The nucleus of a *Q*-polynomial distance-regular graph

Paul Terwilliger

University of Wisconsin-Madison

Overview

In this talk, we consider a Q-polynomial distance-regular graph Γ .

For a vertex x of Γ the corresponding **subconstituent algebra** T = T(x) is generated by the adjacency matrix A and the dual adjacency matrix $A^* = A^*(x)$ with respect to x.

We introduce a T-module $\mathbb{N} = \mathbb{N}(x)$ called the **nucleus** of Γ with respect to x.

We will show that the irreducible T-submodules of $\mathbb N$ have a property called **thin**.

Under the assumption that Γ is a nonbipartite **dual polar graph**, we give an explicit basis for \mathbb{N} and the action of A, A^* on this basis.

Distance-regular graphs

Let $\Gamma = (X, \mathbb{R})$ denote a finite, undirected, connected graph, with vertex set X and adjacency relation \mathbb{R} .

Let ∂ denote the path-length distance function for Γ , and recall the **diameter**

$$D = \max\{\partial(x, y)|x, y \in X\}.$$

Distance-regular graphs, cont.

For $x \in X$ and $0 \le i \le D$ define the set

$$\Gamma_i(x) = \{ y \in X | \partial(x, y) = i \}.$$

We call $\Gamma_i(x)$ the *i*th subconstituent of Γ with respect to x.

Distance-regular graphs, cont.

The graph Γ is called **distance-regular** whenever for all $0 \le h, i, j \le D$ and $x, y \in X$ with $\partial(x, y) = h$, the number

$$p_{i,j}^h = |\Gamma_i(x) \cap \Gamma_j(y)|$$

is independent of x and y.

The $p_{i,j}^h$ are called the **intersection numbers** of Γ .

For the rest of this talk, we assume that Γ is distance-regular with $D \geq 1$.

Distance-regular graphs, cont.

By construction $p_{i,j}^h = p_{j,i}^h$ for $0 \le h, i, j \le D$.

By the **triangle inequality**, the following hold for $0 \le h, i, j \le D$:

- (i) $p_{i,j}^h = 0$ if one of h, i, j is greater than the sum of the other two:
- (ii) $p_{i,j}^h \neq 0$ if one of h, i, j is equal to the sum of the other two.

We abbreviate

$$c_i = p_{1,i-1}^i \ (1 \le i \le D), \qquad a_i = p_{1,i}^i \ (0 \le i \le D),$$

 $b_i = p_{1,i+1}^i \ (0 \le i \le D-1).$

The distance matrices of Γ

We recall the distance matrices of Γ .

Let the algebra $\operatorname{Mat}_X(\mathbb{C})$ consist of the matrices that have rows and columns indexed by X and all entries in \mathbb{C} .

For $0 \le i \le D$ define $A_i \in \operatorname{Mat}_X(\mathbb{C})$ that has (y, z)-entry

$$(A_i)_{y,z} = \begin{cases} 1, & \text{if } \partial(y,z) = i; \\ 0, & \text{if } \partial(y,z) \neq i \end{cases} (y,z \in X).$$

We call A_i the *i*th **distance matrix** of Γ . We call $A = A_1$ the **adjacency matrix** of Γ .

The Bose-Mesner algebra of Γ

For $0 \le i, j \le D$ we have

$$A_i A_j = \sum_{h=0}^D p_{i,j}^h A_h.$$

Consequently the matrices $\{A_i\}_{i=0}^D$ form a basis for a commutative subalgebra M of $\mathrm{Mat}_X(\mathbb{C})$, called the **Bose-Mesner algebra** of Γ .

It turns out that A generates M.

The primitive idempotents of Γ

The matrices $\{A_i\}_{i=0}^{D}$ are symmetric and mutually commute, so they can be simultaneously diagonalized over the real numbers.

