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Overview

In this talk, we consider a Q-polynomial distance-regular graph Γ.

For a vertex x of Γ the corresponding subconstituent algebra
T = T (x) is generated by the adjacency matrix A and the dual
adjacency matrix A∗ = A∗(x) with respect to x .

We introduce a T -module N = N(x) called the nucleus of Γ with
respect to x .

We will show that the irreducible T -submodules of N have a
property called thin.

Under the assumption that Γ is a nonbipartite dual polar graph,
we give an explicit basis for N and the action of A,A∗ on this basis.
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Distance-regular graphs

Let Γ = (X ,R) denote a finite, undirected, connected graph, with
vertex set X and adjacency relation R.

Let ∂ denote the path-length distance function for Γ, and recall the
diameter

D = max{∂(x , y)|x , y ∈ X}.
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Distance-regular graphs, cont.

For x ∈ X and 0 ≤ i ≤ D define the set

Γi (x) = {y ∈ X |∂(x , y) = i}.

We call Γi (x) the ith subconstituent of Γ with respect to x .
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Distance-regular graphs, cont.

The graph Γ is called distance-regular whenever for all
0 ≤ h, i , j ≤ D and x , y ∈ X with ∂(x , y) = h, the number

phi ,j = |Γi (x) ∩ Γj(y)|

is independent of x and y .

The phi ,j are called the intersection numbers of Γ.

For the rest of this talk, we assume that Γ is distance-regular with
D ≥ 1.
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Distance-regular graphs, cont.

By construction phi ,j = phj ,i for 0 ≤ h, i , j ≤ D.

By the triangle inequality, the following hold for 0 ≤ h, i , j ≤ D:

(i) phi ,j = 0 if one of h, i , j is greater than the sum of the other
two;

(ii) phi ,j 6= 0 if one of h, i , j is equal to the sum of the other two.

We abbreviate

ci = pi1,i−1 (1 ≤ i ≤ D), ai = pi1,i (0 ≤ i ≤ D),

bi = pi1,i+1 (0 ≤ i ≤ D − 1).
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The distance matrices of Γ

We recall the distance matrices of Γ.

Let the algebra MatX (C) consist of the matrices that have rows
and columns indexed by X and all entries in C.

For 0 ≤ i ≤ D define Ai ∈ MatX (C) that has (y , z)-entry

(Ai )y ,z =

{
1, if ∂(y , z) = i ;

0, if ∂(y , z) 6= i
(y , z ∈ X ).

We call Ai the ith distance matrix of Γ. We call A = A1 the
adjacency matrix of Γ.
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The Bose-Mesner algebra of Γ

For 0 ≤ i , j ≤ D we have

AiAj =
D∑

h=0

phi ,jAh.

Consequently the matrices {Ai}Di=0 form a basis for a commutative
subalgebra M of MatX (C), called the Bose-Mesner algebra of Γ.

It turns out that A generates M.
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The primitive idempotents of Γ

The matrices {Ai}Di=0 are symmetric and mutually commute, so
they can be simultaneously diagonalized over the real numbers.

Consequently M has a second basis {Ei}Di=0 such that

(i) E0 = |X |−1J (J has all entries 1)

(ii) I =
∑D

i=0 Ei ;

(iii) EiEj = δi ,jEi (0 ≤ i , j ≤ D).

We call {Ei}Di=0 the primitive idempotents of Γ.
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The Krein parameters of Γ

We recall the Krein parameters of Γ.

The Bose-Mesner algebra M is closed under the entry-wise
product ◦, because Ai ◦ Aj = δi ,jAi for 0 ≤ i , j ≤ D.

Consequently, there exist scalars qhi ,j ∈ C (0 ≤ h, i , j ≤ D) such
that

Ei ◦ Ej = |X |−1
D∑

h=0

qhi ,jEh (0 ≤ i , j ≤ D).

The scalars qhi ,j are called the Krein parameters of Γ.

