The Norton-balanced condition for Q-polynomial distance-regular graphs

Paul Terwilliger

University of Wisconsin-Madison

The Norton-b[alan](#page-0-0)c[ed c](#page-1-0)[onditi](#page-0-0)[o](#page-1-0)[n for](#page-0-0) [Q](#page-39-0)-polynomial distance-reg

Paul Terwilliger

In this talk, we consider a distance-regular graph Γ.

We first review how a Q-polynomial primitive idempotent E of Γ satisfies the balanced set condition.

We then introduce a variation of the balanced set condition, called the Norton-balanced condition.

This condition involves the **Norton algebra** associated with E .

We list many examples that satisfy the Norton-balanced condition.

We also give some theoretical results.

Throughout this talk, Γ denotes a distance-regular graph with vertex set X, path-length distance function ∂ , and diameter $D > 3$.

For $x \in X$ and $0 \le i \le D$, define the set

$$
\Gamma_i(x) = \{y \in X | \partial(x, y) = i\}.
$$

We abbreviate $Γ(x) = Γ_1(x)$.

Let V denote the vector space over $\mathbb R$, consisting of the column vectors with coordinates indexed by X and all entries in \mathbb{R} .

The vector space V becomes a Euclidean space with bilinear form $\langle u, v \rangle = u^t v$ for $u, v \in V$.

We call V the **standard module**.

For a vertex $x \in X$ define a vector $\hat{x} \in V$ that has x-coordinate 1 and all other coordinates 0.

The vectors $\{\hat{x}|x \in X\}$ form an orthonormal basis for V.

The adjacency matrix A of Γ acts on V.

For an eigenvalue θ of A, the corresponding **primitive idempotent** E acts as the identity on the θ -eigenspace, and as zero on every other eigenspace of A.

The θ -eigenspace is equal to EV.

The subspace EV is spanned by the vectors $\{E\hat{x}|x \in X\}$.

We consider the linear dependencies among the vectors ${E\hat{x}|x \in X}.$

Definition (Ter 1987)

The primitive idempotent E is called Q -polynomial whenever the following (i), (ii) hold:

- (i) the vectors $\{E\hat{x}|x \in X\}$ are mutually distinct;
- (ii) for $x, y \in X$ and $0 \le i, j \le D$,

$$
\sum_{z \in \Gamma_i(x) \cap \Gamma_j(y)} E\hat{z} - \sum_{z \in \Gamma_j(x) \cap \Gamma_i(y)} E\hat{z} \in \text{Span}\{E\hat{x} - E\hat{y}\}.
$$

The above condition (ii) is called the balanced set condition.

For the rest of this talk, we assume that the primitive idempotent E is Q-polynomial.

Next, we mention a special case of the balanced set dependency.

Pick vertices $x, y \in X$ and write $i = \partial(x, y)$. Define

$$
x_y^- = \sum_{z \in \Gamma(x) \cap \Gamma_{i-1}(y)} \hat{z},
$$

$$
x_y^+ = \sum_{z \in \Gamma(x) \cap \Gamma_{i+1}(y)} \hat{z},
$$

where $\Gamma_{-1}(x) = \emptyset$ and $\Gamma_{D+1}(x) = \emptyset$.

By the balanced set condition,

$$
Ex_{y}^{-} - Ey_{x}^{-} \in \text{Span}\{E\hat{x} - E\hat{y}\},
$$

$$
Ex_{y}^{+} - Ey_{x}^{+} \in \text{Span}\{E\hat{x} - E\hat{y}\}.
$$

We have been discussing the balanced set dependencies for the vectors $\{E\hat{x}|x \in X\}$.

These vectors satisfy another type of dependency, called the symmetric balanced set dependency.

This type of dependency is explained on the next slide.

The symmetric balanced set dependency, cont.