Consequently M has a second basis $\{E_i\}_{i=0}^D$ such that

(i)
$$E_0 = |X|^{-1}J$$
 (*J* has all entries 1)

(ii)
$$I = \sum_{i=0}^{D} E_i$$
;

(iii)
$$E_i E_j = \delta_{i,j} E_i \ (0 \le i, j \le D).$$

We call $\{E_i\}_{i=0}^D$ the **primitive idempotents** of Γ.

The Krein parameters of Γ

We recall the Krein parameters of Γ .

The Bose-Mesner algebra M is closed under the **entry-wise product** \circ , because $A_i \circ A_j = \delta_{i,j}A_i$ for $0 \le i,j \le D$.

Consequently, there exist scalars $q_{i,j}^h \in \mathbb{C}$ $(0 \le h, i, j \le D)$ such that

$$E_i \circ E_j = |X|^{-1} \sum_{h=0}^{D} q_{i,j}^h E_h$$
 $(0 \le i, j \le D).$

The scalars $q_{i,j}^h$ are called the **Krein parameters** of Γ .

By construction $q_{i,j}^h = q_{i,i}^h \ (0 \le h, i, j \le D)$.

The *Q*-polynomial property

The ordering $\{E_i\}_{i=0}^D$ is said to be Q-polynomial whenever the following hold for $0 \le h, i, j \le D$:

- (i) $q_{i,j}^h = 0$ if one of h, i, j is greater than the sum of the other two;
- (ii) $q_{i,j}^h \neq 0$ if one of h, i, j is equal to the sum of the other two.

For the rest of this talk, we assume that the ordering $\{E_i\}_{i=0}^D$ is Q-polynomial.

The dual Bose-Mesner algebra

We recall the dual Bose-Mesner algebras of Γ .

For the rest of this talk, fix a vertex $x \in X$. We call x the **base** vertex.

For $0 \le i \le D$ let $E_i^* = E_i^*(x)$ denote the diagonal matrix in $\operatorname{Mat}_X(\mathbb{C})$ that has (y,y)-entry

$$(E_i^*)_{y,y} = \begin{cases} 1, & \text{if } y \in \Gamma_i(x); \\ 0, & \text{if } y \notin \Gamma_i(x) \end{cases} (y \in X).$$

We call E_i^* the *i*th dual primitive idempotent of Γ with respect to x.

The dual Bose-Mesner algebra, cont.

Note that

$$I = \sum_{i=0}^{D} E_i^*, \qquad E_i^* E_j^* = \delta_{i,j} E_i^* \quad (0 \le i, j \le D).$$

Consequently the matrices $\{E_i^*\}_{i=0}^D$ form a basis for a commutative subalgebra $M^* = M^*(x)$ of $\mathrm{Mat}_X(\mathbb{C})$.

We call M^* the dual Bose-Mesner algebra of Γ with respect to x.

The dual distance matrices

We recall the dual distance matrices of Γ .

For $0 \le i \le D$ let $A_i^* = A_i^*(x)$ denote the diagonal matrix in $\operatorname{Mat}_X(\mathbb{C})$ that has (y,y)-entry

$$(A_i^*)_{y,y} = |X|(E_i)_{x,y}$$
 $(y \in X).$

It turns out that $\{A_i^*\}_{i=0}^D$ form a basis for M^* . Moreover

$$A_i^* A_j^* = \sum_{h=0}^D q_{i,j}^h A_h^* \qquad (0 \le i, j \le D).$$

The dual distance matrices, cont.

We call A_i^* the *i*th **dual distance matrix of** Γ (with respect to x and the given Q-polynomial structure).

We call $A^* = A_1^*$ the **dual adjacency matrix of** Γ (with respect to x and the given Q-polynomial structure).

In turns out that A^* generates M^* .

The subconstituent algebra T

We recall the subconstituent algebra.

Let T = T(x) denote the subalgebra of $\mathrm{Mat}_X(\mathbb{C})$ generated by M and M^* .

The algebra T is finite-dimensional and noncommutative.

