$$[A, A^{2}A^{*} - \beta AA^{*}A + A^{*}A^{2} - \gamma (AA^{*} + A^{*}A) - \varrho A^{*}] = 0,$$

$$[A^{*}, A^{*2}A - \beta A^{*}AA^{*} + AA^{*2} - \gamma^{*}(A^{*}A + AA^{*}) - \varrho^{*}A] = 0.$$

We call T the **tridiagonal algebra**. The above relations are called the **tridiagonal relations**.

The Onsager Lie algebra

We mention some special cases of the tridiagonal algebra.

Lemma

Assume that \mathbb{F} has characteristic 0. For

$$\beta = 2,$$
 $\gamma = \gamma^* = 0,$ $\varrho \neq 0,$ $\varrho^* \neq 0$

the tridiagonal relations become the **Dolan/Grady relations**

$$[A, [A, [A, A^*]]] = \varrho[A, A^*],$$

 $[A^*, [A^*, [A^*, A]]] = \varrho^*[A^*, A].$

In this case, T becomes the enveloping algebra U(O) for the **Onsager Lie algebra** O.

The algebra U_q^+

Lemma

For $\beta \neq \pm 2$,

$$\beta = q^2 + q^{-2},$$
 $\gamma = \gamma^* = 0,$ $\varrho = \varrho^* = 0$

the tridiagonal relations become the q-Serre relations

$$[A, [A, [A, A^*]_q]_{q^{-1}}] = 0,$$

$$[A^*, [A^*, [A^*, A]_q]_{q^{-1}}] = 0.$$

In this case, T becomes the positive part U_q^+ of the q-deformed enveloping algebra $U_q(\widehat{\mathfrak{sl}}_2)$.

The q-Onsager algebra

Lemma

For $\beta \neq \pm 2$,

$$\beta = q^2 + q^{-2}, \qquad \gamma = \gamma^* = 0, \qquad \varrho = \varrho^* = -(q^2 - q^{-2})^2$$

the tridiagonal relations become the q-Dolan/Grady relations

$$[A, [A, [A, A^*]_q]_{q^{-1}}] = (q^2 - q^{-2})^2 [A^*, A],$$

$$[A^*, [A^*, [A^*, A]_q]_{q^{-1}}] = (q^2 - q^{-2})^2 [A, A^*].$$

In this case, T becomes the q-Onsager algebra O_q .

The S_3 -symmetric tridiagonal algebra

We now introduce the S_3 -symmetric tridiagonal algebra.

Definition (Ter 2024)

For $\beta, \gamma, \gamma^*, \varrho, \varrho^* \in \mathbb{F}$ the algebra $\mathbb{T} = \mathbb{T}(\beta, \gamma, \gamma^*, \varrho, \varrho^*)$ is defined by generators

$$A_i, A_i^* \qquad i \in \{1, 2, 3\}$$

and the following relations.

(i) For $i, j \in \{1, 2, 3\}$,

$$[A_i, A_j] = 0,$$
 $[A_i^*, A_j^*] = 0.$

(ii) For $i \in \{1, 2, 3\}$,

$$[A_i, A_i^*] = 0.$$

The S_3 -symmetric tridiagonal algebra, cont.

Definition

Continued....

(iii) For distinct $i, j \in \{1, 2, 3\}$,

$$[A_{i}, A_{i}^{2} A_{j}^{*} - \beta A_{i} A_{j}^{*} A_{i} + A_{j}^{*} A_{i}^{2} - \gamma (A_{i} A_{j}^{*} + A_{j}^{*} A_{i}) - \varrho A_{j}^{*}] = 0,$$

$$[A_{j}^{*}, A_{j}^{*2} A_{i} - \beta A_{j}^{*} A_{i} A_{j}^{*} + A_{i} A_{j}^{*2} - \gamma^{*} (A_{j}^{*} A_{i} + A_{i} A_{j}^{*}) - \varrho^{*} A_{i}] = 0.$$

We call \mathbb{T} the S_3 -symmetric tridiagonal algebra.

How T and \mathbb{T} are related

The algebras T and \mathbb{T} are related as follows.

