Generalizing the Q-polynomial property to graphs that are not distance-regular

Paul Terwilliger

University of Wisconsin-Madison

Generalizing the Q-polynomial property to graphs that are not

Paul Terwilliger

There is a type of distance-regular graph, said to be Q-polynomial.

Many of the known distance-regular graphs have this property.

In this talk, we will generalize the Q-polynomial property to finite, undirected, connected graphs that are not necessarily distance-regular.

We will describe a family of examples associated with the **attenuated space** posets.

Let X denote a nonempty finite set.

Let $Mat_X(\mathbb{C})$ denote the \mathbb{C} -algebra consisting of the matrices that have rows and columns indexed by X and all entries in \mathbb{C} .

Let $V = \mathbb{C}^X$ denote the vector space over \mathbb{C} consisting of the column vectors with coordinates indexed by X and all entries in \mathbb{C} .

The algebra $Mat_X(\mathbb{C})$ acts on V by left multiplication.

We call V the **standard module**.

For all vertices $y \in X$, define a vector $\hat{y} \in V$ that has y-coordinate 1 and all other coordinates 0.

The vectors $\{\hat{y}\}_{y \in X}$ form a basis for V.

Let $\Gamma = (X, \mathcal{R})$ denote a finite, undirected, connected graph, without loops or multiple edges, with vertex set X, adjacency relation \mathcal{R} , and path-length distance function ∂ .

Definition

By a weighted adjacency matrix of Γ , we mean a matrix $A \in \operatorname{Mat}_X(\mathbb{C})$ that has (y, z)-entry

$$A_{y,z} = egin{cases}
eq 0, & ext{if } y,z ext{ are adjacent;} \\
0, & ext{if } y,z ext{ are not adjacent} & (y,z\in X). \end{cases}$$

Until further notice, we fix a weighted adjacency matrix A of Γ that is **diagonalizable over** \mathbb{C} .

Let **M** denote the subalgebra of $\operatorname{Mat}_X(\mathbb{C})$ generated by A.

We call **M** the **adjacency algebra** of Γ and A.

Let $\mathcal{D}+1$ denote the dimension of the vector space $\boldsymbol{\mathsf{M}}.$

Since A is diagonalizable, the vector space **M** has a basis $\{E_i\}_{i=0}^{D}$ such that

$$\sum_{i=0}^{\mathcal{D}} E_i = I,$$

$$E_i E_j = \delta_{i,j} E_i \qquad (0 \le i, j \le \mathcal{D}).$$

We call $\{E_i\}_{i=0}^{\mathcal{D}}$ the **primitive idempotents of** *A*.

Since $A \in \mathbf{M}$, there exist complex scalars $\{\theta_i\}_{i=0}^{\mathcal{D}}$ such that

$$A=\sum_{i=0}^{\mathcal{D}}\theta_i E_i.$$

The scalars $\{\theta_i\}_{i=0}^{\mathcal{D}}$ are mutually distinct since A generates **M**.

Note that

$$V = \sum_{i=0}^{\mathcal{D}} E_i V$$
 (direct sum).

For $0 \le i \le D$ the subspace $E_i V$ is an eigenspace of A, and θ_i is the corresponding eigenvalue.

Until further notice, fix a vertex $x \in X$, called the **base vertex**.

Define the integer D = D(x) by

$$D = \max\{\partial(x, y) | y \in X\}.$$

We call *D* the **diameter of** Γ **with respect to** *x*.

We have $D \leq D$, because the matrices $\{A^i\}_{i=0}^D$ are linearly independent.

For $0 \le i \le D$ define a diagonal matrix $E_i^* = E_i^*(x)$ in $Mat_X(\mathbb{C})$ that has (y, y)-entry

$$(E_i^*)_{y,y} = \begin{cases} 1, & \text{if } \partial(x,y) = i; \\ 0, & \text{if } \partial(x,y) \neq i \end{cases}$$
 $(y \in X).$

We call $\{E_i^*\}_{i=0}^D$ the dual primitive idempotents of Γ with respect to *x*.

We have

$$\sum_{i=0}^{D} E_{i}^{*} = I,$$

$$E_{i}^{*} E_{j}^{*} = \delta_{i,j} E_{i}^{*} \qquad (0 \le i, j \le D).$$

Consequently, the matrices $\{E_i^*\}_{i=0}^D$ form a basis for a commutative subalgebra $\mathbf{M}^* = \mathbf{M}^*(x)$ of $\operatorname{Mat}_X(\mathbb{C})$.

We call M^* the dual adjacency algebra of Γ with respect to x.

Definition

Let $\mathbf{T} = \mathbf{T}(x, A)$ denote the subalgebra of $Mat_X(\mathbb{C})$ generated by \mathbf{M} and \mathbf{M}^* .

We call **T** the subconsituent algebra of Γ with respect to x and A.

Next we recall the subconstituents of Γ with respect to x.

For $0 \le i \le D$ we have

$$E_i^*V = \operatorname{Span}{\hat{y}|y \in X, \ \partial(x,y) = i}.$$

Moreover,

$$V = \sum_{i=0}^{D} E_i^* V$$
 (direct sum).

For $0 \le i \le D$ the subspace $E_i^* V$ is a common eigenspace for \mathbf{M}^* .

We call $E_i^* V$ the *i*th subconstituent of Γ with respect to *x*.

By the triangle inequality, for adjacent vertices $y, z \in X$ the distances $\partial(x, y)$ and $\partial(x, z)$ differ by at most one.

