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Overview

We first describe the alternating elements of the algebra U+
q .

We then review a linear algebraic object called a tridiagonal pair.

Roughly speaking, this is a pair A,A∗ of diagonalizable linear maps
on a nonzero finite-dimensional vector space V , that each act on
the eigenspaces of the other one in a (block) tridiagonal fashion.

We will use a tetrahedron diagram to describe six direct sum
decompositions of V ...
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Overview, cont.

We will impose a condition on A,A∗ under which V becomes an
irreducible U+

q -module.

In our main results, we describe how the alternating elements of
U+
q act on the above six decompositions of V .

Finally, we improve our results under the assumption that the pair
A,A∗ comes from a certain type of distance-regular graph.
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A remarkable fact

We start by describing a remarkable fact.

Recall the natural numbers N = {0, 1, 2, . . .}.

Let F denote a field.

Fix a nonzero scalar b ∈ F that is not a root of unity.
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A remarkable fact, cont.

Define an algebra over F by generators W0,W1 and relations

[W0, [W0, [W0,W1]b]b−1 ] = 0,

[W1, [W1, [W1,W0]b]b−1 ] = 0,

where

[X ,Y ] = XY − YX , [X ,Y ]b = bXY − YX .
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A remarkable fact, cont.

Using W0, W1 and the equations to come, we recursively define
some elements

{W−k}k∈N, {Wk+1}k∈N, {Gk+1}k∈N, {G̃k+1}k∈N

in the following order:

W0, W1, G1, G̃1,

W−1, W2, G2, G̃2,

W−2, W3, G3, G̃3, . . .
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A remarkable fact, cont.

For n ≥ 1,

Gn =

∑n−1
k=0W−kWn−kb

−k −
∑n−1

k=1 Gk G̃n−kb
−k

1 + b−n

+
[Wn,W0]

(1 + b−n)(1− b−1)
,

G̃n = Gn +
[W0,Wn]

1− b−1
,

W−n =
[W0,Gn]b
b − 1

, Wn+1 =
[Gn,W1]b
b − 1

.
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A remarkable fact, cont.

The remarkable fact [Ter 2019] is that for k, ` ∈ N,

[W−k ,W−`] = 0, [Wk+1,W`+1] = 0,

[Gk+1,G`+1] = 0, [G̃k+1, G̃`+1] = 0.
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A remarkable fact, cont.

The defining relations that we started with, are called the q-Serre
relations, where q2 = b.

The defined algebra is denoted by U+
q , and called the positive

part of Uq(ŝl2).

The elements

{W−k}k∈N, {Wk+1}k∈N, {Gk+1}k∈N, {G̃k+1}k∈N

are called the alternating elements of U+
q .
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The origin of the alternating elements

Next we explain how the alternating elements get their name.

We will refer to the q-shuffle algebra realization of U+
q , which

was introduced by Marc Rosso in 1995.

For the q-shuffle algebra, the underlying vector space is a free
algebra on two generators.

This free algebra is described next.
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The free algebra U

Let x , y denote noncommuting indeterminates.

Let U denote the free algebra over F that has generators x , y .

By a letter in U we mean x or y .

For n ∈ N, a word of length n in U is a product of letters
v1v2 · · · vn.

The vector space U has a basis consisting of its words.
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The q-shuffle product on U

We just defined the free algebra U.

Next we endow U with a q-shuffle product, denoted ?.

This q-shuffle product is due to M. Rosso.
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The q-shuffle product on U, cont.

For letters u, v we have

u ? v = uv + vuq〈u,v〉

where
〈 , 〉 x y

x 2 −2
y −2 2

So

x ? y = xy + q−2yx , y ? x = yx + q−2xy ,

x ? x = (1 + q2)xx , y ? y = (1 + q2)yy .
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The q-shuffle product on U, cont.

For words u, v in U we now describe u ? v .

Write u = a1a2 · · · ar and v = b1b2 · · · bs .

To illustrate, assume r = 2 and s = 2.

We have

u ? v = a1a2b1b2

+ a1b1a2b2q
〈a2,b1〉

+ a1b1b2a2q
〈a2,b1〉+〈a2,b2〉

+ b1a1a2b2q
〈a1,b1〉+〈a2,b1〉

+ b1a1b2a2q
〈a1,b1〉+〈a2,b1〉+〈a2,b2〉

+ b1b2a1a2q
〈a1,b1〉+〈a1,b2〉+〈a2,b1〉+〈a2,b2〉
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The q-shuffle algebra, cont.