We call T the subconstituent algebra of Γ with respect to x.

Note that T is generated by A, A^* .

The eigenvalues and dual eigenvalues

For $0 \le i \le D$ let θ_i (resp. θ_i^*) denote the eigenvalue of A (resp. A^*) associated with E_i (resp. E_i^*).

We have

$$A = \sum_{i=0}^{D} \theta_i E_i,$$
 $A^* = \sum_{i=0}^{D} \theta_i^* E_i^*.$

The standard module V

Let $V=\mathbb{C}^X$ denote the vector space over \mathbb{C} , consisting of the column vectors that have coordinates indexed by X and all entries in \mathbb{C} .

The algebra $\operatorname{Mat}_X(\mathbb{C})$ acts on V by left multiplication. We call V the **standard module**.

A basis for V

We endow V with a Hermitean form $\langle \, , \, \rangle$ such that $\langle u, v \rangle = u^t \overline{v}$ for all $u, v \in V$. Here t denotes transpose and - denotes complex conjugation.

For $y \in X$ define a vector $\hat{y} \in V$ that has y-coordinate 1 and all other coordinates 0.

Observe that the vectors $\{\hat{y}|y\in X\}$ form an orthonormal basis for V.

T-modules

For convenience, we adopt the following convention.

By a T-module, we mean a T-submodule of the standard module V.

Irreducible T-modules

Definition

A T-module W is said to be **irreducible** whenever $W \neq 0$ and W does not contain a T-module besides 0 and W.

Lemma (Ter 92)

Every T-module is an orthogonal direct sum of irreducible T-modules. In particular, the standard T-module V is an orthogonal direct sum of irreducible T-modules.

The thin condition

Definition

Let W denote an irreducible T-module. It is known that the following are equivalent:

- (i) dim $E_i W \le 1 \ (0 \le i \le D)$;
- (ii) dim $E_i^* W \le 1 \ (0 \le i \le D)$.

We say that W is **thin** whenever (i), (ii) hold.

Endpoint, dual endpoint, and diameter

Let W denote an irreducible T-module. By the **endpoint** of W we mean

$$\min\{i|0 \le i \le D, E_i^*W \ne 0\}.$$

By the **dual endpoint** of W, we mean

$$\min\{i|0\leq i\leq D,\ E_iW\neq 0\}.$$

By the **diameter** of W, we mean

$$|\{i|0 \le i \le D, E_i^*W \ne 0\}| - 1.$$

By [Pascasio 2003] the diameter of W is equal to

$$|\{i|0 \le i \le D, E_iW \ne 0\}| - 1.$$

The primary *T*-module

Example (Ter 92)

There exists a unique irreducible T-module that has diameter D; this T-module is called **primary**. An irreducible T-module is primary iff it has endpoint 0 iff it has dual endpoint 0. The primary T-module is thin.

The Caughman bound

Lemma

Let W denote an irreducible T-module, with endpoint r and diameter d. Then the following hold.

- (i) [Caughman 99] $2r D + d \ge 0$.
- (ii) If equality holds in (i) then W is thin.

The dual Caughman bound

Lemma

Let W denote an irreducible T-module, with dual endpoint t and diameter d. Then the following hold.

- (i) [Caughman 99] $2t D + d \ge 0$.
- (ii) If equality holds in (i) then W is thin.

An inequality

Next, we combine the Caughman bound and the dual Caughman bound into one inequality.

Theorem

Let W denote an irreducible T-module, with endpoint r, dual endpoint t, and diameter d. Then

$$r + t - D + d \ge 0$$
.

Moreover, equality holds iff both t = r and d = D - 2r.

To prove the theorem, note that

$$r + t - D + d = \frac{2r - D + d}{2} + \frac{2t - D + d}{2}.$$

The displacement

Motivated by the previous inequality, we make a definition.

