Generalizing the Q-polynomial property to graphs that are not distance-regular

Paul Terwilliger

University of Wisconsin-Madison

Generalizing the Q-polynomial property to graphs that are not

Paul Terwilliger

There is a type of distance-regular graph, said to be Q-polynomial.

Many of the known distance-regular graphs have this property.

In this talk, we will generalize the Q -polynomial property to finite, undirected, connected graphs that are not necessarily distance-regular.

We will describe a family of examples associated with the attenuated space posets.

Let X denote a nonempty finite set.

Let ${\rm Mat}_X(\mathbb C)$ denote the C-algebra consisting of the matrices that have rows and columns indexed by X and all entries in $\mathbb C$.

Let $V=\mathbb{C}^X$ denote the vector space over $\mathbb C$ consisting of the column vectors with coordinates indexed by X and all entries in \mathbb{C} .

The algebra ${\rm Mat}_X(\mathbb{C})$ acts on V by left multiplication.

We call V the **standard module**.

For all vertices $y \in X$, define a vector $\hat{y} \in V$ that has y-coordinate 1 and all other coordinates 0.

The vectors $\{\hat{y}\}_{y \in X}$ form a basis for V.

Let $\Gamma = (X, \mathcal{R})$ denote a finite, undirected, connected graph, without loops or multiple edges, with vertex set X , adjacency relation $\mathcal R$, and path-length distance function ∂ .

Definition

By a weighted adjacency matrix of $Γ$, we mean a matrix $A \in Mat_{\mathbf{X}}(\mathbb{C})$ that has (y, z) -entry

$$
A_{y,z} = \begin{cases} \neq 0, & \text{if } y, z \text{ are adjacent;} \\ 0, & \text{if } y, z \text{ are not adjacent.} \end{cases} \qquad (y, z \in X).
$$

Until further notice, we fix a weighted adjacency matrix A of Γ that is **diagonalizable over** \mathbb{C} .

Generalizing the Q-polynomial property to graphs

Let M denote the subalgebra of ${\rm Mat}_X(\mathbb C)$ generated by A.

We call **M** the **adjacency algebra** of Γ and A.

Let $D+1$ denote the dimension of the vector space M.

Since A is diagonalizable, the vector space $\boldsymbol{\mathsf{M}}$ has a basis $\{E_i\}_{i=0}^{\mathcal{D}}$ such that

$$
\sum_{i=0}^{\mathcal{D}} E_i = I,
$$

\n
$$
E_i E_j = \delta_{i,j} E_i \qquad (0 \le i, j \le \mathcal{D}).
$$

We call $\{E_i\}_{i=0}^{\mathcal{D}}$ the **primitive idempotents of** A .

Since $A \in \mathsf{M}$, there exist complex scalars $\{\theta_i\}_{i=0}^\mathcal{D}$ such that

$$
A=\sum_{i=0}^{\mathcal{D}}\theta_iE_i.
$$

The scalars $\{\theta_i\}_{i=0}^{\mathcal{D}}$ are mutually distinct since A generates $\boldsymbol{\mathsf{M}}$.

Note that

$$
V = \sum_{i=0}^{\mathcal{D}} E_i V \qquad \text{(direct sum)}.
$$

For $0 \leq i \leq \mathcal{D}$ the subspace E_iV is an eigenspace of A , and θ_i is the corresponding eigenvalue.

Until further notice, fix a vertex $x \in X$, called the **base vertex**.

Define the integer $D = D(x)$ by

$$
D=\max\{\partial(x,y)|y\in X\}.
$$

We call D the diameter of Γ with respect to x.

We have $D\leq\mathcal{D}$, because the matrices $\{A^{i}\}_{i=0}^{D}$ are linearly independent.

For $0 \le i \le D$ define a diagonal matrix $E_i^* = E_i^*(x)$ in $\text{Mat}_X(\mathbb{C})$ that has (y, y) -entry

$$
(E_i^*)_{y,y} = \begin{cases} 1, & \text{if } \partial(x,y) = i; \\ 0, & \text{if } \partial(x,y) \neq i \end{cases} \qquad (y \in X).
$$

We call $\{E^*_i\}_{i=0}^D$ the **dual primitive idempotents of** $\mathsf{\Gamma}$ **with** respect to x.

