The \mathbb{Z}_3 -Symmetric Down-Up algebra

Paul Terwilliger

University of Wisconsin-Madison

Paul Terwilliger The Z₃[-Symmetric Down-Up algebra](#page-41-0)

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

 \equiv

 $2Q$

In memory of Georgia Benkart (1947–2022).

She was my valued colleague for many years, and an international leader in Lie theory and quantum groups.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

In 1998, Georgia Benkart and Tom Roby introduced the **down-up** algebra A.

This algebra is defined by two generators and two relations called the down-up relations.

In this talk, we introduce the \mathbb{Z}_3 -symmetric down-up algebra \mathbb{A} .

After some motivations, we will discuss how $\mathbb A$ is related to some familiar algebras in the literature.

イロト イ押 トイチト イチトー

Definition (Benkart and Roby 1998)

For $\alpha, \beta, \gamma \in \mathbb{C}$ the algebra $\mathcal{A} = \mathcal{A}(\alpha, \beta, \gamma)$ is defined by generators A, B and the following relations:

$$
BA2 = \alpha ABA + \beta A2B + \gamma A,
$$

$$
B2A = \alpha BAB + \beta AB2 + \gamma B.
$$

The algebra $\mathcal A$ is called the **down-up algebra** with parameters α, β, γ .

メロメ メタメ メミメ メミメー

 $2Q$

The down-up algebra arises in the study of partially ordered sets.

I will illustrate with one example, called the **Attenuated Space** poset $A_{\alpha}(N, M)$.

メロメ メタメ メミメ メミメー

Let \mathbb{F}_q denote a finite field with q elements.

Let N, M denote positive integers.

Let H denote a vector space over \mathbb{F}_q that has dimension $N + M$.

Fix a subspace $h \subseteq H$ that has dimension M.

メロトメ 倒 トメ ミトメ ミトー

Let the set X consist of the subspaces of H that have zero intersection with h.

The set X , together with the inclusion relation, is a poset denoted by $A_{\sigma}(N, M)$ and called the **Attenuated Space poset**.

The poset $A_{q}(N, M)$ is ranked with rank N; the rank of a vertex is equal to its dimension.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

- For $A_{q}(N, M)$ we now define some raising and lowering maps.
- Let V denote a vector space over $\mathbb C$ that has basis X.
- We call V the **standard module** for $A_{q}(N, M)$.

メロメ メタメ メミメ メミメー

Definition

Define a linear map $R: V \to V$ such that for $y \in X$,

$$
Ry = \sum_{z \text{ covers } y} z.
$$

We call R the raising map for $A_q(N, M)$.

メロメ メタメ メミメ メミメー

 \equiv

Definition (S. Ghosh and M. Srinivasan 2022)

Define a linear map $L: V \to V$ such that for $z \in X$,

$$
Lz = \sum_{z \text{ covers } y} q^{\dim y} y.
$$

We call L the q-lowering map for $A_q(N, M)$.

メロメ メ御 メメ きょ メ ヨメー

Theorem (Ter 1990)

For $A_q(N, M)$ the maps R, L satisfy the down-up relations:

$$
L^{2}R - q(q+1)LRL + q^{3}RL^{2} = -q^{N+M}(q+1)L,
$$

$$
LR^{2} - q(q+1)RLR + q^{3}R^{2}L = -q^{N+M}(q+1)R.
$$

メロメ メ御 メメ きょ メ ヨメー

 $\bar{\Xi}$

We have been discussing the poset $A_{q}(N, M)$.

There is a family of posets with similar features, said to be uniform.

See the paper

P. Terwilliger. The incidence algebra of a uniform poset (1990).

We now define the \mathbb{Z}_3 -symmetric down-up algebra.

Definition (Ter 2023)

For $\alpha, \beta, \gamma \in \mathbb{C}$ the algebra $\mathbb{A} = \mathbb{A}(\alpha, \beta, \gamma)$ is defined by generators A, B, C and the following relations:

$$
BA2 = \alpha ABA + \beta A2B + \gamma A, \quad B2A = \alpha BAB + \beta AB2 + \gamma B,
$$

\n
$$
CB2 = \alpha BCB + \beta B2C + \gamma B, \quad C2B = \alpha CBC + \beta BC2 + \gamma C,
$$

\n
$$
AC2 = \alpha CAC + \beta C2A + \gamma C, \quad A2C = \alpha ACA + \beta CA2 + \gamma A.
$$

We call $\mathbb A$ the $\mathbb Z_3$ -symmetric down-up algebra with parameters α, β, γ .