By construction qhi ,j = qhj ,i (0 ≤ h, i , j ≤ D).
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The Q-polynomial property

The ordering {Ei}Di=0 is said to be Q-polynomial whenever the
following hold for 0 ≤ h, i , j ≤ D:

(i) qhi ,j = 0 if one of h, i , j is greater than the sum of the other
two;

(ii) qhi ,j 6= 0 if one of h, i , j is equal to the sum of the other two.

For the rest of this talk, we assume that the ordering {Ei}Di=0 is
Q-polynomial.
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The dual Bose-Mesner algebra

We recall the dual Bose-Mesner algebras of Γ.

For the rest of this talk, fix a vertex x ∈ X . We call x the base
vertex.

For 0 ≤ i ≤ D let E ∗i = E ∗i (x) denote the diagonal matrix in
MatX (C) that has (y , y)-entry

(E ∗i )y ,y =

{
1, if y ∈ Γi (x);

0, if y 6∈ Γi (x)
(y ∈ X ).

We call E ∗i the ith dual primitive idempotent of Γ with respect
to x .
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The dual Bose-Mesner algebra, cont.

Note that

I =
D∑
i=0

E ∗i , E ∗i E
∗
j = δi ,jE

∗
i (0 ≤ i , j ≤ D).

Consequently the matrices {E ∗i }Di=0 form a basis for a commutative
subalgebra M∗ = M∗(x) of MatX (C).

We call M∗ the dual Bose-Mesner algebra of Γ with respect to
x .
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The dual distance matrices

We recall the dual distance matrices of Γ.

For 0 ≤ i ≤ D let A∗i = A∗i (x) denote the diagonal matrix in
MatX (C) that has (y , y)-entry

(A∗i )y ,y = |X |(Ei )x ,y (y ∈ X ).

It turns out that {A∗i }Di=0 form a basis for M∗. Moreover

A∗i A
∗
j =

D∑
h=0

qhi ,jA
∗
h (0 ≤ i , j ≤ D).
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The dual distance matrices, cont.

We call A∗i the ith dual distance matrix of Γ (with respect to x
and the given Q-polynomial structure).

We call A∗ = A∗1 the dual adjacency matrix of Γ (with respect to
x and the given Q-polynomial structure).

In turns out that A∗ generates M∗.
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The subconstituent algebra T

We recall the subconstituent algebra.

Let T = T (x) denote the subalgebra of MatX (C) generated by M
and M∗.

The algebra T is finite-dimensional and noncommutative.

We call T the subconstituent algebra of Γ with respect to x .

Note that T is generated by A,A∗.
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The eigenvalues and dual eigenvalues

For 0 ≤ i ≤ D let θi (resp. θ∗i ) denote the eigenvalue of A (resp.
A∗) associated with Ei (resp. E ∗i ).

We have

A =
D∑
i=0

θiEi , A∗ =
D∑
i=0

θ∗i E
∗
i .
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The standard module V

Let V = CX denote the vector space over C, consisting of the
column vectors that have coordinates indexed by X and all entries
in C.

The algebra MatX (C) acts on V by left multiplication. We call V
the standard module.
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A basis for V

We endow V with a Hermitean form 〈 , 〉 such that 〈u, v〉 = utv
for all u, v ∈ V . Here t denotes transpose and − denotes complex
conjugation.

For y ∈ X define a vector ŷ ∈ V that has y -coordinate 1 and all
other coordinates 0.

Observe that the vectors {ŷ |y ∈ X} form an orthonormal basis for
V .
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T -modules

For convenience, we adopt the following convention.

By a T -module, we mean a T -submodule of the standard module
V .
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Irreducible T -modules

Definition

A T -module W is said to be irreducible whenever W 6= 0 and
W does not contain a T -module besides 0 and W .