We have

$$
\sum_{i=0}^{D} E_i^* = I,
$$

\n
$$
E_i^* E_j^* = \delta_{i,j} E_i^* \qquad (0 \le i, j \le D).
$$

Consequently, the matrices $\{E^*_i\}_{i=0}^D$ form a basis for a commutative subalgebra $\mathsf{M}^{*} = \mathsf{M}^{*}(x)$ of ${\rm Mat}_X(\mathbb{C})$.

We call M^* the <mark>dual adjacency algebra of Γ with respect to</mark> x.

Definition

Let $\mathbf{T} = \mathbf{T}(x, A)$ denote the subalgebra of $\text{Mat}_X(\mathbb{C})$ generated by M and M^* .

We call T the subconsituent algebra of Γ with respect to x and A.

Next we recall the subconstituents of Γ with respect to x.

For $0 \le i \le D$ we have

$$
E_i^*V = \mathrm{Span}\{\hat{y}|y \in X, \ \partial(x,y) = i\}.
$$

Moreover,

$$
V = \sum_{i=0}^{D} E_i^* V \qquad \text{(direct sum)}.
$$

For $0 \le i \le D$ the subspace E_i^*V is a common eigenspace for M^* .

We call E_i^*V the i^{th} subconstituent of Γ with respect to $x.$

By the triangle inequality, for adjacent vertices $y, z \in X$ the distances $\partial(x, y)$ and $\partial(x, z)$ differ by at most one.

Consequently

$$
AE_i^*V \subseteq E_{i-1}^*V + E_i^*V + E_{i+1}^*V \qquad (0 \le i \le D),
$$

where $E_{-1}^* = 0$ and $E_{D+1}^* = 0$.

Next we discuss the concept of a dual adjacency matrix.

Definition

A matrix $A^* \in Mat_X(\mathbb{C})$ is called a dual adjacency matrix of Γ with respect to x and the ordering $\{E_i\}_{i=0}^{\mathcal{D}}$ whenever \mathcal{A}^* generates M[∗] and

$$
A^*E_iV\subseteq E_{i-1}V+E_iV+E_{i+1}V\qquad(0\leq i\leq \mathcal{D}),
$$

where $E_{-1} = 0$ and $E_{D+1} = 0$.

Definition

A matrix $A^* \in Mat_X(\mathbb{C})$ is called a dual adjacency matrix of Γ with respect to x and A whenever A^* is a dual adjacency matrix with respect to x and some ordering of the primitive idempotents of A.

Next we introduce the (generalized) Q-polynomial property.

Definition

We say that A is Q-polynomial with respect to x whenever there exists a dual adjacency matrix A^* of Γ with respect to x and A.

For the rest of this talk, we illustrate the Q -polynomial property using an example.

This example is based on the Attenuated Space poset $\mathcal{A}_{\alpha}(N, M)$.

This poset is defined on the next slides.

Let \mathbb{F}_q denote a finite field with q elements.

Let N, M denote positive integers.

Let H denote a vector space over \mathbb{F}_q that has dimension $N + M$.

Fix a subspace $h \subseteq H$ that has dimension M.

Let the set X consist of the subspaces of H that have zero intersection with h.

The set X , together with the containment relation, is a poset denoted by $A_q(N, M)$ and called the **Attenuated Space poset**.

The poset $A_{q}(N, M)$ is ranked with rank N; the rank of a vertex is equal to its dimension.

Next we define a graph Γ with vertex set X.

Vertices $y, z \in X$ are adjacent in Γ whenever one of y, z covers the other one.

In other words, the graph Γ is the **Hasse diagram** of the poset $\mathcal{A}_{\alpha}(N, M)$.

Note that Γ is bipartite.

The rest of this talk is about Γ.

Let θ denote the zero subspace of H.

Recall the base vertex x of Γ.

For the rest of this talk, we choose $x = 0$.

Note that the diameter $D = D(x)$ is equal to N.

The following matrix A was introduced by S. Ghosh and M. Srinivasan in 2021.

Definition

Define a matrix $A \in Mat_{X}(\mathbb{C})$ that has (y, z) -entry

$$
A_{y,z} = \begin{cases} 1 & \text{if } y \text{ covers } z; \\ q^{\dim y} & \text{if } z \text{ covers } y; \\ 0 & \text{if } y, z \text{ are not adjacent} \end{cases} \quad y, z \in X.
$$

The matrix A is a weighted adjacency matrix of Γ, called the q-adjacency matrix.

