The alternating PBW basis for the positive part of $U_q(\widehat{\mathfrak{sl}}_2)$

Paul Terwilliger

[The alternating PBW basis for the positive part of](#page-53-0) $U_q(\widehat{\mathfrak{sl}}_2)^\circ$ $U_q(\widehat{\mathfrak{sl}}_2)^\circ$

Paul Terwilliger

Overview

The positive part U_q^+ of $U_q(\hat{\mathfrak{sl}}_2)$ has a presentation with two generators A, B that satisfy the cubic q -Serre relations.

We introduce a PBW basis for U_q^+ , said to be alternating.

Each element of this PBW basis commutes with exactly one of A, B, $qAB - q^{-1}BA$.

This gives three types of PBW basis elements; the elements of each type mutually commute.

We interpret the alternating PBW basis in terms of a q -shuffle algebra associated with affine $s1_2$.

We show how the alternating PBW basis is related to the PBW basis for U_q^+ found by Damiani in 1993.

[The alternating PBW basis for the positive part of](#page-0-0) $U_q(\widehat{\mathfrak{sl}})$ $U_q(\widehat{\mathfrak{sl}})$

Our discovery of the alternating PBW basis was inspired by the work of mathematical physicists P. Baseilhac, K. Koizumi, K. Shigechi concerning boundary integrable systems with hidden symmetries.

We were led to the alternating PBW basis while trying to understand their work.

Simply put, our discovery would not have occurred without their inspiration.

Recall the natural numbers $\mathbb{N} = \{0, 1, 2, \ldots\}$ and integers $\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}.$

Fix a field F.

Each vector space discussed is over \mathbb{F} .

Each algebra discussed is associative, over $\mathbb F$, and has a 1.

Let A denote an algebra.

We will be discussing a type of basis for A , called a Poincaré-Birkhoff-Witt (or PBW) basis.

This consists of a subset $\Omega \subseteq A$ and a linear order \lt on Ω , such that the following is a linear basis for the vector space \mathcal{A} :

$$
a_1 a_2 \cdots a_n
$$
 $n \in \mathbb{N}$, $a_1, a_2, \ldots, a_n \in \Omega$,
 $a_1 \le a_2 \le \cdots \le a_n$.

[The alternating PBW basis for the positive part of](#page-0-0) $U_q(\widehat{\mathfrak{sl}})$ $U_q(\widehat{\mathfrak{sl}})$

Fix a nonzero $q \in \mathbb{F}$ that is not a root of unity.

Recall the notation

$$
[n]_q = \frac{q^n - q^{-n}}{q - q^{-1}} \qquad n \in \mathbb{Z}.
$$

For elements X, Y in any algebra, define their commutator and q-commutator by

$$
[X, Y] = XY - YX, \qquad [X, Y]_q = qXY - q^{-1}YX.
$$

Note that

$$
[X,[X,[X,Y]_q]_{q^{-1}}] = X^3Y - [3]_qX^2YX + [3]_qXYX^2 - YX^3.
$$

Definition

Define the algebra U_q^+ by generators A, B and relations

 $[A, [A, [A, B]_q]_{q^{-1}}] = 0,$ $[B, [B, [B, A]_q]_{q^{-1}}] = 0.$

[The alternating PBW basis for the positive part of](#page-0-0) $U_q(\widehat{\hat{\mathfrak{s}}}_Q)$ $U_q(\widehat{\hat{\mathfrak{s}}}_Q)$

We call U_q^+ the **positive part of** $U_q(\widehat{\mathfrak{sl}}_2)$.

The above relations are called the q -Serre relations.

Why we care about U^+_σ q

We briefly explain why U_{q}^{+} is of interest.

Let $\,V$ denote a finite-dimensional irreducible $\,U^+_q$ -module on which A, B are diagonalizable. Then:

• the eigenvalues of A and B on V have the form

A:
$$
\{aq^{d-2i}\}_{i=0}^d
$$
 $0 \neq a \in \mathbb{F}$,
B: $\{bq^{d-2i}\}_{i=0}^d$ $0 \neq b \in \mathbb{F}$.