Lemma (Ter 1995)

For $x, y \in X$ and $0 \le i, j \le D$ we have

$$
\sum_{z \in \Gamma_i(x) \cap \Gamma_j(y)} E\hat{z} + \sum_{z \in \Gamma_j(x) \cap \Gamma_i(y)} E\hat{z}
$$

$$
\in \text{Span}\{Ex_y^- + Ey_x^-, Ex_y^+ + Ey_x^+, E\hat{x} + E\hat{y}\}.
$$

The Norton-b[alan](#page-10-0)c[ed c](#page-12-0)[o](#page-12-0)[nditi](#page-11-0)o[n for](#page-0-0) [Q](#page-39-0)-polynomial distance-regular

Combining the balanced set dependency and its symmetric version, we obtain the following result.

$$
\begin{array}{ll}\n\text{Lemma (Ter 1995)} \\
\text{For } x, y \in X \text{ and } 0 \leq i, j \leq D, \\
\sum_{z \in \Gamma_i(x) \cap \Gamma_j(y)} E\hat{z} \in \text{Span}\{Ex_y^-, Ex_y^+, E\hat{x}, E\hat{y}\}.\n\end{array}
$$

It could happen that for all $x, y \in X$ the following vectors are linearly dependent:

$$
Ex_y^-, \quad Ex_y^+, \quad E\hat{x}, \quad E\hat{y}.
$$

We now consider some situations where this occurs.

Definition (Ter 1988)

The set of vectors $\{E\hat{x}|x \in X\}$ is called **strongly balanced** whenever for all $x, y \in X$ and $0 \le i, j \le D$,

$$
\sum_{z \in \Gamma_i(x) \cap \Gamma_j(y)} E\hat{z} \in \text{Span}\{E\hat{x}, E\hat{y}\}.
$$

The Norton-b[alan](#page-13-0)c[ed c](#page-15-0)[o](#page-15-0)[nditi](#page-14-0)o[n for](#page-0-0) [Q](#page-39-0)-polynomial distance-reg

Lemma (Ter 1988)

The following are equivalent:

(i) the set $\{E\hat{x}|x \in X\}$ is strongly balanced;

 (iii) E is dual-bipartite or almost dual-bipartite.

E being dual-bipartite means that the Krein parameter $a_i^* = 0$ for $0 \leq i \leq D$.

E being almost dual-bipartite means that $a_i^* = 0$ for $0 \leq i \leq D-1$ and $a_D^* \neq 0$.

The Norton-b[alan](#page-14-0)c[ed c](#page-16-0)[o](#page-16-0)[nditi](#page-15-0)o[n for](#page-0-0) [Q](#page-39-0)-polynomial distance-regular

Next, we recall the **Norton algebra** structure on EV.

We will use the following notation.

For $u \in V$ and $x \in X$ let u_x denote the x-coordinate of u.

So

$$
u=\sum_{x\in X}u_{x}\hat{x}.
$$

For $u, v \in V$ define a vector

$$
u\circ v=\sum_{x\in X}u_{x}v_{x}\hat{x}.
$$

The Norton-b[alan](#page-16-0)c[ed c](#page-18-0)[o](#page-18-0)[nditi](#page-17-0)o[n for](#page-0-0) [Q](#page-39-0)-polynomial distance-regular

Definition (Cameron, Goethals, Seidel 1978)

The **Norton algebra** consists of the \mathbb{R} -vector space EV , together with the product

$$
u\star v=E(u\circ v) \qquad (u,v\in EV).
$$

The Norton product \star is commutative, and nonassociative in general.

We now introduce the Norton-balanced condition.

Definition (Ter 2024)

The set of vectors $\{E\hat{x}|x \in X\}$ is called **Norton-balanced** whenever for all $x, y \in X$ and $0 \le i, j \le D$,

$$
\sum_{z \in \Gamma_i(x) \cap \Gamma_j(y)} E\hat{z} \in \text{Span}\{E\hat{x}, E\hat{y}, E\hat{x} \star E\hat{y}\}.
$$

The Norton-b[alan](#page-18-0)c[ed c](#page-20-0)[o](#page-20-0)[nditi](#page-19-0)o[n for](#page-0-0) [Q](#page-39-0)-polynomial distance-reg

Let us clarify the Norton-balanced condition.