For the rest of the talk, our main goal is to show that: the q-adjacency matrix A is Q-polynomial with respect to x .

Let us review some basic facts about $A_q(N, M)$.

For an integer $n > 0$ define

$$
[n]_q=\frac{q^n-1}{q-1}.
$$

We further define

$$
[n]_q^! = [n]_q[n-1]_q \cdots [2]_q[1]_q.
$$

We interpret $[0]_q^!=1$.

For $0 \le i \le n$ define

$$
\binom{n}{i}_q = \frac{[n]_q^!}{[i]_q^! [n-i]_q^!}.
$$

The following results are well known.

Lemma Let $0 \le i \le N$ and let $y \in X$ have dimension i. (i) y covers exactly $[i]_q$ vertices; (ii) y is covered by exactly $q^M[N-i]_q$ vertices.

Lemma

For $0 \le i \le N$, the number of vertices in X that have dimension i is equal to $q^{Mi} \binom{N}{i}_q$.

Generalizing the Q-polynomial property to graphs

Next, we define a matrix A^* .

Definition

Define a diagonal matrix $A^* \in Mat_{X}(\mathbb{C})$ that has (y, y) -entry $q^{-\dim y}$ for $y \in X$.

Note that A^* is invertible.

We are going to show, that A^* i<mark>s a dual adjacency matrix of</mark> Γ with respect to x and A .

The matrix A^{*} has the following properties:

(i) For $y \in X$,

$$
A^*\hat{y}=q^{-\dim y}\hat{y}.
$$

(ii) The eigenvalues of A^* are $\{q^{-i}\}_{i=0}^N$. (iii) For $0 \leq i \leq N$, E_i^*V is the eigenspace of A^* for the eigenvalue q^{-i} .

Lemma (continued)

(iv) $A^* = \sum_{i=0}^{N} q^{-i} E_i^*$. (v) The algebra M^* is generated by A^* . (vi) The algebra $\mathsf T$ is generated by A, A^* . As we investigate the algebra T , it is useful to introduce three elements R, L, L' .

As we will explain, R is a raising matrix and L, L' are lowering matrices.

We comment on how L, L' differ.

The matrix L is natural from an algebraic point of view, and L' is natural from a **combinatorial** point of view.

We will define R, L' now.

We will define L a bit later.

Definition

We define matrices R,L' in ${\rm Mat}_X(\mathbb C)$ that have (y,z) -entries

$$
R_{y,z} = \begin{cases} 1, & \text{if } y \text{ covers } z; \\ 0, & \text{if } y \text{ does not cover } z \end{cases}
$$
\n
$$
L'_{y,z} = \begin{cases} 1, & \text{if } z \text{ covers } y; \\ 0, & \text{if } z \text{ does not cover } y \end{cases}
$$

for $y, z \in X$. We call R (resp. L') the raising matrix (resp. lowering matrix) of $A_{q}(N, M)$.

For $z \in X$ we have

$$
R\hat{z} = \sum_{y \text{ covers } z} \hat{y},
$$

$$
L'\hat{z} = \sum_{z \text{ covers } y} \hat{y}.
$$

Paul Terwilliger

Generalizing the Q-polynomial property to graphs that are not

The matrices R and L' are contained in T

The matrices R, L', A^* satisfy the following:

(i)
$$
L' = R^t
$$
, where t denotes transpose;

(ii)
$$
A = R + (A^*)^{-1}L'
$$
;

(iii) the algebra $\mathsf T$ is generated by R, L', A^* ;

 (iv) T is closed under transpose and complex-conjugation;

 (v) **T** is semisimple.

Lemma (Wen Liu 2016)

The matrices R, L', A^* are related as follows:

$$
RA^* = qA^*R, \qquad L'A^* = q^{-1}A^*L',
$$

\n
$$
(L')^2R - (q+1)L'RL' + qR(L')^2 = -(q+1)q^{N+M}L'A^*,
$$

\n
$$
L'R^2 - (q+1)RL'R + qR^2L' = -(q+1)q^{N+M}A^*R.
$$

The above relations express the fact that the poset $A_q(N, M)$ is uniform in the sense of [Ter 1990].

Next, we describe the T-modules.

Recall the standard module V.

By a **T-module** we mean a subspace $W \subseteq V$ such that $TW \subseteq W$.

A **T**-module W is said to be **irreducible** whenever $W \neq 0$ and W does not contain a T -module besides 0 and W .