Theorem (Rosso 1995)

The q-shuffle product ? turns the vector space U into an
(associative) algebra.
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The algebra U

Definition

Let U denote the subalgebra of the q-shuffle algebra U
generated by x , y .

The algebra U is described as follows. We have

x ? x ? x ? y − [3]qx ? x ? y ? x + [3]qx ? y ? x ? x − y ? x ? x ? x = 0,

y ? y ? y ? x − [3]qy ? y ? x ? y + [3]qy ? x ? y ? y − x ? y ? y ? y = 0,

where [3]q = (q3 − q−3)/(q − q−1) = b + b−1 + 1.

So in the q-shuffle algebra U the elements x , y satisfy the q-Serre
relations.
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How U+
q is related to U .

Consequently, there exists an algebra homomorphism \ from U+
q to

the q-shuffle algebra U, that sends W0 7→ x and W1 7→ y .

The map \ has image U by construction.

Theorem (Rosso, 1995)

The map \ : U+
q → U is an algebra isomorphism.
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The alternating elements of U+
q , revisited

We now apply the map \ : U+
q → U to the alternating elements.

Lemma (Ter 2019)

The map \ sends

W0 7→ x , W−1 7→ xyx , W−2 7→ xyxyx , . . .

W1 7→ y , W2 7→ yxy , W3 7→ yxyxy , . . .

G1 7→ yx , G2 7→ yxyx , G3 7→ yxyxyx , . . .

G̃1 7→ xy , G̃2 7→ xyxy , G̃3 7→ xyxyxy , . . .
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More relations for the alternating elements

There are four kinds of alternating elements, and we stated that
the alternating elements of each kind mutually commute.

The alternating elements satisfy many additional relations, as we
now explain.

For notational convenience, define G0 = 1 and G̃0 = 1.
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Relations between the alternating elements, I

Lemma (Type I relations)

For k ∈ N the following relations hold in U+
q :

[W0,Wk+1] = [W−k ,W1] = (1− b−1)(G̃k+1 − Gk+1),

[W0,Gk+1]b = [G̃k+1,W0]b = (b − 1)W−k−1,

[Gk+1,W1]b = [W1, G̃k+1]b = (b − 1)Wk+2.
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Relations between the alternating elements, II

Lemma (Type II relations)

For k, ` ∈ N the following relations hold in U+
q :

[W−k ,W−`] = 0, [Wk+1,W`+1] = 0,

[W−k ,W`+1] + [Wk+1,W−`] = 0,

[W−k ,G`+1] + [Gk+1,W−`] = 0,

[W−k , G̃`+1] + [G̃k+1,W−`] = 0,

[Wk+1,G`+1] + [Gk+1,W`+1] = 0,

[Wk+1, G̃`+1] + [G̃k+1,W`+1] = 0,

[Gk+1,G`+1] = 0, [G̃k+1, G̃`+1] = 0,

[G̃k+1,G`+1] + [Gk+1, G̃`+1] = 0.
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Relations between the alternating elements, III

Lemma (Type III relations)

For n ≥ 1 the following relations hold in U+
q :

n∑
k=0

Gk G̃n−kq
n−2k = q

n−1∑
k=0

W−kWn−kq
n−1−2k ,

n∑
k=0

Gk G̃n−kq
2k−n = q

n−1∑
k=0

Wn−kW−kq
n−1−2k ,

n∑
k=0

G̃kGn−kq
n−2k = q

n−1∑
k=0

Wn−kW−kq
2k+1−n,

n∑
k=0

G̃kGn−kq
2k−n = q

n−1∑
k=0

W−kWn−kq
2k+1−n.
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The q-Onsager algebra and U+
q

We remark that the previous relations are similar to some relations
for the q-Onsager algebra, that were found earlier by the physicists
P. Baseilhac, K. Koizumi, K. Shigechi [2005], [2010] in their
study of integrable models in statistical mechanics.

We discovered the alternating elements of U+
q by using the above

works as a guide.

Paul Terwilliger
Tridiagonal pairs, alternating elements, and distance-regular graphs



Tridiagonal pairs

We have been discussing the alternating elements of U+
q .