• For $0 \le i \le d$ let V_i (resp. V_i^*) denote the eigenspace of A (resp. B) for the eigenvalue a q^{d-2i} (resp. bq^{d-2i}). Then

$$
BV_i \subseteq V_{i-1} + V_i + V_{i+1},
$$

$$
AV_i^* \subseteq V_{i-1}^* + V_i^* + V_{i+1}^*,
$$

where $V_{-1} = 0 = V_{d+1}$ and $V_{-1}^* = 0 = V_{d+1}^*$.

[The alternating PBW basis for the positive part of](#page-0-0) $U_q(\widehat{\widehat{\mathfrak{sl}}})^{\triangle}$ $U_q(\widehat{\widehat{\mathfrak{sl}}})^{\triangle}$

Consequently A, B act on V as a **tridiagonal pair**.

The topic of tridiagonal pairs is an active area of research, with links to

- combinatorics and graph theory (E. Bannai, T. Ito, W. Martin, S. Miklavic, K. Nomura, A. Pascasio, H. Tanaka) ;
- special functions and orthogonal polynomials (H. Alnajjar, B. Curtin, A. Grunbaum, E. Hanson, M. Ismail, J. H. Lee, R. Vidunas);
- quantum groups and representation theory (S. Bockting-Conrad, H. W. Huang, S. Kolb);
- mathematical physics (P. Baseilhac, S. Belliard, L. Vinet, A. Zhedanov)

[The alternating PBW basis for the positive part of](#page-0-0) $U_q(\widehat{\mathfrak{sl}})$ $U_q(\widehat{\mathfrak{sl}})$

We now return to U_q^+ .

An \mathbb{N}^2 -grading for U_q^+ q

The algebra U^+_q has a grading that we now describe.

Note that the q-Serre relations are homogeneous in both A and B .

Therefore the algebra $\, U^+_q\,$ has an $\mathbb{N}^2\text{-}$ grading such that A and B are homogeneous, with degrees $(1, 0)$ and $(0, 1)$ respectively.

For $(i, j) \in \mathbb{N}^2$ let $d_{i,j}$ denote the dimension of the (i,j) -homogeneous component of U_q^+ .

These dimensions are described by the generating function

$$
\sum_{(i,j)\in\mathbb{N}^2}d_{i,j}\lambda^i\mu^j=\prod_{\ell=1}^\infty\frac{1}{1-\lambda^\ell\mu^{\ell-1}}\,\frac{1}{1-\lambda^\ell\mu^\ell}\,\frac{1}{1-\lambda^{\ell-1}\mu^\ell}.
$$

[The alternating PBW basis for the positive part of](#page-0-0) $U_q(\widehat{\hat{\mathfrak{s}}}_Q)$ $U_q(\widehat{\hat{\mathfrak{s}}}_Q)$

For $0\leq i,j\leq 6$ the dimension $d_{i,j}$ is given in the (i,j) -entry of the matrix below:

In 1993, Damiani obtained a PBW basis for U_q^+ , involving some elements

$$
\{E_{n\delta+\alpha_0}\}_{n=0}^\infty, \qquad \{E_{n\delta+\alpha_1}\}_{n=0}^\infty, \qquad \{E_{n\delta}\}_{n=1}^\infty. \qquad (1)
$$

These elements are recursively defined as follows:

$$
E_{\alpha_0}=A, \qquad E_{\alpha_1}=B, \qquad E_{\delta}=q^{-2}BA-AB,
$$

and for $n > 1$,

$$
E_{n\delta+\alpha_0}=\frac{[E_{\delta},E_{(n-1)\delta+\alpha_0}]}{q+q^{-1}},\qquad E_{n\delta+\alpha_1}=\frac{[E_{(n-1)\delta+\alpha_1},E_{\delta}]}{q+q^{-1}},
$$

$$
E_{n\delta}=q^{-2}E_{(n-1)\delta+\alpha_1}A-AE_{(n-1)\delta+\alpha_1}.
$$

[The alternating PBW basis for the positive part of](#page-0-0) $U_q(\widehat{\mathfrak{sl}}_2)^\circ$ $U_q(\widehat{\mathfrak{sl}}_2)^\circ$