Definition (Ter 2005)

Let W denote an irreducible T-module. By the **displacement** of W, we mean the integer

$$r + t - D + d$$
,

where r (resp. t) (resp. d) denotes the endpoint (resp. dual endpoint) (resp. diameter) of W.

Example

The primary T-module has displacement 0.

The definition of the nucleus

We are now ready to define the nucleus.

Definition (Ter 24)

By the **nucleus** of Γ with respect to x, we mean the span of the irreducible T-modules that have displacement 0.

By construction, the nucleus of Γ with respect to x is a T-module that contains the primary irreducible T-module with respect to x.

In the next slide, we emphasize a few more points about the nucleus.

Describing the nucleus, cont.

Lemma

Let W denote an irreducible T-submodule of the nucleus, with endpoint r, dual endpoint t, and diameter d. Then:

- (i) $0 \le r \le D/2$;
- (ii) t = r;
- (iii) d = D 2r;
- (iv) W is thin.

The nucleus from another point of view

So far, we used the concept of displacement to define a T-module called the nucleus.

Next, we describe the nucleus from another point of view.

An intersection

Lemma (Ter 2005)

For
$$0 \le i, j \le D$$
 such that $i + j < D$,

$$(E_0^*V + E_1^*V + \cdots + E_i^*V) \cap (E_0V + E_1V + \cdots + E_iV) = 0.$$

The subspaces \mathcal{N}_i

Definition

For $0 \le i \le D$ define a subspace $\mathcal{N}_i = \mathcal{N}_i(x)$ by

$$\mathcal{N}_i = (E_0^* V + E_1^* V + \dots + E_i^* V) \cap (E_0 V + E_1 V + \dots + E_{D-i} V).$$

The subspaces \mathcal{N}_i , cont.

Lemma (Ter 2005)

The sum $\sum_{i=0}^{D} \mathcal{N}_i$ is direct.

The subpace N

Definition

Define a subspace $\mathcal{N} = \mathcal{N}(x)$ by

$$\mathcal{N} = \sum_{i=0}^{D} \mathcal{N}_{i}.$$

The nucleus, revisited

Theorem (Ter 2024)

The following are the same:

- (i) the subspace $\mathbb{N} = \mathbb{N}(x)$;
- (ii) the nucleus of Γ with respect to x.

The dual polar graphs

For the rest of this talk, we consider a family of Q-polynomial distance-regular graphs called the **dual polar graphs**.

These graphs are defined on the next four slides.

The dual polar graphs

Example

Let ${\bf U}$ denote a finite vector space with one of the following nondegenerate forms:

name	$\dim(\mathbf{U})$	field	form	e
$B_D(p^n)$	2D + 1	$GF(p^n)$	quadratic	0
$C_D(p^n)$	2 <i>D</i>	$GF(p^n)$	symplectic	0
$D_D(p^n)$	2 <i>D</i>	$GF(p^n)$	quadratic	-1
			(Witt index D)	
$^{2}D_{D+1}(p^{n})$	2D + 2	$GF(p^n)$	quadratic	1
			(Witt index D)	
$^{2}A_{2D}(p^{n})$	2D + 1	$GF(p^{2n})$	Hermitean	1/2
$^{2}A_{2D-1}(p^{n})$	2 <i>D</i>	$GF(p^{2n})$	Hermitean	-1/2

The dual polar graphs, cont.

Example (continued...)

A subspace of **U** is called **isotropic** whenever the form vanishes completely on that subspace. In each of the above cases, the dimension of any maximal isotropic subspace is D. The corresponding dual polar graph Γ has vertex set X consisting of the maximal isotropic subspaces of **U**. Vertices $y, z \in X$ are adjacent whenever $y \cap z$ has dimension D-1. More generally, $\partial(y,z) = D - \dim y \cap z$.

The dual polar graphs, cont.

Example (continued..)