Next, we apply these alternating elements to the theory of
tridiagonal pairs.

As a warmup, let us recall the definition of a tridiagonal pair.
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Tridiagonal pairs, preliminaries

Let V denote a nonzero vector space over F with finite dimension.

Let End(V ) denote the algebra over F, consisting of the F-linear
maps from V to V .

Consider an ordered pair A,A∗ of maps in End(V ).
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The definition of a tridiagonal pair

The above pair A,A∗ is called a tridiagonal pair (or TD pair)
whenever:

(i) each of A,A∗ is diagonalizable;

(ii) there exists an ordering {Vi}di=0 of the eigenspaces of A such
that

A∗Vi ⊆ Vi−1 + Vi + Vi+1 (0 ≤ i ≤ d),

where V−1 = 0 and Vd+1 = 0;

(iii) there exists an ordering {V ∗i }δi=0 of the eigenspaces of A∗

such that

AV ∗i ⊆ V ∗i−1 + V ∗i + V ∗i+1 (0 ≤ i ≤ δ),

where V ∗−1 = 0 and V ∗δ+1 = 0;

(iv) there does not exist a subspace W ⊆ V such that AW ⊆W ,
A∗W ⊆W , W 6= 0, W 6= V .

Paul Terwilliger
Tridiagonal pairs, alternating elements, and distance-regular graphs



Comments

Referring to the above definition, it turns out that d = δ; we call
this common value the diameter of the TD pair.

According to a common notational convention, A∗ denotes the
conjugate-transpose of A.

We are not using this convention.

In a TD pair, the elements A and A∗ are arbitrary subject to the
conditions (i)–(iv) above.
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History and connections

The TD pairs were introduced in 2001 by Ito, Tanabe, and
Terwilliger.

The TD pairs over an algebraically closed field were classified up to
isomorphism by Ito, Nomura, and Terwilliger (2011).

TD pairs are related to:

• Q-polynomial distance-regular graphs,

• the orthogonal polynomials of the Askey scheme,

• the Askey-Wilson, Onsager, and q-Onsager algebras,

• the double affine Hecke algebra of type (C∨1 ,C1),

• the Lie algebras sl2 and ŝl2,

• the quantum groups Uq(sl2) and Uq(ŝl2),

• integrable models in statistical mechanics.

Paul Terwilliger
Tridiagonal pairs, alternating elements, and distance-regular graphs



Tridiagonal systems

In our study of tridiagonal pairs, it is useful to employ a related
object called a tridiagonal system.

Before defining this object, we review some concepts.
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Standard orderings

Let A,A∗ denote a TD pair on V . An ordering {Vi}di=0 of the
eigenspaces of A is called standard whenever

A∗Vi ⊆ Vi−1 + Vi + Vi+1 (0 ≤ i ≤ d).

If the ordering {Vi}di=0 is standard then the inverted ordering
{Vd−i}di=0 is also standard, and no further ordering is standard.

Similar comments apply to A∗.
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Primitive idempotents

Given an eigenspace W of a diagonalizable linear map, the
corresponding primitive idempotent acts on W as the identity
map, and acts on the other eigenspaces as zero.

Paul Terwilliger
Tridiagonal pairs, alternating elements, and distance-regular graphs



The definition of a tridiagonal system

Definition

By a tridiagonal system (or TD system) on V , we mean a
sequence

Φ = (A, {Ei}di=0,A
∗, {E ∗i }di=0)

such that

(i) A,A∗ is a TD pair on V ;

(ii) {Ei}di=0 is a standard ordering of the primitive idempotents
of A;

(iii) {E ∗i }di=0 is a standard ordering of the primitive
idempotents of A∗.
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The D4 action

Consider a TD system Φ = (A, {Ei}di=0,A
∗, {E ∗i }di=0) on V .

Each of the following is a TD system on V :

Φ∗ = (A∗, {E ∗i }di=0,A, {Ei}di=0);

Φ↓ = (A, {Ei}di=0,A
∗, {E ∗d−i}di=0);

Φ⇓ = (A, {Ed−i}di=0,A
∗, {E ∗i }di=0).
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The D4 action, cont.

Viewing ∗, ↓,⇓ as permutations on the set of all TD systems,

∗2 = 1, ↓2= 1, ⇓2= 1,

⇓ ∗ = ∗ ↓, ↓ ∗ = ∗ ⇓, ↓ ⇓=↓ ⇓ .

