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Overview

There is a type of distance-regular graph, said to be
Q-polynomial.

Many of the known distance-regular graphs have this property.

In this talk, we will generalize the Q-polynomial property to finite,
undirected, connected graphs that are not necessarily
distance-regular.

We will describe a family of examples associated with the
attenuated space posets.
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Preliminaries

Let X denote a nonempty finite set.

Let MatX (C) denote the C-algebra consisting of the matrices that
have rows and columns indexed by X and all entries in C.

Let V = CX denote the vector space over C consisting of the
column vectors with coordinates indexed by X and all entries in C.

The algebra MatX (C) acts on V by left multiplication.

We call V the standard module.

Paul Terwilliger
Generalizing the Q-polynomial property to graphs that are not distance-regular



Preliminaries, cont.

For all vertices y ∈ X , define a vector ŷ ∈ V that has y -coordinate
1 and all other coordinates 0.

The vectors {ŷ}y∈X form a basis for V .
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The graph Γ

Let Γ = (X ,R) denote a finite, undirected, connected graph,
without loops or multiple edges, with vertex set X , adjacency
relation R, and path-length distance function ∂.
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The weighted adjacency matrix

Definition

By a weighted adjacency matrix of Γ, we mean a matrix
A ∈ MatX (C) that has (y , z)-entry

Ay ,z =

{
6= 0, if y , z are adjacent;

0, if y , z are not adjacent
(y , z ∈ X ).

Until further notice, we fix a weighted adjacency matrix A of Γ
that is diagonalizable over C.
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The adjacency algebra

Let M denote the subalgebra of MatX (C) generated by A.

We call M the adjacency algebra of Γ and A.

Let D + 1 denote the dimension of the vector space M.
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The primitive idempotents

Since A is diagonalizable, the vector space M has a basis {Ei}Di=0

such that

D∑
i=0

Ei = I ,

EiEj = δi ,jEi (0 ≤ i , j ≤ D).

We call {Ei}Di=0 the primitive idempotents of A.
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The scalars {θi}Di=0

Since A ∈M, there exist complex scalars {θi}Di=0 such that

A =
D∑
i=0

θiEi .

The scalars {θi}Di=0 are mutually distinct since A generates M.
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The eigenspaces of A

Note that

V =
D∑
i=0

EiV (direct sum).

For 0 ≤ i ≤ D the subspace EiV is an eigenspace of A, and θi is
the corresponding eigenvalue.
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The base vertex x

Until further notice, fix a vertex x ∈ X , called the base vertex.

Define the integer D = D(x) by

D = max{∂(x , y)|y ∈ X}.

We call D the diameter of Γ with respect to x .

We have D ≤ D, because the matrices {Ai}Di=0 are linearly
independent.
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The dual primitive idempotents

For 0 ≤ i ≤ D define a diagonal matrix E ∗i = E ∗i (x) in MatX (C)
that has (y , y)-entry

(E ∗i )y ,y =

{
1, if ∂(x , y) = i ;

0, if ∂(x , y) 6= i
(y ∈ X ).

We call {E ∗i }Di=0 the dual primitive idempotents of Γ with
respect to x .
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The dual adjacency algebra

We have

D∑
i=0

E ∗i = I ,

E ∗i E
∗
j = δi ,jE

∗
i (0 ≤ i , j ≤ D).

Consequently, the matrices {E ∗i }Di=0 form a basis for a
commutative subalgebra M∗ = M∗(x) of MatX (C).

We call M∗ the dual adjacency algebra of Γ with respect to x .
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The subconstituent algebra

Definition

Let T = T(x ,A) denote the subalgebra of MatX (C) generated
by M and M∗.

We call T the subconsituent algebra of Γ with respect to x
and A.
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The subconstituents

Next we recall the subconstituents of Γ with respect to x .

For 0 ≤ i ≤ D we have

E ∗i V = Span{ŷ |y ∈ X , ∂(x , y) = i}.

Moreover,

V =
D∑
i=0

E ∗i V (direct sum).