Lemma (Ter 2024)

For the primitive idempotent E the following are equivalent:

(i) the set $\{E\hat{x}|x \in X\}$ is Norton-balanced;

(ii) for all $x, y \in X$ we have

 $Ex_y^-, Ex_y^+ \in \text{Span}\{E\hat{x}, E\hat{y}, E\hat{x} \star E\hat{y}\}.$

Definition

We say that Γ is Q-polynomial whenever Γ has at least one Q-polynomial primitive idempotent.

Definition

We say that $Γ$ is **Norton-balanced** whenever $Γ$ has a Q -polynomial primitive idempotent E such that the set $\{E\hat{x}|x \in X\}$ is Norton-balanced.

Next, we describe our results.

We have two kinds of results; some are about examples, and some are more theoretical.

We first describe the results about examples.

This will be done over the next few slides.

Assume that Γ is Q-polynomial. Using elementary arguments, we showed that Γ is Norton-balanced in the following cases:

- (i) Γ is bipartite;
- (ii) Γ is almost bipartite;
- (iii) Γ is dual-bipartite;
- (iv) Γ is almost dual-bipartite;

(v) Γ is tight.

Γ being **tight** means that Γ is not bipartite and $a_D = 0$.

The 2021 book Algebraic Combinatorics by Bannai, Bannai, Ito, Tanaka gives a list of the known infinite families of Q-polynomial distance-regular graphs with unbounded diameter.

For each listed graph, every Q-polynomial structure is described.

We examined these Q-polynomial structures.

For each listed graph Γ and each Q-polynomial primitive idempotent E of Γ, we determined if the set $\{E\hat{x}|x \in X\}$ is Norton-balanced or not.

In summary form, our conclusion is that Γ is Norton-balanced in the following cases:

- (vi) Γ is a Hamming graph;
- (vii) Γ is a Johnson graph;
- (viii) Γ is the Grassmann graph $J_q(2D, D)$;
	- (ix) Γ is a halved bipartite dual-polar graph;
	- (x) Γ is a halved Hemmeter graph;
	- (xi) Γ is a halved hypercube;
- (xii) Γ is a folded-half hypercube.

The Norton-balanced condition was inspired by our recent work with Kazumasa Nomura on spin models.

We show that Γ is Norton-balanced in the following case: $(xiii)$ Γ has q-Racah type and affords a spin model.

We show that in general, Γ being Norton-balanced is not a condition on the intersection numbers alone.

To show this, we consider the Hamming graph $H(D, 4)$ and a Doob graph with diameter D.

These graphs have the same intersection numbers.

We showed that $H(D, 4)$ is Norton-balanced and the Doob graph is not.

In a moment, we will describe our theoretical results.

We will use the following definition.

Definition

We say that Γ is **reinforced** whenever the following (i), (ii) hold for $2 < i < D$:

- (i) for x, y $\in X$ at distance $\partial(x, y) = i$, the average valency of the induced subgraph $\Gamma(x) \cap \Gamma_{i-1}(y)$ is independent of x and y;
- (ii) for $x, y \in X$ at distance $\partial(x, y) = i 1$, the average valency of the induced subgraph $\Gamma(x) \cap \Gamma_i(y)$ is independent of x and y.

If Γ is distance-transitive then Γ is reinforced.

Assume for the moment that Γ is reinforced.

For $2 \lt i \lt D$ let z_i denote the average valency mentioned in (i), and note that $a_1 - z_i$ is the average valency mentioned in (ii).

The scalar z_i is often called the *i*th **kite number**.

It is known that the kite numbers $\{z_i\}_{i=2}^D$ are determined by z_2 and the intersection numbers of Γ.

We now summarize our theoretical results.

This will be done over the next few slides.