The group generated by the symbols ∗, ↓,⇓ subject to the above
relations is called the dihedral group D4. Recall that D4 is the
group of symmetries of a square, and has 8 elements.

The elements ∗, ↓, ⇓ induce an action of D4 on the set of all TD
systems.

TD systems in the same D4-orbit are called relatives.
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TD systems

Until further notice, fix a TD system on V :

Φ = (A, {Ei}di=0,A
∗, {E ∗i }di=0).
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The eigenvalues

Definition

For 0 ≤ i ≤ d let θi denote the eigenvalue of A corresponding to
Ei . For 0 ≤ i ≤ d let θ∗i denote the eigenvalue of A∗

corresponding to E ∗i .

Definition

We call {θi}di=0 (resp. {θ∗i }di=0) the eigenvalue sequence (resp.
dual eigenvalue sequence) of Φ.
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The Φ-split decomposition

By a decomposition of V we mean a sequence {Vi}di=0 of
nonzero subspaces whose direct sum is V .

For example, the sequences {EiV }di=0 and {E ∗i V }di=0 are
decompositions of V .

Next we consider another decomposition of V , called the Φ-split
decomposition.

This decomposition is described on the next slides.
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The Φ-split decomposition, cont.

Definition

For 0 ≤ i ≤ d define

Ui = (E ∗0V + E ∗1V + · · ·+ E ∗i V ) ∩ (E0V + E1V + · · ·+ Ed−iV ).

For example,

U0 = E ∗0V , Ud = E0V .
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The Φ-split decomposition, cont.

Lemma (Ito, Tanabe, Ter 2001)

The sequence {Ui}di=0 is a decomposition of V .

We call {Ui}di=0 the Φ-split decomposition of V .
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The Φ-split decomposition, cont.

The maps A and A∗ act on the Φ-split decomposition as follows.

Lemma (Ito, Tanabe, Ter 2001)

We have

(i) (A∗ − θ∗i I )Ui ⊆ Ui−1 (1 ≤ i ≤ d);

(ii) (A∗ − θ∗0I )U0 = 0;

(iii) (A− θd−i I )Ui ⊆ Ui+1 (0 ≤ i ≤ d − 1);

(iv) (A− θ0I )Ud = 0.
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The Φ-split decomposition, cont.

We give another version of the above result.

Corollary

We have

(i) A∗Ui ⊆ Ui−1 + Ui (1 ≤ i ≤ d);

(ii) A∗U0 ⊆ U0;

(iii) AUi ⊆ Ui + Ui+1 (0 ≤ i ≤ d − 1);

(iv) AUd ⊆ Ud .
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The Φ-split decomposition, cont.

The next result clarifies how the {Ui}di=0 are related to the
eigenspaces of A and A∗.

Lemma (Ito, Tanabe, Ter 2001)

For 0 ≤ i ≤ d,

(i) U0 + · · ·+ Ui = E ∗0V + · · ·+ E ∗i V ;

(ii) Ui + · · ·+ Ud = E0V + · · ·+ Ed−iV .
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Replacing Φ by a relative

We have been discussing the Φ-split decomposition of V .

If we replace Φ by a relative, then we get another decomposition of
V .

On the next slide, we name the resulting decompositions in a
uniform way.
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Six decompositions of V

Example

In each row of the table below, we display a decomposition of
V .

decomp. name i th component of the decomposition

[0,D] EiV
[0∗,D∗] E ∗i V
[0∗, 0] (E ∗0V + · · ·+ E ∗i V ) ∩ (E0V + · · ·+ Ed−iV )
[0∗,D] (E ∗0V + · · ·+ E ∗i V ) ∩ (EiV + · · ·+ EdV )
[D∗, 0] (E ∗d−iV + · · ·+ E ∗dV ) ∩ (E0V + · · ·+ Ed−iV )
[D∗,D] (E ∗d−iV + · · ·+ E ∗dV ) ∩ (EiV + · · ·+ EdV )
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Six decompositions of V , cont.

In the next result, we clarify how the above six decompositions are
related to the eigenspaces of A and A∗.