Paul Terwilliger

The elements [\(1\)](#page-11-1) are homogeneous with degrees shown below:

Theorem (Damiani 1993)

A PBW basis for U_q^+ is given by the elements (1) in linear order

$$
E_{\alpha_0} < E_{\delta + \alpha_0} < E_{2\delta + \alpha_0} < \cdots
$$
\n
$$
\cdots < E_{\delta} < E_{2\delta} < E_{3\delta} < \cdots
$$
\n
$$
\cdots < E_{2\delta + \alpha_1} < E_{\delta + \alpha_1} < E_{\alpha_1}.
$$

Moreover the elements ${E_{n\delta}}_{n=1}^{\infty}$ mutually commute.

[The alternating PBW basis for the positive part of](#page-0-0) $U_q(\widehat{\widehat{\mathfrak{s}}}|_2^{\otimes q})$ $U_q(\widehat{\widehat{\mathfrak{s}}}|_2^{\otimes q})$

The Damiani PBW basis elements are defined recursively.

Next we describe these elements in closed form, using a q -shuffle algebra.

For this q -shuffle algebra, the underlying vector space is a free algebra on two generators.

This free algebra is described on the next slide.

Let x, y denote noncommuting indeterminates.

Let V denote the free algebra with generators x, y .

By a **letter** in V we mean x or y.

For $n \in \mathbb{N}$, a **word of length** n in \mathbb{V} is a product of letters $V_1V_2\cdots V_n$.

The vector space V has a linear basis consisting of its words; this basis is called standard.

We just defined the free algebra V .

There is another algebra structure on V , called the q-shuffle algebra. This is due to M. Rosso 1995.

The q-shuffle product will be denoted by \star .

The *q*-shuffle product on V , cont.

For letters u, v we have

$$
u\star v = uv + vuq^{\langle u,v\rangle}
$$

where

So

$$
x \star y = xy + q^{-2}yx,
$$

\n
$$
x \star x = (1 + q^2)x,
$$

\n
$$
y \star x = yx + q^{-2}xy,
$$

\n
$$
y \star y = (1 + q^2)yy.
$$

[The alternating PBW basis for the positive part of](#page-0-0) $U_q(\widehat{\widetilde{\mathfrak{sl}}}_2)$ $U_q(\widehat{\widetilde{\mathfrak{sl}}}_2)$

Paul Terwilliger

The *q*-shuffle product on V , cont.

For words u, v in V we now describe $u * v$.

Write $u = a_1 a_2 \cdots a_r$ and $v = b_1 b_2 \cdots b_s$.

To illustrate, assume $r = 2$ and $s = 2$.

We have

$$
u * v = a_1 a_2 b_1 b_2
$$

+ a_1 b_1 a_2 b_2 q^(a_2, b_1)
+ a_1 b_1 b_2 a_2 q^(a_2, b_1)+^(a_2, b_2)
+ b_1 a_1 a_2 b_2 q^(a_1, b_1)+^(a_2, b_1)
+ b_1 a_1 b_2 a_2 q^(a_1, b_1)+^(a_2, b_1)+^(a_2, b_2)
+ b_1 b_2 a_1 a_2 q^(a_1, b_1)+^(a_1, b_2)+^(a_2, b_1)+^(a_2, b_2)

[The alternating PBW basis for the positive part of](#page-0-0) $U_q(\widehat{\mathfrak{sl}}_2)^\circ$ $U_q(\widehat{\mathfrak{sl}}_2)^\circ$

Theorem (Rosso 1995)

The q-shuffle product \star turns the vector space $\mathbb {V}$ into an algebra.

[The alternating PBW basis for the positive part of](#page-0-0) $U_q(\widehat{\mathfrak{sl}}_2)^\circ$ $U_q(\widehat{\mathfrak{sl}}_2)^\circ$

Definition

Let U denote the subalgebra of the q -shuffle algebra V generated by x, y .