Lemma (Ter 92)

Every T -module is an orthogonal direct sum of irreducible
T -modules. In particular, the standard T -module V is an
orthogonal direct sum of irreducible T -modules.
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The thin condition

Definition

Let W denote an irreducible T -module. It is known that the
following are equivalent:

(i) dimEiW ≤ 1 (0 ≤ i ≤ D);

(ii) dimE ∗i W ≤ 1 (0 ≤ i ≤ D).

We say that W is thin whenever (i), (ii) hold.
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Endpoint, dual endpoint, and diameter

Let W denote an irreducible T -module. By the endpoint of W we
mean

min{i |0 ≤ i ≤ D, E ∗i W 6= 0}.

By the dual endpoint of W , we mean

min{i |0 ≤ i ≤ D, EiW 6= 0}.

By the diameter of W , we mean∣∣{i |0 ≤ i ≤ D, E ∗i W 6= 0}
∣∣− 1.

By [Pascasio 2003] the diameter of W is equal to∣∣{i |0 ≤ i ≤ D, EiW 6= 0}
∣∣− 1.
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The primary T -module

Example (Ter 92)

There exists a unique irreducible T -module that has diameter
D; this T -module is called primary. An irreducible T -module is
primary iff it has endpoint 0 iff it has dual endpoint 0. The
primary T -module is thin.

Paul Terwilliger The nucleus of a Q-polynomial distance-regular graph



The Caughman bound

Lemma

Let W denote an irreducible T -module, with endpoint r and
diameter d . Then the following hold.

(i) [Caughman 99] 2r − D + d ≥ 0.

(ii) If equality holds in (i) then W is thin.
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The dual Caughman bound

Lemma

Let W denote an irreducible T -module, with dual endpoint t and
diameter d . Then the following hold.

(i) [Caughman 99] 2t − D + d ≥ 0.

(ii) If equality holds in (i) then W is thin.
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An inequality

Next, we combine the Caughman bound and the dual Caughman
bound into one inequality.

Theorem

Let W denote an irreducible T -module, with endpoint r , dual
endpoint t, and diameter d . Then

r + t − D + d ≥ 0.

Moreover, equality holds iff both t = r and d = D − 2r .

To prove the theorem, note that

r + t − D + d =
2r − D + d

2
+

2t − D + d

2
.
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The displacement

Motivated by the previous inequality, we make a definition.

Definition (Ter 2005)

Let W denote an irreducible T -module. By the displacement of
W , we mean the integer

r + t − D + d ,

where r (resp. t) (resp. d) denotes the endpoint (resp. dual
endpoint) (resp. diameter) of W .

Example

The primary T -module has displacement 0.
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The definition of the nucleus

We are now ready to define the nucleus.

Definition (Ter 24)

By the nucleus of Γ with respect to x , we mean the span of the
irreducible T -modules that have displacement 0.

By construction, the nucleus of Γ with respect to x is a T -module
that contains the primary irreducible T -module with respect to x .

In the next slide, we emphasize a few more points about the
nucleus.
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Describing the nucleus, cont.

Lemma

Let W denote an irreducible T -submodule of the nucleus, with
endpoint r , dual endpoint t, and diameter d . Then:

(i) 0 ≤ r ≤ D/2;

(ii) t = r ;

(iii) d = D − 2r ;

(iv) W is thin.
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The nucleus from another point of view

So far, we used the concept of displacement to define a T -module
called the nucleus.

Next, we describe the nucleus from another point of view.
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An intersection

Lemma (Ter 2005)

For 0 ≤ i , j ≤ D such that i + j < D,

(E ∗0V + E ∗1V + · · ·+ E ∗i V ) ∩ (E0V + E1V + · · ·+ EjV ) = 0.
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The subspaces Ni

Definition

For 0 ≤ i ≤ D define a subspace Ni = Ni (x) by

Ni = (E ∗0V + E ∗1V + · · ·+ E ∗i V ) ∩ (E0V + E1V + · · ·+ ED−iV ).
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The subspaces Ni , cont.