Lemma (Ter 2024)

For distinct $r, s \in \{1, 2, 3\}$ there exists an algebra homomorphism $T(\beta, \gamma, \gamma^*, \varrho, \varrho^*) \to \mathbb{T}(\beta, \gamma, \gamma^*, \varrho, \varrho^*)$ that sends

$$A \mapsto A_r, \qquad A^* \mapsto A_s^*.$$

This homomorphism is injective.

A module for the S_3 -symmetric tridiagonal algebra

For the rest of this talk, the following assumptions are in effect.

Let the field $\mathbb{F} = \mathbb{C}$.

Let Γ denote a distance-regular graph, with vertex set X, path-length distance function ∂ , and diameter $D \ge 1$.

For $x \in X$ and $0 \le i \le D$ define the set

$$\Gamma_i(x) = \{ y \in X | \partial(x, y) = i \}.$$

We abbreviate $\Gamma(x) = \Gamma_1(x)$.

A module for the S_3 -symmetric tridiagonal algebra, cont.

Assumptions continued....

Assume that Γ is Q-polynomial, with eigenvalue sequence $\{\theta_i\}_{i=0}^D$ and dual eigenvalue sequence $\{\theta_i^*\}_{i=0}^D$.

Some scalars

Lemma

There exist real scalars $\beta, \gamma, \gamma^*, \varrho, \varrho^*$ such that:

(i) $\beta + 1$ is equal to each of

$$\frac{\theta_{i-2} - \theta_{i+1}}{\theta_{i-1} - \theta_i}, \qquad \frac{\theta_{i-2}^* - \theta_{i+1}^*}{\theta_{i-1}^* - \theta_i^*}$$

for $2 \le i \le D - 1$.

(ii) For $1 \le i \le D - 1$, both

$$\gamma = \theta_{i-1} - \beta \theta_i + \theta_{i+1}, \qquad \gamma^* = \theta_{i-1}^* - \beta \theta_i^* + \theta_{i+1}^*.$$

(iii) For $1 \le i \le D$, both

$$\varrho = \theta_{i-1}^2 - \beta \theta_{i-1} \theta_i + \theta_i^2 - \gamma (\theta_{i-1} + \theta_i),
\varrho^* = \theta_{i-1}^{*2} - \beta \theta_{i-1}^* \theta_i^* + \theta_i^{*2} - \gamma^* (\theta_{i-1}^* + \theta_i^*).$$

The standard module

Next, we recall the standard module associated with Γ .

Definition

Let V denote a vector space over \mathbb{C} with basis X. We call V the **standard module** associated with Γ .

Definition

We define the vector space $V^{\otimes 3} = V \otimes V \otimes V$ and the set

$$X^{\otimes 3} = \{ x \otimes y \otimes z | x, y, z \in X \}.$$

Note that $X^{\otimes 3}$ is a basis for $V^{\otimes 3}$.

We now state our first main result.

A module for the S_3 -symmetric tridiagonal algebra

Theorem (Ter 2024)

For the above scalars $\beta, \gamma, \gamma^*, \varrho, \varrho^*$ the vector space $V^{\otimes 3}$ becomes a $\mathbb{T}(\beta, \gamma, \gamma^*, \varrho, \varrho^*)$ -module on which the generators $\{A_i\}_{i=1}^3$, $\{A_i^*\}_{i=1}^3$ act as follows. For $x, y, z \in X$,

$$A_{1}(x \otimes y \otimes z) = \sum_{\xi \in \Gamma(x)} \xi \otimes y \otimes z,$$

$$A_{2}(x \otimes y \otimes z) = \sum_{\xi \in \Gamma(y)} x \otimes \xi \otimes z,$$

$$A_{3}(x \otimes y \otimes z) = \sum_{\xi \in \Gamma(z)} x \otimes y \otimes \xi,$$

$$A_{1}^{*}(x \otimes y \otimes z) = x \otimes y \otimes z \theta_{\partial(y,z)}^{*},$$

$$A_{2}^{*}(x \otimes y \otimes z) = x \otimes y \otimes z \theta_{\partial(z,x)}^{*},$$

$$A_{3}^{*}(x \otimes y \otimes z) = x \otimes y \otimes z \theta_{\partial(x,y)}^{*}.$$

Node actions and edge actions

The above six actions are discussed in Bill Martin's work on **Scaffolds**.

The actions of A_1 , A_2 , A_3 are called **node actions**, and the actions of A_1^* , A_2^* , A_3^* are called **edge actions**.