Lemma

Let {Vi}di=0 denote a decomposition of V from the previous
example. Then for 0 ≤ i ≤ d the sums V0 + · · ·+ Vi and
Vi + · · ·+ Vd are given in the table below.

decomp. name V0 + · · ·+ Vi Vi + · · ·+ Vd

[0,D] E0V + · · ·+ EiV EiV + · · ·+ EdV
[0∗,D∗] E ∗0V + · · ·+ E ∗i V E ∗i V + · · ·+ E ∗dV
[0∗, 0] E ∗0V + · · ·+ E ∗i V E0V + · · ·+ Ed−iV
[0∗,D] E ∗0V + · · ·+ E ∗i V EiV + · · ·+ EdV
[D∗, 0] E ∗d−iV + · · ·+ E ∗dV E0V + · · ·+ Ed−iV
[D∗,D] E ∗d−iV + · · ·+ E ∗dV EiV + · · ·+ EdV
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Six decompositions of V , cont.

Next, we describe the actions of A and A∗ on the above six
decompositions of V .

Lemma

Let {Vi}di=0 denote a decomposition of V from the previous
example. Then for 0 ≤ i ≤ d the actions of A and A∗ on Vi are
described in the table below.

decomp. name action of A on Vi action of A∗ on Vi

[0,D] (A− θi I )Vi = 0 A∗Vi ⊆ Vi−1 + Vi + Vi+1

[0∗,D∗] AVi ⊆ Vi−1 + Vi + Vi+1 (A∗ − θ∗i I )Vi = 0
[0∗, 0] (A− θd−i I )Vi ⊆ Vi+1 (A∗ − θ∗i I )Vi ⊆ Vi−1

[0∗,D] (A− θi I )Vi ⊆ Vi+1 (A∗ − θ∗i I )Vi ⊆ Vi−1

[D∗, 0] (A− θd−i I )Vi ⊆ Vi+1 (A∗ − θ∗d−i I )Vi ⊆ Vi−1

[D∗,D] (A− θi I )Vi ⊆ Vi+1 (A∗ − θ∗d−i I )Vi ⊆ Vi−1
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Six decompositions of V , cont.

Here is another version of the above result.

Corollary

Let {Vi}di=0 denote a decomposition of V from the previous
example. Then for 0 ≤ i ≤ d the actions of A and A∗ on Vi are
described in the table below.

decomp. name action of A on Vi action of A∗ on Vi

[0,D] AVi ⊆ Vi A∗Vi ⊆ Vi−1 + Vi + Vi+1

[0∗,D∗] AVi ⊆ Vi−1 + Vi + Vi+1 A∗Vi ⊆ Vi

[0∗, 0] AVi ⊆ Vi + Vi+1 A∗Vi ⊆ Vi−1 + Vi

[0∗,D] AVi ⊆ Vi + Vi+1 A∗Vi ⊆ Vi−1 + Vi

[D∗, 0] AVi ⊆ Vi + Vi+1 A∗Vi ⊆ Vi−1 + Vi

[D∗,D] AVi ⊆ Vi + Vi+1 A∗Vi ⊆ Vi−1 + Vi
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The tetrahedron diagram

We have been discussing six decompositions of V .

We now draw a diagram that illustrates our discussion so far.
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The tetrahedron diagram

Let {Vi}di=0 denote a decomposition of V . We describe this
decomposition by the diagram

•
V0

•
V1

•
V2 · · ·

•
Vd−1

•
Vd

The labels Vi might be suppressed, if they are clear from the
context.
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The tetrahedron diagram, cont.

Let {Vi}di=0 and {V′i}di=0 denote decompositions of V . The
condition

V0 + V1 + · · ·+ Vi = V′0 + V′1 + · · ·+ V′i (0 ≤ i ≤ d)

will be described by the diagram

   
   

   
   

   
   