For 0 ≤ i ≤ D the subspace E ∗i V is a common eigenspace for M∗.

We call E ∗i V the i th subconstituent of Γ with respect to x .

Paul Terwilliger
Generalizing the Q-polynomial property to graphs that are not distance-regular



The action of A on the subconstituents

By the triangle inequality, for adjacent vertices y , z ∈ X the
distances ∂(x , y) and ∂(x , z) differ by at most one.

Consequently

AE ∗i V ⊆ E ∗i−1V + E ∗i V + E ∗i+1V (0 ≤ i ≤ D),

where E ∗−1 = 0 and E ∗D+1 = 0.
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The dual adjacency matrix

Next we discuss the concept of a dual adjacency matrix.

Definition

A matrix A∗ ∈ MatX (C) is called a dual adjacency matrix of Γ
with respect to x and the ordering {Ei}Di=0 whenever A∗

generates M∗ and

A∗EiV ⊆ Ei−1V + EiV + Ei+1V (0 ≤ i ≤ D),

where E−1 = 0 and ED+1 = 0.
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The dual adjacency matrix, cont.

Definition

A matrix A∗ ∈ MatX (C) is called a dual adjacency matrix of Γ
with respect to x and A whenever A∗ is a dual adjacency
matrix with respect to x and some ordering of the primitive
idempotents of A.
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The Q-polynomial property

Next we introduce the (generalized) Q-polynomial property.

Definition

We say that A is Q-polynomial with respect to x whenever
there exists a dual adjacency matrix A∗ of Γ with respect to x
and A.
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The Attenuated Space poset Aq(N ,M)

For the rest of this talk, we illustrate the Q-polynomial property
using an example.

This example is based on the Attenuated Space poset
Aq(N,M).

This poset is defined on the next slides.
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The definition of Aq(N ,M)

Let Fq denote a finite field with q elements.

Let N,M denote positive integers.

Let H denote a vector space over Fq that has dimension N + M.

Fix a subspace h ⊆ H that has dimension M.
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The definition of Aq(N ,M), cont.

Let the set X consist of the subspaces of H that have zero
intersection with h.

The set X , together with the containment relation, is a poset
denoted by Aq(N,M) and called the Attenuated Space poset.

The poset Aq(N,M) is ranked with rank N; the rank of a vertex is
equal to its dimension.
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The graph Γ associated with Aq(N ,M)

Next we define a graph Γ with vertex set X .

Vertices y , z ∈ X are adjacent in Γ whenever one of y , z covers the
other one.

In other words, the graph Γ is the Hasse diagram of the poset
Aq(N,M).

Note that Γ is bipartite.

The rest of this talk is about Γ.
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The base vertex x

Let 0 denote the zero subspace of H.

Recall the base vertex x of Γ.

For the rest of this talk, we choose x = 0.

Note that the diameter D = D(x) is equal to N.
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The q-adjacency matrix A

The following matrix A was introduced by S. Ghosh and M.
Srinivasan in 2021.

Definition

Define a matrix A ∈ MatX (C) that has (y , z)-entry

Ay ,z =


1 if y covers z ;

qdim y if z covers y ;

0 if y , z are not adjacent

y , z ∈ X .

The matrix A is a weighted adjacency matrix of Γ, called the
q-adjacency matrix.
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The q-adjacency matrix A, cont.

For the rest of the talk, our main goal is to show that:
the q-adjacency matrix A is Q-polynomial with respect to x .
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Basic facts about Aq(N ,M)

Let us review some basic facts about Aq(N,M).

For an integer n ≥ 0 define

[n]q =
qn − 1

q − 1
.

We further define

[n]!q = [n]q[n − 1]q · · · [2]q[1]q.

We interpret [0]!q = 1.
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Basic facts about Aq(N ,M), cont.

For 0 ≤ i ≤ n define (
n

i

)
q

=
[n]!q

[i ]!q[n − i ]!q
.
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Basic facts about Aq(N ,M), cont.

The following results are well known.

Lemma

Let 0 ≤ i ≤ N and let y ∈ X have dimension i .