Because $\mathsf T$ is semisimple, the standard module V is a direct sum of irreducible T-modules.

Next, we describe an irreducible T -module W .

By the **endpoint** of W we mean $\min\{i | 0 \le i \le N, E_i^*W \ne 0\}.$

By the **diameter** of W we mean $\left|\left\{i\right|0 \leq i \leq N, E^*_i W \neq 0\right\}\right| - 1$.

Using the theory of uniform posets (Ter 1990) we obtain the following result.

Lemma (Ter 1990)

For $0 \le r, d \le N$ the following are equivalent:

- (i) there exists an irreducible **T**-module with endpoint r and diameter d;
- (ii) $N 2r < d < N r$ and $d < N + M 2r$.

We mention one significance of the endpoint and diameter.

Lemma

Let W and W' denote irreducible T -modules, with endpoints r, r' and diameters d, d' respectively. Then the following are equivalent:

 (i) W and W' are isomorphic; (ii) $r = r'$ and $d = d'$.

let Ψ denote the set of isomorphism classes of irreducible T-modules. By the previous lemma, we view

$$
\Psi = \{(r, d) \mid 0 \leq r, d \leq N, \quad N - 2r \leq d \leq N - r,
$$

$$
d \leq N + M - 2r\}.
$$

We bring in some notation.

Definition

For
$$
(r, d) \in \Psi
$$
 define
\n
$$
\xi'_i(r, d) = \frac{q^{N+M-r-d}(q^i - 1)(q^{d+1-i} - 1)}{(q-1)^2}
$$
 $(1 \le i \le d).$

Using the theory of uniform posets (Ter 1990) we get the following result.

Lemma (Ter 1990)

Let W denote an irreducible T -module, with endpoint r and diameter d. There exists a basis $\{w_i\}_{i=0}^d$ of W such that (i) $w_i \in E_{r+i}^* V \quad (0 \le i \le d);$ (ii) $Rw_i = w_{i+1}$ $(0 \le i \le d-1)$, $Rw_d = 0$; (iii) $L'w_i = \xi'_i(r, d)w_{i-1}$ $(1 \le i \le d),$ $L'w_0 = 0.$

Next, we adjust the lowering matrix L' to get a matrix L called the q-lowering matrix.

Definition

We define a matrix $L \in Mat_X(\mathbb{C})$ that has (y, z) -entry

$$
L_{y,z} = \begin{cases} q^{\dim y}, & \text{if } z \text{ covers } y; \\ 0, & \text{if } z \text{ does not cover } y \end{cases} \qquad (y, z \in X).
$$

We call L the q-lowering matrix for $A_q(N, M)$.

We have $L' = A^*L$ and $A = R + L$.

Lemma

The algebra $\mathsf T$ is generated by R, L, A^* .

The matrices R, L, A^* are related as follows:

$$
RA^* = qA^*R, \qquad LA^* = q^{-1}A^*L,
$$

\n
$$
L^2R - q(q+1)LRL + q^3RL^2 = -q^{N+M}(q+1)L,
$$

\n
$$
LR^2 - q(q+1)RLR + q^3R^2L = -q^{N+M}(q+1)R.
$$

The previous two equations are the **Down-Up Relations** due to Benkart and Roby (1998).

Next, we describe how L acts on an irreducible T -module.

Definition

For $(r, d) \in \Psi$ define $\xi_i(r,d) = \frac{q^{N+M-d}(q^i-1)(q^d-q^{i-1})}{(q-1)^2}$ $(q-1)^2$ $(1 \leq i \leq d).$

Note that $\xi_i(r,d) = q^{r+i-1}\xi'_i(r,d)$ for $1 \leq i \leq d$.

Generalizing the Q-polynomial property to graphs that are no

Let W denote an irreducible T-module, with endpoint r and diameter d. Recall the basis $\{w_i\}_{i=0}^d$ of W. Then

$$
Lw_i = \xi_i(r, d)w_{i-1}
$$
 $(1 \le i \le d),$ $Lw_0 = 0.$

We have been discussing R, L, A^* .

Let us return our attention to A, A^* .

Our next goals are:

- determine how A, A^* are related;
- show that A is diagonalizable;
- find the eigenvalues of A ;
- \bullet describe how A^* acts on the eigenspaces of A.

We now describe how A, A^* are related.