The fundamental \mathbb{T} -submodule Λ

Next, we discuss a certain irreducible \mathbb{T} -submodule $\Lambda \subseteq V^{\otimes 3}$, said to be **fundamental**.

We bring in some notation.

Let $A: V \rightarrow V$ denote the adjacency map for Γ :

$$Ax = \sum_{\xi \in \Gamma(x)} \xi$$
 $(x \in X).$

For $0 \le i \le D$ let E_i denote the primitive idempotent of A for θ_i .

A Hermitean form

Let (,) denote the unique Hermitean form $V \times V \to \mathbb{C}$ with respect to which the basis X is orthonormal.

Lemma

The following hold.

- (i) There exists a unique Hermitean form $\langle \, , \, \rangle : V^{\otimes 3} \times V^{\otimes 3} \to \mathbb{C}$ with respect to which the basis $X^{\otimes 3}$ is orthonormal.
- (ii) For $u, v, w, u', v', w' \in V$ we have

$$\langle u \otimes v \otimes w, u' \otimes v' \otimes w' \rangle = (u, u')(v, v')(w, w').$$

The \mathbb{T} -action

The Hermitean form $\langle \, , \, \rangle$ respects the $\mathbb{T}\text{-action}$ as follows.

Lemma

For $r \in \{1, 2, 3\}$ and $u, v \in V^{\otimes 3}$ we have

$$\langle A^{(r)}u,v\rangle = \langle u,A^{(r)}v\rangle, \qquad \langle A^{*(r)}u,v\rangle = \langle u,A^{*(r)}v\rangle.$$

Irreducible T-modules

Definition

A \mathbb{T} -module W is called **irreducible** whenever $W \neq 0$ and W does not contain a \mathbb{T} -submodule besides 0 and W.

Lemma

The \mathbb{T} -module $V^{\otimes 3}$ is an orthogonal direct sum of irreducible \mathbb{T} -submodules.

The vector 1

The standard module V contains the vector

$$1 = \sum_{x \in X} x.$$

We abbreviate $\mathbf{1}^{\otimes 3} = \mathbf{1} \otimes \mathbf{1} \otimes \mathbf{1}$ and note that

$$\mathbf{1}^{\otimes 3} = \sum_{x,y,z \in X} x \otimes y \otimes z.$$

The fundamental \mathbb{T} -submodule Λ

Lemma (Ter 2024)

There exists a unique irreducible \mathbb{T} -submodule Λ of $V^{\otimes 3}$ that contains $\mathbf{1}^{\otimes 3}$.

Definition (Ter 2024)

The \mathbb{T} -submodule Λ is called **fundamental**.

Some vectors in Λ

In order to describe Λ , we display some vectors that it contains.

Definition

For $0 \le h, i, j \le D$ define

$$P_{h,i,j} = \sum_{\substack{x,y,z \in X \\ \partial(y,z) = h \\ \partial(z,x) = i \\ \partial(x,y) = j}} x \otimes y \otimes z.$$

For example,

$$P_{0,0,0} = \sum_{x \in X} x \otimes x \otimes x.$$

The vectors $P_{h,i,j}$

Lemma

We have

$$P_{h,i,j} \in \Lambda$$
,

$$(0 \le h, i, j \le D)$$
.

The vectors $P_{h,i,j}$ cont.

Recall the intersection numbers $p_{i,j}^h$ and valencies k_h for Γ .

Lemma

The following vectors are mutually orthogonal:

$$P_{h,i,j}$$
 $0 \le h, i, j \le D.$

For $0 \le h, i, j \le D$ we have

$$||P_{h,i,j}||^2 = |X|k_h p_{i,j}^h.$$

Lemma

 $P_{h,i,j} = 0$ if and only if $p_{i,j}^h = 0$ $(0 \le h, i, j \le D)$.

The vectors $Q_{h,i,j}$

Definition (Cameron, Goethals, Seidel 1978)

For $0 \le h, i, j \le D$ define

$$Q_{h,i,j} = |X| \sum_{x \in X} E_h x \otimes E_i x \otimes E_j x.$$

The vectors $Q_{h,i,j}$ cont.

Lemma

We have

$$Q_{h,i,j} \in \Lambda$$
, $(0 \le h, i, j \le D)$.

The vectors $Q_{h,i,j}$ cont.