Let E denote a Q-polynomial primitive idempotent of Γ.

Consider the following two conditions on E:

- (i) the set $\{E\hat{x}|x \in X\}$ is Norton-balanced;
- (ii) for $x, y \in X$ the vectors $E_{x,y}$, E_{y}^{+} , $E\hat{x}$, $E\hat{y}$ are linearly dependent.

By our earlier comments, (i) implies (ii).

Using an example (the Hermitean forms graph with $q = -2$) we showed that (ii) does not imply (i).

We showed that (i) is implied by (ii) together with a certain restriction on the coefficients in the linear dependence.

Let λ denote an indeterminate.

For $2 \le i \le D-1$ we define a quadratic polynomial $\Phi_i(\lambda)$ whose coefficients are determined by the intersection numbers of Γ.

The polynomial $\Phi_i(\lambda)$ has the following meaning.

Pick $x, y \in X$ at distance $\partial(x, y) = i$.

Assuming that Γ is reinforced, we compute the inner products between $E\mathsf{x}^-_\mathsf{y}$, $E\mathsf{x}^+_ \mathsf{y}$, $E\hat{\mathsf{x}}$, $E\hat{\mathsf{y}}$ in terms of the intersection numbers and z_i, z_{i+1} .

Using these inner products and a Cauchy-Schwarz inequality, we show that $\Phi_i(z_2)\geq 0$, with equality iff $E\textsf{x}^-_{{\textsf{y}}}$, $E\textsf{x}^+_{{\textsf{y}}}$, $E\hat{\textsf{x}}$, $E\hat{\textsf{y}}$ are linearly dependent.

Consequently...

Lemma

Assume that Γ is reinforced and the set $\{E\hat{x}|x \in X\}$ is Norton-balanced. Then $\Phi_i(z_2) = 0$ for $2 \le i \le D - 1$.

Definition

We say that E is a **dependency candidate** (or DC) whenever there exists $\xi \in \mathbb{C}$ such that $\Phi_i(\xi) = 0$ for $2 \leq i \leq D - 1$.

Lemma

Assume that Γ is reinforced and the set $\{E\hat{x}|x \in X\}$ is Norton-balanced. Then E is DC.

The Norton-b[alan](#page-34-0)c[ed c](#page-36-0)[o](#page-36-0)[nditi](#page-35-0)o[n for](#page-0-0) [Q](#page-39-0)-polynomial distance-regular

Note that E being DC is a condition on the intersection numbers of Γ.

In our main theoretical result, we display a necessary and sufficient condition on the intersection numbers of Γ, for E to be DC.

This condition is shown on the next two slides.

Theorem (Ter 2024)

For $D \geq 4$ the following (i), (ii) hold.

 (i) Assume that the type of E is included in the table below. Then E is DC iff at least one of the listed scalars is zero.

The Norton-b[alan](#page-36-0)c[ed c](#page-38-0)[o](#page-38-0)[nditi](#page-37-0)o[n for](#page-0-0) [Q](#page-39-0)-polynomial distance-reg

Paul Terwilliger

 (iii) Assume that the type of E is g-Krawtchouk or dual Hahn or Krawtchouk or Bannai/Ito. Then E is DC.

We used the above theorem to show that certain distance-regular graphs are not Norton-balanced.

In this talk, we considered a distance-regular graph Γ.

We reviewed how a Q-polynomial primitive idempotent E of Γ satisfies the balanced set condition.

We then introduced a variation of the balanced set condition, called the Norton-balanced condition.

We listed many examples that satisfy the Norton-balanced condition.

We then introduced the closely related DC condition on E . We gave a necessary/sufficient condition on the intersection numbers of Γ, for E to be DC.

THANK YOU FOR YOUR ATTENTION!

The Norton-b[alan](#page-38-0)c[ed c](#page-39-0)[o](#page-38-0)[nditio](#page-39-0)[n for](#page-0-0) [Q](#page-39-0)-polynomial distance-