For notational convenience, define

$$
\beta=q+q^{-1}.
$$

Lemma

The matrices A and A^* satisfy

$$
A^{3}A^{*} - (\beta + 1)A^{2}A^{*}A + (\beta + 1)AA^{*}A^{2} - A^{*}A^{3}
$$

= $q^{N+M-2}(q + 1)^{2}(AA^{*} - A^{*}A),$
 $(A^{*})^{2}A - \beta A^{*}AA^{*} + A(A^{*})^{2} = 0.$

Generalizing the Q-polynomial property to graphs that are not

Next, we show that A is diagonalizable, and we find its eigenvalues.

To do this, we consider the action of A on each irreducible T-module.

Let W denote an irreducible T -module, with endpoint r and diameter d. Consider the matrix that represents A with respect to the basis $\{w_i\}_{i=0}^d$ of W . This matrix is tridiagonal with entries

$$
\xi_i = \xi_i(r, d).
$$
\n
$$
\begin{pmatrix}\n0 & \xi_1 & & & & 0 \\
1 & 0 & \xi_2 & & & \\
& & 1 & 0 & \ddots & & \\
& & & \ddots & \xi_d & \\
& & & & 1 & 0\n\end{pmatrix},
$$

where

The matrix on the previous slide is well known in the theory of Leonard pairs.

Shortly we will describe its eigenvalues.

We bring in some notation.

Definition

Define the set

$$
[N] = \{i \mid 2i \in \mathbb{Z}, \quad 0 \le i \le N\}
$$

= \{0, 1/2, 1, 3/2, ..., N\}.

The cardinality of $[N]$ is $2N + 1$.

The scalar q is real and $q\geq 2;$ let $q^{1/2}$ denote the positive square root of q.

Lemma

The scalars $\{\theta_i\}_{i\in[N]}$ are mutually distinct.

Generalizing the \overline{Q} -polynomial property to graphs that are not

Paul Terwilliger

Definition

Consider a linear map on a finite-dimensional vector space.

This map is called **multiplicity-free** whenever the map is diagonalizable, and each eigenspace has dimension one.

Let W denote an irreducible $\mathsf T$ -module. Let d denote the diameter of W, and define $t = (N - d)/2$. Then the action of A on W is multiplicity-free, with eigenvalues $\{\theta_{t+i}\}_{i=0}^d$.

The matrix A is diagonalizable, with eigenvalues $\{\theta_i\}_{i\in[N]}$.

Corollary

The dimension of M is $2N + 1$.

Generalizing the Q-polynomial property to graphs that are not

The action of A^* on the eigenspaces of A

Next, we describe how A^* acts on the eigenspaces of A .

Lemma

For distinct $i, j \in [N]$,

 $E_i A^* E_j \neq 0$ if and only if $|i - j| = 1$.

Proof.

Recall that

$$
A^3A^* - (\beta + 1)A^2A^*A + (\beta + 1)AA^*A^2 - A^*A^3
$$

= $q^{N+M-2}(q + 1)^2(AA^* - A^*A).$

In this equation, multiply each term on the left by E_i and the right by E_j . Simplify the result using $E_i A = \theta_i E_i$ and $A E_j = \theta_j E_j$.

We can now easily show that A^* is a dual adjacency matrix.

Lemma

The matrix A^* is a dual adjacency matrix with respect to x and the following orderings of the primitive idempotents: (i) $E_0 < E_1 < E_2 < \cdots < E_N < E_{1/2} < E_{3/2} < \cdots < E_{N-1/2}$; (ii) $E_{1/2} < E_{3/2} < \cdots < E_{N-1/2} < E_0 < E_1 < E_2 < \cdots < E_N$.

Corollary

The matrix A^* is a dual adjacency matrix of Γ with respect to x and A.

We now state our main result.

Theorem

The matrix A is Q-polynomial with respect to x.

Summary

In this talk, we first generalized the Q -polynomial property to graphs that are not necessarily distance-regular.

We defined a graph Γ using the Attenuated Space poset $A_{\alpha}(N, M)$.

We considered Γ from the point of view of the **base vertex** $x = 0$.

We defined the q -a<mark>djacency matrix</mark> A and a diagonal matrix A^* .

We showed that A^* is a dual adjacency matrix of Γ with respect to x and A

Finally we showed that A is Q-polynomial with respect to x .

THANK YOU FOR YOUR ATTENTION!

Generalizing the Q -polynomial property to graphs

Paul Terwilliger