(i) y covers exactly [i ]q vertices;

(ii) y is covered by exactly qM [N − i ]q vertices.

Lemma

For 0 ≤ i ≤ N, the number of vertices in X that have dimension i
is equal to qMi

(N
i

)
q
.
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The matrix A∗

Next, we define a matrix A∗.

Definition

Define a diagonal matrix A∗ ∈ MatX (C) that has (y , y)-entry
q−dim y for y ∈ X .

Note that A∗ is invertible.

We are going to show, that A∗ is a dual adjacency matrix of Γ
with respect to x and A.
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Some basic properties of A∗.

Lemma

The matrix A∗ has the following properties:

(i) For y ∈ X,

A∗ŷ = q−dim y ŷ .

(ii) The eigenvalues of A∗ are {q−i}Ni=0.

(iii) For 0 ≤ i ≤ N,
E ∗i V is the eigenspace of A∗ for the eigenvalue q−i .
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Some properties of A∗, cont.

Lemma (continued)

(iv) A∗ =
∑N

i=0 q
−iE ∗i .

(v) The algebra M∗ is generated by A∗.

(vi) The algebra T is generated by A,A∗.
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Raising and Lowering matrices

As we investigate the algebra T, it is useful to introduce three
elements R, L, L′.

As we will explain, R is a raising matrix and L, L′ are lowering
matrices.

We comment on how L, L′ differ.

The matrix L is natural from an algebraic point of view, and L′ is
natural from a combinatorial point of view.
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Raising and Lowering matrices, cont.

We will define R, L′ now.

We will define L a bit later.
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The matrices R and L′

Definition

We define matrices R, L′ in MatX (C) that have (y , z)-entries

Ry ,z =

{
1, if y covers z ;

0, if y does not cover z

L′y ,z =

{
1, if z covers y ;

0, if z does not cover y

for y , z ∈ X . We call R (resp. L′) the raising matrix (resp.
lowering matrix) of Aq(N,M).
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The action of R and L′

Lemma

For z ∈ X we have

Rẑ =
∑

y covers z

ŷ ,

L′ẑ =
∑

z covers y

ŷ .
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The matrices R and L′ are contained in T

Lemma

We have

R =
N−1∑
i=0

E ∗i+1AE
∗
i ,

L′ =
N−1∑
i=0

q−iE ∗i AE
∗
i+1.

Moreover R, L′ ∈ T.
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The matrices R , L′,A∗ generate T

Lemma

The matrices R, L′,A∗ satisfy the following:

(i) L′ = Rt , where t denotes transpose;

(ii) A = R + (A∗)−1L′;

(iii) the algebra T is generated by R, L′,A∗;

(iv) T is closed under transpose and complex-conjugation;

(v) T is semisimple.
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How R , L′,A∗ are related

Lemma (Wen Liu 2016)

The matrices R, L′,A∗ are related as follows:

RA∗ = qA∗R, L′A∗ = q−1A∗L′,

(L′)2R − (q + 1)L′RL′ + qR(L′)2 = −(q + 1)qN+ML′A∗,

L′R2 − (q + 1)RL′R + qR2L′ = −(q + 1)qN+MA∗R.

The above relations express the fact that the poset Aq(N,M) is
uniform in the sense of [Ter 1990].
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The T-modules

Next, we describe the T-modules.

Recall the standard module V .

By a T-module we mean a subspace W ⊆ V such that
TW ⊆W .

A T-module W is said to be irreducible whenever W 6= 0 and W
does not contain a T-module besides 0 and W .

Because T is semisimple, the standard module V is a direct sum of
irreducible T-modules.

Paul Terwilliger
Generalizing the Q-polynomial property to graphs that are not distance-regular



The irreducible T-modules

Next, we describe an irreducible T-module W .

By the endpoint of W we mean min{i |0 ≤ i ≤ N, E ∗i W 6= 0}.

By the diameter of W we mean
∣∣{i |0 ≤ i ≤ N, E ∗i W 6= 0}

∣∣− 1.
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The irreducible T-modules, cont.