Recall the Krein parameters $q_{i,j}^h$ and multiplicities m_h for Γ .

Lemma (Cameron, Goethals, Seidel 1978)

The following vectors are mutually orthogonal:

$$Q_{h,i,j}$$
 $0 \leq h, i, j \leq D.$

For $0 \le h, i, j \le D$ we have

$$||Q_{h,i,j}||^2 = |X| m_h q_{i,j}^h.$$

Lemma (Cameron, Goethals, Seidel 1978)

 $Q_{h,i,j} = 0$ if and only if $q_{i,j}^h = 0 \ (0 \le h, i, j \le D)$.

Two commuting actions

For the rest of this talk, let G denote a subgroup of $\operatorname{Aut}(\Gamma)$.

We are going to display a G action on $V^{\otimes 3}$ that commutes with the $\mathbb T$ action.

The G action on V

We recall how V becomes a G-module.

Pick $v \in V$ and write $v = \sum_{x \in X} v_x x \ (v_x \in \mathbb{C})$. For all $g \in G$,

$$g(v) = \sum_{x \in X} v_x g(x).$$

Since g respects adjacency, we have gA = Ag on V.

The G action on $V^{\otimes 3}$

Next, we describe how $V^{\otimes 3}$ becomes a *G*-module.

For $u, v, w \in V$ and $g \in G$ we have

$$g(u \otimes v \otimes w) = g(u) \otimes g(v) \otimes g(w).$$

The actions of G and \mathbb{T} commute

Lemma

For $g \in G$ and $B \in \mathbb{T}$, we have gB = Bg on $V^{\otimes 3}$.

The \mathbb{T} -submodule Fix(G)

Definition

We define the set

$$\operatorname{Fix}(G) = \{ v \in V^{\otimes 3} | g(v) = v \, \forall g \in G \}.$$

Lemma (Ter 2024)

Fix(G) is a \mathbb{T} -submodule of $V^{\otimes 3}$ that contains Λ .

A basis for Fix(G)

Next, we display a basis for Fix(G).

Recall that $V^{\otimes 3}$ has an orthonormal basis $X^{\otimes 3}$.

The group G acts on the set $X^{\otimes 3}$.

A basis for Fix(G), cont.

Definition

Referring to the G action on the set $X^{\otimes 3}$, let \mathcal{O} denote the set of orbits. For each orbit $\Omega \in \mathcal{O}$ define

$$\chi_{\Omega} = \sum_{\mathsf{x} \otimes \mathsf{y} \otimes \mathsf{z} \in \Omega} \mathsf{x} \otimes \mathsf{y} \otimes \mathsf{z}.$$

We call χ_{Ω} the **characteristic vector** of Ω .

A basis for Fix(G), cont.

Lemma

The following is an orthogonal basis for the vector space Fix(G):

$$\chi_{\Omega}, \qquad \Omega \in \mathcal{O}.$$

We mentioned that $\Lambda \subseteq Fix(G)$.

Next, we give an example for which $\Lambda = \text{Fix}(G)$.

The Hamming graph H(D, N)

Theorem

Assume that Γ is the Hamming graph H(D,N) with $D \ge 1$ and $N \ge 3$. Then for $G = \operatorname{Aut}(\Gamma)$,

$$\Lambda = \operatorname{Fix}(G)$$
.

Moreover

$$\dim \Lambda = \binom{D+4}{4}.$$

Summary

In this talk, we introduced the S_3 -symmetric tridiagonal algebra \mathbb{T} .

For a Q-polynomial distance-regular graph Γ , we turned the tensor power $V^{\otimes 3}$ of the standard module V into a \mathbb{T} -module.

We identified a certain irreducible \mathbb{T} -submodule Λ of $V^{\otimes 3}$, said to be **fundamental**.

We described some vectors $P_{h,i,j}$ and $Q_{h,i,j}$ in Λ .

For a subgroup G of $\operatorname{Aut}(\Gamma)$ we described a \mathbb{T} -submodule $\operatorname{Fix}(G)$ of $V^{\otimes 3}$ that contains Λ .

For $\Gamma = H(D, N)$ and $G = \operatorname{Aut}(\Gamma)$ we showed that $\Lambda = \operatorname{Fix}(G)$.

THANK YOU FOR YOUR ATTENTION!