The graph Γ is distance-regular with diameter D and intersection numbers

$$c_i = rac{q^i-1}{q-1}, \quad a_i = (q^{e+1}-1)rac{q^i-1}{q-1}, \quad b_i = q^{e+1}rac{q^D-q^i}{q-1}$$

for $0 \le i \le D$, where $q = p^n, p^n, p^n, p^n, p^{2n}, p^{2n}$.

The dual polar graphs are Q-polynomial

Example (continued..)

The graph Γ has a Q-polynomial structure such that

$$\theta_{i} = q^{e+1} \frac{q^{D} - 1}{q - 1} - \frac{(q^{i} - 1)(q^{D+e+1-i} + 1)}{q - 1} \qquad (0 \le i \le D),$$

$$\theta_{i}^{*} = \frac{q^{D+e} + q}{q^{e} + 1} \frac{q^{-i}(q^{D+e} + 1) - q^{e} - 1}{q - 1} \qquad (0 \le i \le D).$$

From now on, we assume that Γ is a dual polar graph that is nonbipartite ($e \neq -1$).

It is known that every irreducible *T*-module is thin.

The *q*-binomial coefficients

We bring in some notation. For an integer $n \ge 0$ define

$$[n]_q = \frac{q^n - 1}{q - 1}.$$

We further define

$$[n]_q^! = [n]_q[n-1]_q \cdots [2]_q[1]_q.$$

We interpret $[0]_q^! = 1$. For $0 \le i \le n$ define the *q*-binomial coefficient

$$\binom{n}{i}_q = \frac{[n]_q^!}{[i]_q^! [n-i]_q^!}.$$

An orthogonal basis for the nucleus

Our next goal is to find an orthogonal basis for the nucleus $\mathcal{N} = \mathcal{N}(x)$.

The relation \sim

Definition

Using the vertex x, we define a binary relation \sim on X as follows. For $y,z\in X$ we declare $y\sim z$ whenever both

- (i) $\partial(x,y) = \partial(x,z)$;
- (ii) y, z are in the same connected component of $\Gamma_i(x)$, where $i = \partial(x, y) = \partial(x, z)$.

Note that \sim is an equivalence relation.

An orthogonal basis for the nucleus

Theorem (Ter 2024)

The nucleus $\mathbb N$ has an orthogonal basis consisting of the characteristic vectors of the \sim equivalence classes.

In order to describe $\ensuremath{\mathbb{N}}$ in more detail, we bring in a projective geometry.

In what follows, we work with the finite field GF(q) associated with Γ from the definition of a dual polar graph.

Definition

Let **V** denote a vector space over GF(q) that has dimension D. Let the set \mathcal{P} consist of the subspaces of **V**. Define a partial order \leq on \mathcal{P} such that for $\eta, \zeta \in \mathcal{P}$, $\eta \leq \zeta$ whenever $\eta \subseteq \zeta$. The poset \mathcal{P}, \leq is denoted $L_D(q)$ and called a **projective geometry**.

Recall our fixed vertex $x \in X$.

By the definition of a dual polar graph, the vertex x is a vector space over GF(q) that has dimension D.

For notational convenience, we always take the $\mathbf{V} = x$.

Definition

For $\eta, \zeta \in \mathcal{P}$, we say that ζ **covers** η whenever $\eta \subseteq \zeta$ and $\dim \zeta - \dim \eta = 1$. We say that η, ζ are **adjacent** whenever one of η, ζ covers the other one. The set \mathcal{P} together with the adjacency relation, forms an undirected graph. For $\eta \in \mathcal{P}$, let the set $\mathcal{P}(\eta)$ consist of the elements in \mathcal{P} that are adjacent to η . For $0 \le i \le D$, let the set \mathcal{P}_i consist of the elements in \mathcal{P} that have dimension D - i. Note that $\mathcal{P}_0 = \{x\}$. For notational convenience, define $\mathcal{P}_{-1} = \emptyset$ and $\mathcal{P}_{D+1} = \emptyset$.