  

````````````````````

• • •

• •

V′0 V′1 V′2 · · ·
V′d−1 V′d

• • •

• •

V0
V1

V2
· · ·

Vd−1
Vd
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The tetrahedron diagram, cont.

To illustrate the above diagram convention, consider the Φ-split
decomposition {Ui}di=0 of V .

Recall that for 0 ≤ i ≤ d we have

U0 + · · ·+ Ui = E ∗0V + · · ·+ E ∗i V ,

Ui + · · ·+ Ud = E0V + · · ·+ Ed−iV .

The corresponding diagram is shown on next slide:
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The tetrahedron diagram, cont.

• • • · · · •••

• • • · · · •••

•
•
•

•
•

...
...

E ∗0V E ∗dV

E0V EdV

U0

U1

U2

Ud−2
Ud−1
Ud
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The tetrahedron diagram, cont.

Earlier we displayed six decompositions of V . The corresponding
diagram is shown below:

@
@
@

@
@@

@
@@
@
@@

�
��
�
��

�
��

�
��

E ∗0V E ∗dV

E0V EdV

• • • · · · •••

• • • · · · •••

•
•

•
•

...
...

•
•

•
•

•
•

•
•

•
•

•
•

This diagram is called the tetrahedron diagram of Φ.
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The tetrahedron diagram, cont.

The following picture shows how A acts on the decompositions of
V from the tetrahedron diagram, for d = 8:

@
@
@

@
@@

@
@@
@
@
@

�
��
�
��

�
��

�
�
�

E ∗0V E ∗dV

E0V EdV

A action:

• • • • • ••••h hkh

• • • • • ••••hk

•
•
•
•
•
•
•

hkh hkh
h kh hkh

•
•
•
•
•
•
•

•
•
•
•

•
•

•

•
•

•

•
•

•
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The tetrahedron diagram, cont.

The following picture shows how A∗ acts on the decompositions of
V from the tetrahedron diagram, for d = 8:
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The tridiagonal relations

We will return to the tetrahedron diagram shortly.

Next we discuss the tridiagonal relations.
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The tridiagonal relations

Theorem (Ito, Tanabe, Ter 2001)

There exists a sequence of scalars β, γ, γ∗, %, %∗ taken from F such
that both

0 = [A,A2A∗ − βAA∗A + A∗A2 − γ(AA∗ + A∗A)− %A∗],
0 = [A∗,A∗2A− βA∗AA∗ + AA∗2 − γ∗(A∗A + AA∗)− %∗A].

The sequence is unique if d ≥ 3.

The above relations are called the tridiagonal relations.
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The tridiagonal relations, cont.

Next we describe how the above parameters β, γ, γ∗, %, %∗ are
related to the eigenvalues {θi}di=0 and {θ∗i }di=0.
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The tridiagonal relations, cont.

Lemma

(i) the expressions

θi−2 − θi+1

θi−1 − θi
,

θ∗i−2 − θ∗i+1

θ∗i−1 − θ∗i

are both equal to β + 1 for 2 ≤ i ≤ d − 1;

(ii) γ = θi−1 − βθi + θi+1 (1 ≤ i ≤ d − 1);

(iii) γ∗ = θ∗i−1 − βθ∗i + θ∗i+1 (1 ≤ i ≤ d − 1);

(iv) % = θ2i−1 − βθi−1θi + θ2i − γ(θi−1 + θi ) (1 ≤ i ≤ d);

(v) %∗ = θ∗2i−1 − βθ∗i−1θ∗i + θ∗2i − γ∗(θ∗i−1 + θ∗i ) (1 ≤ i ≤ d).
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TD systems of q-Serre type

We now impose a condition on the TD system Φ.

Definition

The TD system Φ is said to have q-Serre type whenever
θi = q2θi−1 and θ∗i = q−2θ∗i−1 for 1 ≤ i ≤ d .

From now on, we assume that Φ has q-Serre type.

Abbreviate b = q2.
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TD systems of q-Serre type

Lemma

We have

β = b + b−1, γ = 0, γ∗ = 0, % = 0, %∗ = 0.

Moreover the TD relations become the q-Serre relations

[A, [A, [A,A∗]b]b−1 ] = 0, [A∗, [A∗, [A∗,A]b]b−1 ] = 0.
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TD systems of q-Serre type

Corollary

The vector space V becomes a U+
q -module on which W0 = A and

W1 = A∗. The U+
q -module V is irreducible.
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TD systems of q-Serre type

Going forward, we view V as a U+
q -module.

Our next goal, is to describe how the alternating elements of U+
q

act on the six decompositions of V from the tetrahedron diagram.
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How the alternating elements of U+
q act on the six

decompositions of V from the tetrahedron diagram

Theorem (Ter 2022)

We refer to the U+
q -module V . Let {Vi}di=0 denote a

decomposition of V from the tetrahedron diagram. Then for
k ∈ N and 0 ≤ i ≤ d the actions of W−k and Wk+1 on Vi are
described in the table below.

decomp. name action of W−k on Vi action of Wk+1 on Vi