へのへ

The algebras A and A are related as follows.

Lemma

For $\alpha, \beta, \gamma \in \mathbb{C}$ there exists an algebra homomorphism $\mathcal{A}(\alpha,\beta,\gamma) \to \mathbb{A}(\alpha,\beta,\gamma)$ that sends $A \mapsto A$ and $B \mapsto B$.

The above homomorphism might or might not be injective, depending on the values α, β, γ .

メロメ メタメ メミメ メミメー

The following problem is open.

Problem

Determine the values of α, β, γ such that the map $\mathcal{A}(\alpha,\beta,\gamma) \to \mathbb{A}(\alpha,\beta,\gamma)$ is injective.

 $4.17 \times$

メタトメ ミトメ ミト

The algebra $\mathbb{A}(\alpha,\beta,\gamma)$ was motivated by the concept of a lowering-raising triple (or LR triple).

An LR triple is defined as follows.

Let $\mathbb F$ denote any field, and fix an integer $d \geq 1$.

Let V denote a vector space over $\mathbb F$ with dimension $d+1$.

メロメ メタメ メミメ メミメー

By a **decomposition of** V we mean a sequence $\{V_i\}_{i=0}^d$ of one dimensional subspaces whose direct sum is V.

We represent this decomposition by a sequence of dots:

メロメ メタメ メミメ メミメー

 $2Q$

Let $\{V_i\}_{i=0}^d$ denote a decomposition of V.

Consider a linear transformation $A \in \text{End}(V)$.

We say that A lowers $\{V_{i}\}_{i=0}^{d}$ whenever $A V_{i} = V_{i-1}$ for $1 \leq i \leq d$ and $AV_0 = 0$.

We say that A **raises** $\{V_i\}_{i=0}^d$ whenever $AV_i = V_{i+1}$ for $0 \le i \le d - 1$ and $AV_d = 0$.

Paul Terwilliger The Z₃[-Symmetric Down-Up algebra](#page-0-0)

メロメメ 倒 メメ きょくきょう

重

 298

An ordered pair A, B of elements in $\text{End}(V)$ is called Lowering-Raising (or LR) whenever there exists a decomposition of V that is lowered by A and raised by B .

It turns out that the decomposition is unique if it exists.

 \mathcal{A} and \mathcal{A} is a set of \mathbb{R} in \mathcal{A}

へのへ

Definition (Ter 2015)

A 3-tuple of elements A, B, C in $\text{End}(V)$ is called an LR triple whenever any two of A, B, C form an LR pair on V .

Paul Terwilliger The Z₃[-Symmetric Down-Up algebra](#page-0-0)

メロトメ 倒 トメ ミトメ ミトー

A view of LR triples

For $d = 4$ an LR triple A, B, C looks as follows:

" A, B, C pull toward their corner"

Paul Terwilliger The Z₃[-Symmetric Down-Up algebra](#page-0-0)

メロメ メタメ メミメ メミメ

 $2Q$

In [Ter LRT] we showed how to normalize an LR triple, and we classified up to isomorphism the normalized LR triples.

There are nine families of solutions, denoted

 $NBWeyl_d^+(\mathbb{F};j,q), \quad NBWeyl_d^-(\mathbb{F};j,q), \quad NBWeyl_d^-(\mathbb{F};t),$ $NBG_d(\mathbb{F};q), \qquad NBG_d(\mathbb{F};1),$ $NBMG_d(F; t),$ $B_d(\mathbb{F}; t, \rho_0, \rho'_0, \rho''_0), \quad B_d(\mathbb{F}; 1, \rho_0, \rho'_0, \rho''_0), \quad B_2(\mathbb{F}; \rho_0, \rho'_0, \rho''_0).$

The last three families have a property called **bipartite**.