The algebra U is described as follows. We have

$$
x \times x \times x \times y - [3]_q x \times x \times y \times x + [3]_q x \times y \times x \times x - y \times x \times x \times x = 0,
$$

$$
y \times y \times y \times x - [3]_q y \times y \times x \times y + [3]_q y \times x \times y \times y - x \times y \times y \times y = 0.
$$

So in the q-shuffle algebra V the elements x, y satisfy the q-Serre relations.

Consequently there exists an algebra homomorphism \natural from U_q^+ to the q-shuffle algebra V, that sends $A \mapsto x$ and $B \mapsto y$.

The map \sharp has image U by construction.

Theorem (Rosso, 1995)

The map $\natural : U_q^+ \to U$ is an algebra isomorphism.

Next we describe how the map \natural acts on the Damiani PBW basis for U_q^+ .

The Catalan words in V

Give each letter x, y a weight:

$$
\overline{x} = 1, \qquad \qquad \overline{y} = -1.
$$

A word $v_1v_2\cdots v_n$ in $\mathbb {V}$ is **Catalan** whenever $\overline{v}_1+\overline{v}_2+\cdots+\overline{v}_i$ is nonnegative for $1 \le i \le n-1$ and zero for $i = n$. In this case *n* is even.

Example

For $0 \le n \le 3$ we give the Catalan words of length 2n.

[The alternating PBW basis for the positive part of](#page-0-0) $U_q(\widehat{\mathfrak{sl}})$ $U_q(\widehat{\mathfrak{sl}})$

The Damiani PBW basis in closed form

Definition

For $n \in \mathbb{N}$ define

$$
C_n = \sum v_1v_2\cdots v_{2n}[1]_q[1+\overline{v}_1]_q[1+\overline{v}_1+\overline{v}_2]_q\cdots[1+\overline{v}_1+\overline{v}_2+\cdots+\overline{v}_{2n}]_q,
$$

where the sum is over all the Catalan words $v_1v_2\cdots v_{2n}$ in V that have length 2n.

Example

We have

$$
C_0 = 1, \t C_1 = [2]_q xy, \t C_2 = [2]_q^2 xyxy + [3]_q [2]_q^2 xxyy,
$$

\n
$$
C_3 = [2]_q^3 xyxyxy + [3]_q [2]_q^3 xxyxyy + [3]_q [2]_q^3 xyxxyy
$$

\n
$$
+ [3]_q^2 [2]_q^3 xxyxyy + [4]_q [3]_q^2 [2]_q^2 xxxyyy.
$$

[The alternating PBW basis for the positive part of](#page-0-0) $U_q(\widehat{\mathfrak{sl}}_2)$ $U_q(\widehat{\mathfrak{sl}}_2)$

Theorem (Terwilliger 2018)

The map \natural sends

$$
E_{n\delta+\alpha_0}\mapsto q^{-2n}(q-q^{-1})^{2n}xC_n,
$$

$$
E_{n\delta+\alpha_1}\mapsto q^{-2n}(q-q^{-1})^{2n}C_ny
$$

for $n > 0$, and

$$
E_{n\delta}\mapsto -q^{-2n}(q-q^{-1})^{2n-1}C_n
$$

for $n > 1$.

[The alternating PBW basis for the positive part of](#page-0-0) $U_q(\widehat{\widetilde{\mathfrak{s}}}_Q^{\otimes})^{\otimes}$ $U_q(\widehat{\widetilde{\mathfrak{s}}}_Q^{\otimes})^{\otimes}$

We mentioned earlier that $\{E_{n\delta}\}_{n=1}^\infty$ mutually commute.

We just described the Damiani PBW basis for U^+_q .

In the coming slides, we will obtain another PBW basis for U_q^+ , said to be alternating.

This PBW basis has the following features.

For the alternating PBW basis,

• each element commutes with exactly one of

$$
A, \qquad B, \qquad [A, B]_q;
$$

- the elements that commute with A mutually commute;
- the elements that commute with B mutually commute;
- the elements that commute with $[A, B]_q$ mutually commute.

From now on, we identify U_q^+ with U , via the isomorphism \natural .

Definition

A word $v_1v_2 \cdots v_n$ in V is called **alternating** whenever $n > 1$ and $v_{i-1} \neq v_i$ for $2 \leq i \leq n$. Thus an alternating word has the form \cdots xyxy \cdots .