[0,D] W−kVi ⊆ Vi Wk+1Vi ⊆ Vi−1 + Vi + Vi+1

[0∗,D∗] W−kVi ⊆ Vi−1 + Vi + Vi+1 Wk+1Vi ⊆ Vi

[0∗, 0] W−kVi ⊆ Vi + Vi+1 Wk+1Vi ⊆ Vi−1 + Vi

[0∗,D] W−kVi ⊆ Vi + Vi+1 Wk+1Vi ⊆ Vi−1 + Vi

[D∗, 0] W−kVi ⊆ Vi + Vi+1 Wk+1Vi ⊆ Vi−1 + Vi

[D∗,D] W−kVi ⊆ Vi + Vi+1 Wk+1Vi ⊆ Vi−1 + Vi

Paul Terwilliger
Tridiagonal pairs, alternating elements, and distance-regular graphs



How the alternating elements of U+
q act on the six

decompositions of V from the tetrahedron diagram

Next we use the tetrahedron diagram to illustrate the previous
theorem.

Pick k ∈ N.
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How the alternating elements of U+
q act on the six

decompositions of V from the tetrahedron diagram

The following picture shows how W−k acts on the decompositions
of V from the tetrahedron diagram, for d = 8:
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How the alternating elements of U+
q act on the six

decompositions of V from the tetrahedron diagram

The following picture shows how Wk+1 acts on the decompositions
of V from the tetrahedron diagram, for d = 8:
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How the alternating elements of U+
q act on the six

decompositions of V from the tetrahedron diagram

Theorem (Ter 2022)

We refer to the U+
q -module V . Let {Vi}di=0 denote a

decomposition of V from the tetrahedron diagram. Then for
k ∈ N and 0 ≤ i ≤ d the actions of Gk+1 and G̃k+1 on Vi are
described in the table below.

decomp. name action of Gk+1 on Vi action of G̃k+1 on Vi

[0,D] Gk+1Vi ⊆ Vi−1 + Vi G̃k+1Vi ⊆ Vi + Vi+1

[0∗,D∗] Gk+1Vi ⊆ Vi−1 + Vi G̃k+1Vi ⊆ Vi + Vi+1

[0∗, 0] Gk+1Vi ⊆ Vi G̃k+1Vi ⊆ Vi−1 + Vi + Vi+1

[0∗,D] Gk+1Vi ⊆ Vi−1 + Vi G̃k+1Vi ⊆ Vi + Vi+1

[D∗, 0] Gk+1Vi ⊆ Vi + Vi+1 G̃k+1Vi ⊆ Vi−1 + Vi

[D∗,D] Gk+1Vi ⊆ Vi−1 + Vi + Vi+1 G̃k+1Vi ⊆ Vi
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How the alternating elements of U+
q act on the six

decompositions of V from the tetrahedron diagram

Next we use the tetrahedron diagram to illustrate the above
theorem.

Pick k ∈ N.
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How the alternating elements of U+
q act on the six

decompositions of V from the tetrahedron diagram

The following picture shows how Gk+1 acts on the decompositions
of V from the tetrahedron diagram, for d = 8:
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How the alternating elements of U+
q act on the six

decompositions of V from the tetrahedron diagram

The following picture shows how G̃k+1 acts on the decompositions
of V from the tetrahedron diagram, for d = 8:
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Matrix representations of the alternating elements

It would be nice to have explicit matrix representations, for the
action of the alternating elements on the U+

q -module V .

To do this, we seek an attractive basis for V .
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Attractive bases for V

Motivated by the original remarkable fact, we seek:

(i) a basis of common eigenvectors for {W−k}k∈N;

(ii) a basis of common eigenvectors for {Wk+1}k∈N;

(iii) a basis of common eigenvectors for {Gk+1}k∈N;

(iv) a basis of common eigenvectors for {G̃k+1}k∈N.

Unfortunately, the above bases might not exist.

The difficulty: the alternating elements might not be
diagonalizable on V .
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Algebraic graph theory

The good news: In certain situations, the alternating elements are
diagonalizable on V .

Such a situation comes up in algebraic graph theory.

We now describe this situation briefly.
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Distance-regular graphs

Recall the field R of real numbers.

From now on, assume that F = R.

In the topic of algebraic graph theory, there is a family of finite
undirected graphs, said to be distance-regular.
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Distance-regular graphs with classical parameters

There is a kind of distance-regular graph, said to have classical
parameters (d , b, α, σ).

The parameter d is the diameter of the graph.

The parameters b, α, σ are real numbers used to describe the
intersection numbers of the graph.
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Distance-regular graphs with classical parameters