 $A \cup B \cup A \cup B \cup A \cup B \cup A \cup B \cup A \cup B$

For each solution the elements A, B, C satisfy the following relations:

NBWeyl $_d^{\pm}(\mathbb{F}; j, q)$: $qAB - q^{-1}BA = \vartheta_j I,$ $qBC - q^{-1}CB = \vartheta_j I,$ $qCA - q^{-1}AC = \vartheta_j I,$

where

$$
\vartheta_j = q^{-2j-1}(1+q^{2j+1})^2(q-q^{-1})^{-1}.
$$

 $\text{NBWeyl}_d^-(\mathbb{F};t)$:

$$
AB - tBA = \frac{2t}{1 - t},
$$

BC - tCB = $\frac{2t}{1 - t},$
CA - tAC = $\frac{2t}{1 - t},$

Paul Terwilliger The Z₃[-Symmetric Down-Up algebra](#page-0-0)

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

重

 298

 $NBG_d(\mathbb{F}; q)$: A, B, C satisfy the \mathbb{Z}_3 -symmetric down-up relations with parameters

$$
\alpha = q^{-2}(q+1), \qquad \beta = -q^{-3}, \qquad \gamma = q^{-2}(q+1).
$$

メロメ メタメ メミメ メミメー

 Ω

遥

 $NBG_d(F; 1):$ A, B, C satisfy the \mathbb{Z}_3 -symmetric down-up relations with parameters

$$
\alpha = 2, \qquad \beta = -1, \qquad \gamma = 2.
$$

Paul Terwilliger The Z₃[-Symmetric Down-Up algebra](#page-0-0)

メロメ メタメ メミメ メミメー

 Ω

遥

 $NBNG_d(F; t):$ A, B, C satisfy the \mathbb{Z}_3 -symmetric down-up relations with parameters

$$
\alpha = 0
$$
, $\beta = t^{-1}$, $\gamma = t^{-1} - 1$.

Paul Terwilliger The Z₃[-Symmetric Down-Up algebra](#page-0-0)

メロメ メタメ メミメ メミメー

$$
B_d(\mathbb{F}; t, \rho_0, \rho'_0, \rho''_0):
$$

\n
$$
A^3B + A^2BA - tABA^2 - tBA^3 = (\rho_0 + t/\rho_0)A^2,
$$

\n
$$
B^3C + B^2CB - tBCB^2 - tCB^3 = (\rho'_0 + t/\rho'_0)B^2,
$$

\n
$$
C^3A + C^2AC - tCAC^2 - tAC^3 = (\rho''_0 + t/\rho''_0)C^2
$$

and also

$$
AB3 + BAB2 - tB2AB - tB3A = (\rho_0 + t/\rho_0)B2,
$$

\n
$$
BC3 + CBC2 - tC2BC - tC3B = (\rho'_0 + t/\rho'_0)C2,
$$

\n
$$
CA3 + ACA2 - tA2CA - tA3C = (\rho''_0 + t/\rho''_0)A2.
$$

2 ,

メロトメ 御 トメ 君 トメ 君 トッ

È

 298

$$
\Beta_{d}(\mathbb{F}; 1, \rho_0, \rho_0', \rho_0'')
$$
:

$$
A3B + A2BA - ABA2 - BA3 = (\rho_0 + 1/\rho_0)A2,
$$

\n
$$
B3C + B2CB - BCB2 - CB3 = (\rho'_0 + 1/\rho'_0)B2,
$$

\n
$$
C3A + C2AC - CAC2 - AC3 = (\rho''_0 + 1/\rho''_0)C2
$$

and also

$$
AB3 + BAB2 - B2AB - B3A = (\rho_0 + 1/\rho_0)B2,
$$

\n
$$
BC3 + CBC2 - C2BC - C3B = (\rho'_0 + 1/\rho'_0)C2,
$$

\n
$$
CA3 + ACA2 - A2CA - A3C = (\rho''_0 + 1/\rho''_0)A2.
$$

メロメ メ団 メメ 差 メメ 差 メー

重

 298

 $\mathrm{B}_2(\mathbb{F};\rho_0,\rho_0',\rho_0'')$): Same as $\mathrm{B}_d(\mathbb{F}; 1, \rho_0, \rho_0', \rho_0'')$.

In summary, we have the following result.

Theorem (Ter 2015)

Let A, B, C denote a nonbipartite LR triple over \mathbb{F} . Then there exist $\alpha, \beta, \gamma \in \mathbb{F}$ such that A, B, C satisfy the \mathbb{Z}_3 -symmetric down-up relations with parameters α, β, γ .

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

The \mathbb{Z}_3 -symmetric down-up algebra A is related to the following familiar algebras:

the Weyl algebra, the Lie algebras 55 and 513 . the sI_3 loop algebra, the Kac-Moody Lie algebra $A_2^{(1)}$ $\frac{1}{2}$, the q-Weyl algebra, the quantized enveloping algebra $U_q(\mathfrak{sl}_2)$, the quantized enveloping algebra $\mathit{U_{q}(A_2^{(1)})}$ $\binom{1}{2}$.