In the next slide, we describe some basic combinatorial features of \mathcal{P} .

Some features of $L_D(q)$

Lemma

For $0 \le i \le D$, each vertex in \mathcal{P}_i is adjacent to exactly $[i]_q$ vertices in \mathcal{P}_{i-1} and exactly $[D-i]_q$ vertices in \mathcal{P}_{i+1} .

Lemma

We have

$$|\mathcal{P}_i| = \binom{D}{i}_{a} \qquad (0 \le i \le D).$$

Using $L_D(q)$ to describe \mathbb{N}

We have been discussing the set \mathcal{P} .

Earlier we found an orthogonal basis for the nucleus N.

Our next goal is to display a bijection from \mathcal{P} to this basis.

Using $L_D(q)$ to describe the relation \sim

The result below follows from the work of Chih-wen Weng concerning weak geodetically closed subgraphs (1998).

Lemma

For $y, z \in X$ the following are equivalent:

- (i) $y \sim z$;
- (ii) $x \cap y = x \cap z$.

Using $L_D(q)$ to describe the relation \sim

Recall the standard module V of Γ .

Definition

For $\eta \in \mathcal{P}$ we define a vector $\eta^{\mathcal{N}} \in V$ as follows:

$$\eta^{\mathcal{N}} = \sum_{\substack{y \in X \\ x \cap y = \eta}} \hat{y}.$$

By construction, the above vector $\eta^{\mathbb{N}}$ is the characteristic vector of a \sim equivalence class.

A bijection

Theorem (Ter 2024)

We give a bijection from \mathcal{P} to our basis for \mathcal{N} . The bijection sends $\eta \to \eta^{\mathcal{N}}$ for all $\eta \in \mathcal{P}$.

The dimension of the nucleus N

Corollary

We have

$$\dim \mathfrak{N} = |\mathcal{P}| = \sum_{i=0}^{D} \binom{D}{i}_{q}.$$

The action of A, A^* on the nucleus

We now bring in the adjacency matrix A of Γ , and the dual adjacency matrix $A^* = A^*(x)$ of Γ with respect to x.

Theorem (Ter 2024)

We give the action of A, A^* on the basis $\{\eta^{\mathbb{N}} | \eta \in \mathbb{P}\}$ for \mathbb{N} . For $0 \le i \le D$ and $\eta \in \mathbb{P}_i$ we have

$$A\eta^{\mathcal{N}} = a_1 \frac{q^i - 1}{q - 1} \eta^{\mathcal{N}} + \sum_{\zeta \in \mathcal{P}(\eta) \cap \mathcal{P}_{i+1}} \zeta^{\mathcal{N}} + (a_1 + 1) q^{i-1} \sum_{\zeta \in \mathcal{P}(\eta) \cap \mathcal{P}_{i-1}} \zeta^{\mathcal{N}};$$

$$A^*\eta^{\mathcal{N}} = \theta_i^*\eta^{\mathcal{N}}.$$

The action of A, A^* on the nucleus

The previous theorem shows that the action of A on \mathbb{N} becomes a **weighted adjacency map** for $L_D(q)$.

We would like to acknowledge that a similar weighted adjacency map for $L_D(q)$ showed up earlier in the work of Bernard, Crampé, and Vinet [2022] concerning the dual polar graph with symplectic type and q a prime.

Summary

In this talk, we considered a Q-polynomial distance-regular graph Γ with diameter $D \geq 1$.

For a vertex x of Γ we considered the subconstituent algebra T = T(x) generated by A and $A^* = A^*(x)$.

We introduced a T-module $\mathcal{N} = \mathcal{N}(x)$ called the **nucleus** of Γ with respect to x.

We showed that the irreducible T-submodules of $\mathbb N$ are thin.

Under the assumption that Γ is a nonbipartite dual polar graph, we gave an explicit basis for \mathbb{N} and the action of A, A^* on this basis.

THANK YOU FOR YOUR ATTENTION!