Definition

We name the alternating words as follows:

For notational convenience define $G_0 = 1$ and $\tilde{G}_0 = 1$.

[The alternating PBW basis for the positive part of](#page-0-0) $U_q(\widehat{\mathfrak{sl}}_2)^\circ$ $U_q(\widehat{\mathfrak{sl}}_2)^\circ$

For $k \in \mathbb{N}$,

We are going to show that U contains the alternating words.

As a warmup, consider the alternating words xy and yx .

One checks

$$
xy = q \frac{qx \times y - q^{-1}y \times x}{q^2 - q^{-2}},
$$
 $yx = q \frac{qy \times x - q^{-1}x \times y}{q^2 - q^{-2}}.$

Therefore U contains xy and yx .

Over the next four slides, we display many relations satisfied by the alternating words.

These relations will imply that U contains the alternating words.

For $k \in \mathbb{N}$ the following holds in the q-shuffle algebra \mathbb{V} :

$$
[W_0, W_{k+1}] = [W_{-k}, W_1] = (1 - q^{-2})(\tilde{G}_{k+1} - G_{k+1}),
$$

\n
$$
[W_0, G_{k+1}]_q = [\tilde{G}_{k+1}, W_0]_q = (q - q^{-1})W_{-k-1},
$$

\n
$$
[G_{k+1}, W_1]_q = [W_1, \tilde{G}_{k+1}]_q = (q - q^{-1})W_{k+2}.
$$

For $k, \ell \in \mathbb{N}$ the following relations hold in the q-shuffle algebra \mathbb{V} :

$$
[W_{-k}, W_{-\ell}] = 0, \t W_{k+1}, W_{\ell+1}] = 0,
$$

\n
$$
[W_{-k}, W_{\ell+1}] + [W_{k+1}, W_{-\ell}] = 0,
$$

\n
$$
[W_{-k}, G_{\ell+1}] + [G_{k+1}, W_{-\ell}] = 0,
$$

\n
$$
[W_{-k}, \tilde{G}_{\ell+1}] + [\tilde{G}_{k+1}, W_{-\ell}] = 0,
$$

\n
$$
[W_{k+1}, G_{\ell+1}] + [G_{k+1}, W_{\ell+1}] = 0,
$$

\n
$$
[W_{k+1}, \tilde{G}_{\ell+1}] + [\tilde{G}_{k+1}, W_{\ell+1}] = 0,
$$

\n
$$
[G_{k+1}, G_{\ell+1}] = 0, \t [\tilde{G}_{k+1}, \tilde{G}_{\ell+1}] = 0,
$$

\n
$$
[\tilde{G}_{k+1}, G_{\ell+1}] + [G_{k+1}, \tilde{G}_{\ell+1}] = 0.
$$

For $k, \ell \in \mathbb{N}$ the following relations hold in the q-shuffle algebra \mathbb{V} :

$$
[W_{-k}, G_{\ell}]_q = [W_{-\ell}, G_k]_q, \t[G_k, W_{\ell+1}]_q = [G_{\ell}, W_{k+1}]_q,
$$

\n
$$
[\tilde{G}_k, W_{-\ell}]_q = [\tilde{G}_{\ell}, W_{-k}]_q, \t[W_{\ell+1}, \tilde{G}_k]_q = [W_{k+1}, \tilde{G}_{\ell}]_q,
$$

\n
$$
[G_k, \tilde{G}_{\ell+1}] - [G_{\ell}, \tilde{G}_{k+1}] = q[W_{-\ell}, W_{k+1}]_q - q[W_{-k}, W_{\ell+1}]_q,
$$

\n
$$
[\tilde{G}_k, G_{\ell+1}] - [\tilde{G}_{\ell}, G_{k+1}] = q[W_{\ell+1}, W_{-k}]_q - q[W_{k+1}, W_{-\ell}]_q,
$$

\n
$$
[G_{k+1}, \tilde{G}_{\ell+1}]_q - [G_{\ell+1}, \tilde{G}_{k+1}]_q = q[W_{-\ell}, W_{k+2}] - q[W_{-k}, W_{\ell+2}],
$$