オター・オート オート

へのへ

How A is related the Weyl algebra

Definition

For $\theta \in \mathbb{C}$, the **Weyl algebra** $W = W(\theta)$ is defined by generators A, B and the relation $AB - BA = \theta$.

Lemma

For the Weyl algebra $W(\theta)$, define $C = -A - B$. Then

$$
AB - BA = \theta, \qquad BC - CB = \theta, \qquad CA - AC = \theta.
$$

Theorem (Ter 2023)

Pick $\theta, \xi \in \mathbb{C}$ and consider the algebra $\mathbb{A} = \mathbb{A}(\xi + 1, -\xi, (\xi - 1)\theta)$. There exists an algebra homomorphism $\mathbb{A} \to W(\theta)$ that sends

$$
A \mapsto A, \qquad B \mapsto B, \qquad C \mapsto C.
$$

Paul Terwilliger The Z₃[-Symmetric Down-Up algebra](#page-0-0)

イロメ イ母メ イヨメ イヨメー

How $\mathbb A$ is related to \mathfrak{sl}_2 .

For $n \geq 2$ the Lie algebra \mathfrak{sl}_n consists of the matrices in $\mathrm{Mat}_n(\mathbb{C})$ that have trace 0, together with the Lie bracket $[x, y] = xy - yx$. The Lie algebra $s1₂$ has a basis

$$
A = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \qquad C = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}.
$$

Moreover

$$
[A, B] = C - A - B, \quad [B, C] = A - B - C, \quad [C, A] = B - C - A.
$$

Theorem (Ter 2023)

There exists an algebra homomorphism $\mathbb{A}(2, -1, 2) \rightarrow U(\mathfrak{sl}_2)$ that sends

$$
A \mapsto A, \qquad B \mapsto B, \qquad C \mapsto C.
$$

 -10.14 Paul Terwilliger The Z₃[-Symmetric Down-Up algebra](#page-0-0)

 $4.79 \times 4.$

 \overline{a} in \overline{a}

How $\mathbb A$ is related to \mathfrak{sl}_3 .

Next, we describe how $\mathbb A$ is related to the Lie algebra \mathfrak{sl}_3 .

Definition

Let $\xi \in \mathbb{C}$. We define elements A, B, C in \mathfrak{sl}_3 as follows:

$$
A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & \xi & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 & \xi \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 0 & 0 & 0 \\ \xi & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}.
$$

Theorem (Ter 2023)

There exists an algebra homomorphism $\mathbb{A}(2, -1, -2\xi) \to U(\mathfrak{sl}_3)$ that sends

$$
A \mapsto A, \qquad B \mapsto B, \qquad C \mapsto C.
$$

イロメ イ母メ イヨメ イヨメー

How $\mathbb A$ is related to the \mathfrak{sl}_3 loop algebra

Next, we describe how $\mathbb A$ is related to the loop algebra $\mathfrak{sl}_3 \otimes \mathbb{C}[t,t^{-1}]$

Definition

For $\xi\in\mathbb{C}$ we define elements A,B,C in $\mathfrak{sl}_3\otimes\mathbb{C}[t,t^{-1}]$ as follows:

$$
A = \begin{pmatrix} 0 & t & 0 \\ 0 & 0 & 0 \\ 0 & \xi t^{-1} & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 & \xi t^{-1} \\ 0 & 0 & t \\ 0 & 0 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 0 & 0 & 0 \\ \xi t^{-1} & 0 & 0 \\ t & 0 & 0 \end{pmatrix}.
$$

Theorem (Ter 2023)

There exists an algebra homomorphism $\mathbb{A}(2,-1,-2\xi)\rightarrow\overline{U}(\mathfrak{sl}_3\otimes \mathbb{C}[t,t^{-1}])$ that sends $A \mapsto A$, $B \mapsto B$, $C \mapsto C$.

Paul Terwilliger The Z₃[-Symmetric Down-Up algebra](#page-0-0)

Next, we describe how $\mathbb A$ is related to the Kac-Moody Lie algebra $\mathcal{A}^{(1)}_2$ $\frac{1}{2}$.