From now on, we fix a distance-regular graph Γ that has diameter
d ≥ 3 and classical parameters (d , b, α, σ) with b 6= 1 and
α = b − 1.

The condition on α implies that Γ is formally self-dual.

It is known that b is an integer and b 6= 0, b 6= −1.

Note that b is not a root of unity.
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Some notation

Let X denote the vertex set of Γ.

Let MatX (R) denote the algebra of matrices that have rows and
columns indexed by X and all entries in R.

Let V = RX denote the vector space consisting of the column
vectors whose coordinates are indexed by X and whose entries are
in R.

Note that MatX (R) acts on V by left multiplication.
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The adjacency matrix and dual adjacency matrix

Let A ∈ MatX (R) denote the adjacency matrix of Γ.

The matrix A is symmetric, and each entry is 0 or 1.

From now on, fix x ∈ X and let A∗ = A∗(x) ∈ MatX (R) denote
the dual adjacency matrix of Γ with respect to x .

The matrix A∗ is diagonal.
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The subconstituent algebra T

Let T = T(x) denote the subalgebra of MatX (R) generated by
A,A∗.

The algebra T is called the subconstituent algebra (or
Terwilliger algebra) of Γ with respect to x .

By construction, T is closed under the transpose map.
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The irreducible T-modules

We comment on the T-modules.

By a T-module, we mean a subspace V ⊆ V such that TV ⊆ V .

It is known that every T-module is a direct sum of irreducible
T-modules.

In particular, the T-module V is a direct sum of irreducible
T-modules.

It is known that A, A∗ act on each irreducible T-module as a TD
pair.
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Adjusting A and A∗

For convenience, we now adjust A and A∗.

It is known that for A and A∗ the roots of the minimal polynomial
have the form

rb−i + s (0 ≤ i ≤ d),

where r , s ∈ R and r 6= 0.

Define A,A∗ ∈ MatX (R) such that

A = A + sI , A∗ = A∗ + sI .

By construction, for A and A∗ the roots of the minimal polynomial
are {rb−i}di=0.
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Adjusting A and A∗, cont.

By construction, A and A∗ are symmetric.

By construction, the algebra T is generated by A,A∗.

It is known that

[A, [A, [A,A∗]b]b−1 ] = 0,

[A∗, [A∗, [A∗,A]b]b−1 ] = 0.

These are the q-Serre relations, where q is a complex number such
that q2 = b.
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The alternating elements in T

Lemma

With the above notation, there exists an algebra homomorphism
U+
q → T that sends W0 7→ A and W1 7→ A∗. This map is

surjective.

Definition

By an alternating element in T, we mean the image of an
alternating element in U+

q under the above homomorphism.
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The irreducible T-modules

Lemma (Ter 2022)

Referring to the alternating elements in T, the following hold for
k ∈ N:

(i) W−k and Wk+1 are symmetric;

(ii) Gk+1 and G̃k+1 are the transposes of each other.

Lemma (Ter 2022)

The alternating elements in T are diagonalizable on each
irreducible T-module.
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The irreducible T-modules

We now state our final results.

Theorem (Ter 2022)

Each irreducible T-module is a direct sum of its common
eigenspaces for {W−k}k∈N, and a direct sum of its common
eigenspaces for {Wk+1}k∈N.

Theorem (Ter 2022)

Each irreducible T-module is a direct sum of its common
eigenspaces for {Gk+1}k∈N, and a direct sum of its common
eigenspaces for {G̃k+1}k∈N.
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Summary

In this paper, we first described the alternating elements of U+
q .

We then defined a TD pair A,A∗ on V . We used a tetrahedron
diagram to describe six decompositions of V .

We then assumed that A,A∗ has q-Serre type, and showed how V
becomes an irreducible U+

q -module.

We then described how the alternating elements of U+
q act on the

six decompositions from the tetrahedron diagram.

Finally, we improved our results under the assumption that the TD
pair A,A∗ comes from a certain type of distance-regular graph.

Thank you for your attention!

THE END
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