\n
$$
[\tilde{G}_{k+1}, G_{\ell+1}]_q - [\tilde{G}_{\ell+1}, G_{k+1}]_q = q[W_{\ell+1}, W_{-k-1}] - q[W_{k+1}, W_{-\ell-1}].
$$

[The alternating PBW basis for the positive part of](#page-0-0) $U_q(\widehat{\widetilde{\mathfrak{s}}}_Q^{\otimes})^{\otimes}$ $U_q(\widehat{\widetilde{\mathfrak{s}}}_Q^{\otimes})^{\otimes}$

Relations for the alternating words, IV

Lemma

For $n > 1$,

$$
\sum_{k=0}^{n} G_k \star \tilde{G}_{n-k} q^{n-2k} = q \sum_{k=0}^{n-1} W_{-k} \star W_{n-k} q^{n-1-2k},
$$

$$
\sum_{k=0}^{n} G_k \star \tilde{G}_{n-k} q^{2k-n} = q \sum_{k=0}^{n-1} W_{n-k} \star W_{-k} q^{n-1-2k},
$$

$$
\sum_{k=0}^{n} \tilde{G}_k \star G_{n-k} q^{n-2k} = q \sum_{k=0}^{n-1} W_{n-k} \star W_{-k} q^{2k+1-n},
$$

$$
\sum_{k=0}^{n} \tilde{G}_k \star G_{n-k} q^{2k-n} = q \sum_{k=0}^{n-1} W_{-k} \star W_{n-k} q^{2k+1-n}.
$$

[The alternating PBW basis for the positive part of](#page-0-0) $U_q(\widehat{\mathfrak{sl}}_2)^\circ$ $U_q(\widehat{\mathfrak{sl}}_2)^\circ$

Obtaining the alternating words from x, y

Lemma

Using the equations below, the alternating words in V are recursively obtained from x, y in the following order:

$$
W_0, \quad W_1, \quad G_1, \quad \tilde{G}_1, \quad W_{-1}, \quad W_2, \quad G_2, \quad \tilde{G}_2, \quad \ldots
$$

We have $W_0 = x$ and $W_1 = y$. For $n \ge 1$,

$$
G_{n} = \frac{q \sum_{k=0}^{n-1} W_{-k} \star W_{n-k} q^{n-1-2k} - \sum_{k=1}^{n-1} G_{k} \star \tilde{G}_{n-k} q^{n-2k}}{q^{n} + q^{-n}} + \frac{W_{n} \star W_{0} - W_{0} \star W_{n}}{(1 + q^{-2n})(1 - q^{-2})},
$$

$$
\tilde{G}_{n} = G_{n} + \frac{W_{0} \star W_{n} - W_{n} \star W_{0}}{1 - q^{-2}},
$$

$$
W_{-n} = \frac{qW_{0} \star G_{n} - q^{-1} G_{n} \star W_{0}}{q - q^{-1}},
$$

$$
W_{n+1} = \frac{qG_{n} \star W_{1} - q^{-1} W_{1} \star G_{n}}{q - q^{-1}}.
$$
The alternating PBW basis for the positive part of $U_{q}(\tilde{G}_{2})$

Paul Terwilliger

U contains the alternating words.

[The alternating PBW basis for the positive part of](#page-0-0) $U_q(\widehat{\mathfrak{sl}}_2)^\circ$ $U_q(\widehat{\mathfrak{sl}}_2)^\circ$

We will use the alternating words to obtain a PBW basis for U.

We wont use all the alternating words, because some of them can be written in terms of the others.

Over the next five slides, we show how to write ${G_n}_{n=1}^{\infty}$ in terms of $\{W_{-n}\}_{n=0}^{\infty}$, $\{W_{n+1}\}_{n=0}^{\infty}$, $\{\tilde{G}_n\}_{n=1}^{\infty}$.

[The alternating PBW basis for the positive part of](#page-0-0) $U_q(\widehat{\mathfrak{sl}})$ $U_q(\widehat{\mathfrak{sl}})$

At this point, it is convenient to make a change of variables.