Consider the Cartan matrix $\mathcal C$ of type $\mathcal A_2^{(1)}$ $\frac{1}{2}$:

$$
\mathcal{C} = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}.
$$

K 御 ▶ K 唐 ▶ K 唐 ▶ ...

Definition

Define the Lie algebra $A_2^{(1)}$ $2^{(1)}$ by generators

$$
e_i, \quad f_i, \quad h_i \qquad (1 \leq i \leq 3)
$$

and the following relations. For $1 \le i, j \le 3$,

$$
[h_i, h_j] = 0, \t [h_i, e_j] = C_{i,j}e_j, \n[h_i, f_j] = -C_{i,j}f_j, \t [e_i, f_j] = \delta_{i,j}h_i, \n[e_i, [e_i, e_j]] = 0, \t [f_i, [f_i, f_j]] = 0 \t (i \neq j).
$$

We call $A_2^{(1)}$ $_2^{(1)}$ the **Kac-Moody Lie algebra** with Cartan matrix C .

メロメ メタメ メミメ メミメー

How $\mathbb A$ is related to the Kac-Moody Lie algebra $\mathcal A_2^{(1)}$ 2

Theorem (Ter 2023)

For $\xi \in \mathbb{C}$, there exists an algebra homomorphism $\mathbb{A}(2,-1,-2\xi)\rightarrow\mathcal{U}(A_2^{(1)})$ $\binom{11}{2}$ that sends

 $A \mapsto e_1 + \xi f_2$, $B \mapsto e_2 + \xi f_3$, $C \mapsto e_3 + \xi f_1$.

メロメ メタメ メミメ メミメー

How $\mathbb A$ is related to $\mathcal U_q(\mathcal A_2^{(1)})$ $\binom{1}{2}$

Fix a nonzero $q\in \mathbb{C}$ such that $q^2\neq 1.$

Definition

Define the algebra $\mathit{U_{q}(A_{2}^{(1)})}$ $\binom{11}{2}$ by generators

$$
E_i, \quad F_i, \quad K_i, \quad K_i^{-1} \qquad (1 \leq i \leq 3)
$$

and the following relations. For $1 \le i, j \le 3$,

$$
K_i K_i^{-1} = K_i^{-1} K_i = 1, \t K_i K_j = K_j K_i,
$$

\n
$$
K_i E_j K_i^{-1} = q^{C_{i,j}} E_j, \t K_i F_j K_i^{-1} = q^{-C_{i,j}} F_j,
$$

\n
$$
E_i F_j - F_j E_i = \delta_{i,j} \frac{K_i - K_i^{-1}}{q - q^{-1}},
$$

\n
$$
E_i^2 E_j - (q + q^{-1}) E_i E_j E_i + E_j E_i^2 = 0 \t (i \neq j),
$$

\n
$$
F_i^2 F_j - (q + q^{-1}) F_i F_j F_i + F_j F_i^2 = 0 \t (i \neq j).
$$

How $\mathbb A$ is related to $\mathcal U_q(\mathcal A_2^{(1)})$ $\binom{1}{2}$

We call $\mathit{U_{q}(A_2^{(1)})}$ $\binom{1}{2}$) the **quantized enveloping algebra** of $A_2^{(1)}$ $\frac{1}{2}$.

It turns out that $K=K_1K_2K_3$ is central in $\mathit{U_q(A_2^{(1)})}$ $\binom{1}{2}$.

Theorem (Ter 2023)

Let $\xi \in \mathbb{C}$ and define

$$
\alpha = q^3(q + q^{-1}),
$$
 $\beta = -q^6,$ $\gamma = -\xi q^3(q + q^{-1}).$

Then there exists an algebra homomorphism ${\mathbb A}(\alpha,\beta,\gamma) \rightarrow U_q(A_2^{(1)})$ $\binom{11}{2}$ that sends $A \mapsto (E_1 + \xi F_2 K^{-1}) K_3, \qquad B \mapsto (E_2 + \xi F_3 K^{-1}) K_1,$ $C \mapsto (E_3 + \xi F_1 K^{-1}) K_2.$

In this talk, we first reviewed the **down-up algebra** $\mathcal A$ and its application to posets.

We then introduced the \mathbb{Z}_3 -symmetric down-up algebra \mathbb{A} , and explained its connection to LR triples.

We then described how A is related to many familiar algebras in the literature.

THANK YOU FOR YOUR ATTENTION!

イロト イ押 トイチト イチトー