Using the theory of uniform posets (Ter 1990) we obtain the
following result.

Lemma (Ter 1990)

For 0 ≤ r , d ≤ N the following are equivalent:

(i) there exists an irreducible T-module with endpoint r and
diameter d;

(ii) N − 2r ≤ d ≤ N − r and d ≤ N + M − 2r .
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The irreducible T-modules, cont.

We mention one significance of the endpoint and diameter.

Lemma

Let W and W ′ denote irreducible T-modules, with endpoints r , r ′

and diameters d , d ′ respectively. Then the following are equivalent:

(i) W and W ′ are isomorphic;

(ii) r = r ′ and d = d ′.
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The irreducible T-modules, cont.

let Ψ denote the set of isomorphism classes of irreducible
T-modules. By the previous lemma, we view

Ψ = {(r , d) | 0 ≤ r ,d ≤ N, N − 2r ≤ d ≤ N − r ,

d ≤ N + M − 2r}.
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The irreducible T-modules, cont.

We bring in some notation.

Definition

For (r , d) ∈ Ψ define

ξ′i (r , d) =
qN+M−r−d(qi − 1)(qd+1−i − 1)

(q − 1)2
(1 ≤ i ≤ d).
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The irreducible T-modules, cont.

Using the theory of uniform posets (Ter 1990) we get the following
result.

Lemma (Ter 1990)

Let W denote an irreducible T-module, with endpoint r and
diameter d. There exists a basis {wi}di=0 of W such that

(i) wi ∈ E ∗r+iV (0 ≤ i ≤ d);

(ii) Rwi = wi+1 (0 ≤ i ≤ d − 1), Rwd = 0;

(iii) L′wi = ξ′i (r , d)wi−1 (1 ≤ i ≤ d), L′w0 = 0.
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The q-lowering matrix L

Next, we adjust the lowering matrix L′ to get a matrix L called the
q-lowering matrix.

Definition

We define a matrix L ∈ MatX (C) that has (y , z)-entry

Ly ,z =

{
qdim y , if z covers y ;

0, if z does not cover y
(y , z ∈ X ).

We call L the q-lowering matrix for Aq(N,M).

Paul Terwilliger
Generalizing the Q-polynomial property to graphs that are not distance-regular



The q-lowering matrix L, cont.

Lemma

For z ∈ X we have

Lẑ =
∑

z covers y

qdim y ŷ .
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The q-lowering matrix L, cont.

Lemma

We have L′ = A∗L and A = R + L.

Lemma

The algebra T is generated by R, L,A∗.
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How R , L,A∗ are related

Lemma

The matrices R, L,A∗ are related as follows:

RA∗ = qA∗R, LA∗ = q−1A∗L,

L2R − q(q + 1)LRL + q3RL2 = −qN+M(q + 1)L,

LR2 − q(q + 1)RLR + q3R2L = −qN+M(q + 1)R.

The previous two equations are the Down-Up Relations due to
Benkart and Roby (1998).
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How L acts on an irreducible T-module

Next, we describe how L acts on an irreducible T -module.

Definition

For (r , d) ∈ Ψ define

ξi (r , d) =
qN+M−d(qi − 1)(qd − qi−1)

(q − 1)2
(1 ≤ i ≤ d).

Note that ξi (r , d) = qr+i−1ξ′i (r , d) for 1 ≤ i ≤ d .
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How L acts on an irreducible T-module

Lemma

Let W denote an irreducible T -module, with endpoint r and
diameter d. Recall the basis {wi}di=0 of W . Then

Lwi = ξi (r , d)wi−1 (1 ≤ i ≤ d), Lw0 = 0.
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The matrices A and A∗

We have been discussing R, L,A∗.

Let us return our attention to A,A∗.

Our next goals are:

• determine how A,A∗ are related;

• show that A is diagonalizable;

• find the eigenvalues of A;

• describe how A∗ acts on the eigenspaces of A.
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How A and A∗ are related

We now describe how A,A∗ are related.

For notational convenience, define

β = q + q−1.