Definition Define elements ${D_n}_{n=0}^{\infty}$ in V such that $D_0 = 1$ and for $n \ge 1$, $D_0 \star \tilde{G}_n + D_1 \star \tilde{G}_{n-1} + \cdots + D_n \star \tilde{G}_0 = 0.$

A change of variables, cont.

Example

We have

$$
D_1 = -\tilde{G}_1,
$$

\n
$$
D_2 = \tilde{G}_1 \star \tilde{G}_1 - \tilde{G}_2,
$$

\n
$$
D_3 = 2\tilde{G}_1 \star \tilde{G}_2 - \tilde{G}_1 \star \tilde{G}_1 \star \tilde{G}_1 - \tilde{G}_3,
$$

\n
$$
D_4 = \tilde{G}_1 \star \tilde{G}_1 \star \tilde{G}_1 \star \tilde{G}_1 + 2\tilde{G}_1 \star \tilde{G}_3 + \tilde{G}_2 \star \tilde{G}_2 - 3\tilde{G}_1 \star \tilde{G}_1 \star \tilde{G}_2 - \tilde{G}_4
$$

\nand
\n
$$
\tilde{G}_1 = -D_1,
$$

\n
$$
\tilde{G}_2 = D_1 \star D_1 - D_2,
$$

\n
$$
\tilde{G}_3 = 2D_1 \star D_2 - D_1 \star D_1 \star D_1 - D_3,
$$

\n
$$
\tilde{G}_4 = D_1 \star D_1 \star D_1 \star D_1 + 2D_1 \star D_3 + D_2 \star D_2 - 3D_1 \star D_1 \star D_2 - D_4.
$$

The following two results clarify how the D_n are related to the $\tilde{G}_n.$

Lemma

For $n > 1$ the following hold in the q-shuffle algebra V .

- (i) D_n is a homogeneous polynomial in $\tilde{G}_1, \tilde{G}_2, \ldots, \tilde{G}_n$ that has total degree n, where we view each \tilde{G}_i as having degree i.
- (ii) \tilde{G}_n is a homogeneous polynomial in D_1, D_2, \ldots, D_n that has total degree n, where we view each D_i as having degree i.

The following coincide:

- (i) the subalgebra of the q-shuffle algebra V generated by $\{D_n\}_{n=1}^\infty;$
- (iii) the subalgebra of the q-shuffle algebra V generated by $\{\tilde{G}_n\}_{n=1}^\infty$.

Using our earlier relations I–IV we obtain the following result.

Lemma

\n
$$
For\ n \in \mathbb{N}\ we\ have
$$
\n
$$
G_n = q^{2n}D_n + q^2 \sum_{\substack{i+j+k+1=n\\i,j,k \ge 0}} W_{-i} \star D_j \star W_{k+1}.
$$

Because of this result, we eliminate the G_n from consideration, as we construct the alternating PBW basis.

[The alternating PBW basis for the positive part of](#page-0-0) $U_q(\widehat{\widetilde{\mathfrak{s}}}_Q^{\otimes})^{\otimes}$ $U_q(\widehat{\widetilde{\mathfrak{s}}}_Q^{\otimes})^{\otimes}$

Theorem

A PBW basis for U is obtained by the elements

$$
\{W_{-i}\}_{i\in\mathbb{N}},\qquad \{\tilde{\mathsf{G}}_{j+1}\}_{j\in\mathbb{N}},\qquad \{W_{k+1}\}_{k\in\mathbb{N}}
$$

in any linear order $<$ that satisfies

$$
W_{-i} < \tilde{G}_{j+1} < W_{k+1} \qquad i, j, k \in \mathbb{N}.
$$

[The alternating PBW basis for the positive part of](#page-0-0) $U_q(\widehat{\mathfrak{sl}}_2)$ $U_q(\widehat{\mathfrak{sl}}_2)$

Definition

The above PBW basis is called **alternating**.

Comparing the Damiani PBW basis and the alternating PBW basis

Next we explain how the Damiani PBW basis is related to the alternating PBW basis.