Lemma (Ter 2005)

The sum
∑D

i=0Ni is direct.
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The subpace N

Definition

Define a subspace N = N(x) by

N =
D∑
i=0

Ni .
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The nucleus, revisited

Theorem (Ter 2024)

The following are the same:

(i) the subspace N = N(x);

(ii) the nucleus of Γ with respect to x .
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The dual polar graphs

For the rest of this talk, we consider a family of Q-polynomial
distance-regular graphs called the dual polar graphs.

These graphs are defined on the next four slides.
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The dual polar graphs

Example

Let U denote a finite vector space with one of the following
nondegenerate forms:

name dim(U) field form e

BD(pn) 2D + 1 GF (pn) quadratic 0
CD(pn) 2D GF (pn) symplectic 0
DD(pn) 2D GF (pn) quadratic −1

(Witt index D)
2DD+1(pn) 2D + 2 GF (pn) quadratic 1

(Witt index D)
2A2D(pn) 2D + 1 GF (p2n) Hermitean 1/2

2A2D−1(pn) 2D GF (p2n) Hermitean −1/2
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The dual polar graphs, cont.

Example (continued...)

A subspace of U is called isotropic whenever the form vanishes
completely on that subspace. In each of the above cases, the
dimension of any maximal isotropic subspace is D. The
corresponding dual polar graph Γ has vertex set X consisting of
the maximal isotropic subspaces of U. Vertices y , z ∈ X are
adjacent whenever y ∩ z has dimension D − 1. More generally,
∂(y , z) = D − dim y ∩ z .
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The dual polar graphs, cont.

Example (continued..)

The graph Γ is distance-regular with diameter D and
intersection numbers

ci =
qi − 1

q − 1
, ai = (qe+1 − 1)

qi − 1

q − 1
, bi = qe+1 q

D − qi

q − 1

for 0 ≤ i ≤ D, where q = pn, pn, pn, pn, p2n, p2n.
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The dual polar graphs are Q-polynomial

Example (continued..)

The graph Γ has a Q-polynomial structure such that

θi = qe+1 q
D − 1

q − 1
− (qi − 1)(qD+e+1−i + 1)

q − 1
(0 ≤ i ≤ D),

θ∗i =
qD+e + q

qe + 1

q−i (qD+e + 1)− qe − 1

q − 1
(0 ≤ i ≤ D).

From now on, we assume that Γ is a dual polar graph that is
nonbipartite (e 6= −1).

It is known that every irreducible T -module is thin.
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The q-binomial coefficients

We bring in some notation. For an integer n ≥ 0 define

[n]q =
qn − 1

q − 1
.

We further define

[n]!q = [n]q[n − 1]q · · · [2]q[1]q.

We interpret [0]!q = 1. For 0 ≤ i ≤ n define the q-binomial
coefficient (

n

i

)
q

=
[n]!q

[i ]!q[n − i ]!q
.
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An orthogonal basis for the nucleus

Our next goal is to find an orthogonal basis for the nucleus
N = N(x).
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The relation ∼

Definition

Using the vertex x , we define a binary relation ∼ on X as
follows. For y , z ∈ X we declare y ∼ z whenever both

(i) ∂(x , y) = ∂(x , z);

(ii) y , z are in the same connected component of Γi (x), where
i = ∂(x , y) = ∂(x , z).

Note that ∼ is an equivalence relation.
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An orthogonal basis for the nucleus

Theorem (Ter 2024)

The nucleus N has an orthogonal basis consisting of the
characteristic vectors of the ∼ equivalence classes.
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The projective geometry LD(q)

In order to describe N in more detail, we bring in a projective
geometry.