Lemma

The matrices A and A∗ satisfy

A3A∗ − (β + 1)A2A∗A + (β + 1)AA∗A2 − A∗A3

= qN+M−2(q + 1)2(AA∗ − A∗A),

(A∗)2A− βA∗AA∗ + A(A∗)2 = 0.
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The eigenvalues of A

Next, we show that A is diagonalizable, and we find its
eigenvalues.

To do this, we consider the action of A on each irreducible
T-module.
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The eigenvalues of A

Lemma

Let W denote an irreducible T-module, with endpoint r and
diameter d. Consider the matrix that represents A with respect to
the basis {wi}di=0 of W . This matrix is tridiagonal with entries

0 ξ1 0
1 0 ξ2

1 0 ·
· · ·
· · ξd

0 1 0

 ,

where ξi = ξi (r , d).
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The eigenvalues of A, cont.

The matrix on the previous slide is well known in the theory of
Leonard pairs.

Shortly we will describe its eigenvalues.
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The eigenvalues of A, cont.

We bring in some notation.

Definition

Define the set

[N] = {i | 2i ∈ Z, 0 ≤ i ≤ N}
= {0, 1/2, 1, 3/2, . . . ,N}.

The cardinality of [N] is 2N + 1.
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The eigenvalues of A, cont.

The scalar q is real and q ≥ 2; let q1/2 denote the positive square
root of q.

Definition

For i ∈ [N] define

θi =
qN−i − qi

q − 1
qM/2.

Lemma

The scalars {θi}i∈[N] are mutually distinct.
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The eigenvalues of A, cont.

Definition

Consider a linear map on a finite-dimensional vector space.

This map is called multiplicity-free whenever the map is
diagonalizable, and each eigenspace has dimension one.
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The eigenvalues of A, cont.

Lemma

Let W denote an irreducible T-module. Let d denote the diameter
of W , and define t = (N − d)/2. Then the action of A on W is
multiplicity-free, with eigenvalues {θt+i}di=0.
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The eigenvalues of A, cont.

Lemma

The matrix A is diagonalizable, with eigenvalues {θi}i∈[N].

Corollary

The dimension of M is 2N + 1.
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The action of A∗ on the eigenspaces of A

Next, we describe how A∗ acts on the eigenspaces of A.

Lemma

For distinct i , j ∈ [N],

EiA
∗Ej 6= 0 if and only if |i − j | = 1.

Proof.

Recall that

A3A∗ − (β + 1)A2A∗A + (β + 1)AA∗A2 − A∗A3

= qN+M−2(q + 1)2(AA∗ − A∗A).

In this equation, multiply each term on the left by Ei and the right
by Ej . Simplify the result using EiA = θiEi and AEj = θjEj .
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The matrix A∗ is a dual adjacency matrix

We can now easily show that A∗ is a dual adjacency matrix.

Lemma

The matrix A∗ is a dual adjacency matrix with respect to x and
the following orderings of the primitive idempotents:

(i) E0 < E1 < E2 < · · · < EN < E1/2 < E3/2 < · · · < EN−1/2;

(ii) E1/2 < E3/2 < · · · < EN−1/2 < E0 < E1 < E2 < · · · < EN .
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The matrix A∗ is a dual adjacency matrix, cont.

Corollary

The matrix A∗ is a dual adjacency matrix of Γ with respect to x
and A.
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The main result

We now state our main result.

Theorem

The matrix A is Q-polynomial with respect to x.
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Summary

In this talk, we first generalized the Q-polynomial property to
graphs that are not necessarily distance-regular.

We defined a graph Γ using the Attenuated Space poset
Aq(N,M).

We considered Γ from the point of view of the base vertex x = 0.

We defined the q-adjacency matrix A and a diagonal matrix A∗.

We showed that A∗ is a dual adjacency matrix of Γ with respect
to x and A.

Finally we showed that A is Q-polynomial with respect to x .

THANK YOU FOR YOUR ATTENTION!

Paul Terwilliger
Generalizing the Q-polynomial property to graphs that are not distance-regular