We adopt the following point of view. Instead of working directly with the Damiani PBW basis elements, we will work with the closely related elements $\{xC_n\}_{n=0}^{\infty}$, $\{C_ny\}_{n=0}^{\infty}$, $\{C_n\}_{n=1}^{\infty}$.

[The alternating PBW basis for the positive part of](#page-0-0) $U_q(\widehat{\mathfrak{sl}})$ $U_q(\widehat{\mathfrak{sl}})$

Earlier we saw how the elements $\{\tilde{G}_n\}_{n=1}^\infty$ and $\{D_n\}_{n=1}^\infty$ are related.

We now explain how these elements are related to $\{ \mathcal{C}_n \}_{n=1}^\infty.$

Theorem For $n \geq 1$, $C_n = (-1)^n \sum_{n=1}^{n}$ $i=0$ $q^{2i-n}D_i\star D_{n-i}$

For $n > 1$ the following hold in the q-shuffle algebra V .

- (i) C_n is a homogeneous polynomial in D_1, D_2, \ldots, D_n that has total degree n, where we view each D_i as having degree i.
- (ii) D_n is a homogeneous polynomial in C_1, C_2, \ldots, C_n that has total degree n, where we view each C_i as having degree i.

For $n > 1$ the following hold in the q-shuffle algebra V .

- (i) C_n is a homogeneous polynomial in $\tilde{G}_1, \tilde{G}_2, \ldots, \tilde{G}_n$ that has total degree n, where we view each \tilde{G}_i as having degree i.
- (ii) \tilde{G}_n is a homogeneous polynomial in C_1, C_2, \ldots, C_n that has total degree n, where we view each C_i as having degree i.

The following (i) – (iii) coincide:

- (i) the subalgebra of the q-shuffle algebra V generated by ${C_n}_{n=1}^\infty;$
- (iii) the subalgebra of the q-shuffle algebra V generated by $\{D_n\}_{n=1}^\infty;$
- (iii) the subalgebra of the q-shuffle algebra $\mathbb {V}$ generated by $\{\tilde{G}_n\}_{n=1}^\infty$.

Comparing the Damiani PBW basis and the alternating PBW basis

We now write the $\{\mathsf{x} \mathsf{C}_n\}_{n=0}^\infty$ and $\{\mathsf{C}_n \mathsf{y}\}_{n=0}^\infty$ in the alternating PBW basis.

Theorem For $n \in \mathbb{N}$,

$$
xC_n = (-1)^n q^{-n} \sum_{i=0}^n W_{-i} \star D_{n-i},
$$

$$
C_n y = (-1)^n q^{-n} \sum_{i=0}^n D_{n-i} \star W_{i+1}.
$$

[The alternating PBW basis for the positive part of](#page-0-0) $U_q(\widehat{\mathfrak{sl}})$ $U_q(\widehat{\mathfrak{sl}})$

Comparing the Damiani PBW basis and the alternating PBW basis, cont.

We now write the $\{W_{-n}\}_{n=0}^{\infty}$ and $\{W_{n+1}\}_{n=0}^{\infty}$ in the Damiani PBW basis.

Theorem

For $n \in \mathbb{N}$,

$$
W_{-n} = \sum_{i=0}^{n} (-1)^{i} q^{i} (xC_{i}) \star \tilde{G}_{n-i},
$$

$$
W_{n+1} = \sum_{i=0}^{n} (-1)^{i} q^{i} \tilde{G}_{n-i} \star (C_{i} y).
$$

[The alternating PBW basis for the positive part of](#page-0-0) $U_q(\widehat{\mathfrak{sl}}_2)^\circ$ $U_q(\widehat{\mathfrak{sl}}_2)^\circ$

First we recalled the Damiani PBW basis for U_q^+ .

Next we expressed the Damiani PBW basis elements in closed form, using a q-shuffle algebra.

Using the q-shuffle algebra, we obtained an attractive new PBW basis for U_q^+ , said to be alternating.

Finally we described how the Damiani PBW basis is related to the alternating PBW basis.

THANK YOU FOR YOUR ATTENTION!

[The alternating PBW basis for the positive part of](#page-0-0) $U_q(\widehat{\mathfrak{sl}})$ $U_q(\widehat{\mathfrak{sl}})$