In what follows, we work with the finite field GF (q) associated
with Γ from the definition of a dual polar graph.
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The projective geometry LD(q)

Definition

Let V denote a vector space over GF (q) that has dimension D.
Let the set P consist of the subspaces of V. Define a partial
order ≤ on P such that for η, ζ ∈ P, η ≤ ζ whenever η ⊆ ζ. The
poset P,≤ is denoted LD(q) and called a projective geometry.
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The projective geometry LD(q)

Recall our fixed vertex x ∈ X .

By the definition of a dual polar graph, the vertex x is a vector
space over GF (q) that has dimension D.

For notational convenience, we always take the V = x .
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The projective geometry LD(q)

Definition

For η, ζ ∈ P, we say that ζ covers η whenever η ⊆ ζ and
dim ζ − dim η = 1. We say that η, ζ are adjacent whenever one
of η, ζ covers the other one. The set P together with the
adjacency relation, forms an undirected graph. For η ∈ P, let
the set P(η) consist of the elements in P that are adjacent to η.
For 0 ≤ i ≤ D, let the set Pi consist of the elements in P that
have dimension D − i . Note that P0 = {x}. For notational
convenience, define P−1 = ∅ and PD+1 = ∅.

In the next slide, we describe some basic combinatorial features of
P.
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Some features of LD(q)

Lemma

For 0 ≤ i ≤ D, each vertex in Pi is adjacent to exactly [i ]q vertices
in Pi−1 and exactly [D − i ]q vertices in Pi+1.

Lemma

We have

|Pi | =

(
D

i

)
q

(0 ≤ i ≤ D).
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Using LD(q) to describe N

We have been discussing the set P.

Earlier we found an orthogonal basis for the nucleus N.

Our next goal is to display a bijection from P to this basis.
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Using LD(q) to describe the relation ∼

The result below follows from the work of Chih-wen Weng
concerning weak geodetically closed subgraphs (1998).

Lemma

For y , z ∈ X the following are equivalent:

(i) y ∼ z ;

(ii) x ∩ y = x ∩ z .
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Using LD(q) to describe the relation ∼

Recall the standard module V of Γ.

Definition

For η ∈ P we define a vector ηN ∈ V as follows:

ηN =
∑
y∈X

x∩y=η

ŷ .

By construction, the above vector ηN is the characteristic vector of
a ∼ equivalence class.
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A bijection

Theorem (Ter 2024)

We give a bijection from P to our basis for N. The bijection
sends η → ηN for all η ∈ P.
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The dimension of the nucleus N

Corollary

We have

dimN = |P| =
D∑
i=0

(
D

i

)
q

.
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The action of A,A∗ on the nucleus

We now bring in the adjacency matrix A of Γ, and the dual
adjacency matrix A∗ = A∗(x) of Γ with respect to x .

Theorem (Ter 2024)

We give the action of A,A∗ on the basis {ηN|η ∈ P} for N. For
0 ≤ i ≤ D and η ∈ Pi we have

AηN = a1
qi − 1

q − 1
ηN +

∑
ζ∈P(η)∩Pi+1

ζN + (a1 + 1)qi−1
∑

ζ∈P(η)∩Pi−1

ζN;

A∗ηN = θ∗i η
N.
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The action of A,A∗ on the nucleus

The previous theorem shows that the action of A on N becomes a
weighted adjacency map for LD(q).

We would like to acknowledge that a similar weighted adjacency
map for LD(q) showed up earlier in the work of Bernard, Crampé,
and Vinet [2022] concerning the dual polar graph with symplectic
type and q a prime.
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Summary

In this talk, we considered a Q-polynomial distance-regular graph Γ
with diameter D ≥ 1.

For a vertex x of Γ we considered the subconstituent algebra
T = T (x) generated by A and A∗ = A∗(x).

We introduced a T -module N = N(x) called the nucleus of Γ with
respect to x .

We showed that the irreducible T -submodules of N are thin.

Under the assumption that Γ is a nonbipartite dual polar graph, we
gave an explicit basis for N and the action of A,A∗ on this basis.

THANK YOU FOR YOUR ATTENTION!
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