Consequently

$$AE_i^*V \subseteq E_{i-1}^*V + E_i^*V + E_{i+1}^*V$$
 $(0 \le i \le D),$
where $E_{-1}^* = 0$ and $E_{D+1}^* = 0.$

Generalizing the Q-polynomial property to graphs that are not

Next we discuss the concept of a dual adjacency matrix.

Definition

A matrix $A^* \in Mat_X(\mathbb{C})$ is called a **dual adjacency matrix of** Γ with respect to x and the ordering $\{E_i\}_{i=0}^{\mathcal{D}}$ whenever A^* generates \mathbf{M}^* and

$$A^*E_iV\subseteq E_{i-1}V+E_iV+E_{i+1}V \qquad (0\leq i\leq \mathcal{D}),$$

where $E_{-1} = 0$ and $E_{D+1} = 0$.

Generalizing the Q-polynomial property to graphs that are n

Definition

A matrix $A^* \in \operatorname{Mat}_X(\mathbb{C})$ is called a **dual adjacency matrix of** Γ with respect to x and A whenever A^* is a dual adjacency matrix with respect to x and some ordering of the primitive idempotents of A.

Next we introduce the (generalized) Q-polynomial property.

Definition

We say that A is Q-polynomial with respect to x whenever there exists a dual adjacency matrix A^* of Γ with respect to x and A.

For the rest of this talk, we illustrate the Q-polynomial property using an example.

This example is based on the **Attenuated Space poset** $\mathcal{A}_q(N, M)$.

This poset is defined on the next slides.

Let \mathbb{F}_q denote a finite field with q elements.

Let N, M denote positive integers.

Let *H* denote a vector space over \mathbb{F}_q that has dimension N + M.

Fix a subspace $h \subseteq H$ that has dimension M.

Let the set X consist of the subspaces of H that have zero intersection with h.

The set X, together with the containment relation, is a poset denoted by $A_q(N, M)$ and called the **Attenuated Space poset**.

The poset $A_q(N, M)$ is ranked with rank N; the rank of a vertex is equal to its dimension.

Next we define a graph Γ with vertex set X.

Vertices $y, z \in X$ are adjacent in Γ whenever one of y, z covers the other one.

In other words, the graph Γ is the **Hasse diagram** of the poset $\mathcal{A}_q(N,M).$

Note that Γ is **bipartite**.

The rest of this talk is about Γ .

Let $\mathbf{0}$ denote the zero subspace of H.

Recall the base vertex x of Γ .

For the rest of this talk, we choose $x = \mathbf{0}$.

Note that the diameter D = D(x) is equal to N.

The following matrix *A* was introduced by S. Ghosh and M. Srinivasan in 2021.

Definition

Define a matrix $A \in \operatorname{Mat}_X(\mathbb{C})$ that has (y, z)-entry

$$A_{y,z} = \begin{cases} 1 & \text{if } y \text{ covers } z; \\ q^{\dim y} & \text{if } z \text{ covers } y; \\ 0 & \text{if } y, z \text{ are not adjacent} \end{cases} \quad y, z \in X.$$

The matrix A is a weighted adjacency matrix of Γ , called the *q*-adjacency matrix.

For the rest of the talk, our main goal is to show that: the *q*-adjacency matrix A is *Q*-polynomial with respect to x.

Let us review some basic facts about $\mathcal{A}_q(N, M)$.

For an integer $n \ge 0$ define

$$[n]_q = \frac{q^n - 1}{q - 1}.$$

We further define

$$[n]_q^! = [n]_q [n-1]_q \cdots [2]_q [1]_q.$$

We interpret $[0]_q^! = 1$.

For $0 \le i \le n$ define

$$\binom{n}{i}_q = \frac{[n]_q^!}{[i]_q^! [n-i]_q^!}.$$

The following results are well known.

Lemma Let $0 \le i \le N$ and let $y \in X$ have dimension *i*. (i) *y* covers exactly $[i]_q$ vertices; (ii) *y* is covered by exactly $q^M[N-i]_q$ vertices.

Lemma

For $0 \le i \le N$, the number of vertices in X that have dimension i is equal to $q^{Mi} {N \choose i}_q$.

Generalizing the Q-polynomial property to graphs that are not

Next, we define a matrix A^* .

Definition

Define a diagonal matrix $A^* \in \operatorname{Mat}_X(\mathbb{C})$ that has (y, y)-entry $q^{-\dim y}$ for $y \in X$.

Note that A^* is invertible.

We are going to show, that A^* is a dual adjacency matrix of Γ with respect to x and A.

The matrix A* has the following properties:

(i) For $y \in X$,

$$A^*\hat{y}=q^{-\dim y}\hat{y}.$$

(ii) The eigenvalues of
$$A^*$$
 are $\{q^{-i}\}_{i=0}^N$.
(iii) For $0 \le i \le N$,
 $E_i^* V$ is the eigenspace of A^* for the eigenvalue q^{-i} .

Generalizing the Q-polynomial property to graphs that are not

Lemma (continued)

(iv) $A^* = \sum_{i=0}^{N} q^{-i} E_i^*$. (v) The algebra \mathbf{M}^* is generated by A^* . (vi) The algebra \mathbf{T} is generated by A, A^* . As we investigate the algebra **T**, it is useful to introduce three elements R, L, L'.

As we will explain, R is a raising matrix and L, L' are lowering matrices.

We comment on how L, L' differ.

The matrix L is natural from an **algebraic** point of view, and L' is natural from a **combinatorial** point of view.

We will define R, L' now.

We will define L a bit later.

Definition

We define matrices R, L' in $Mat_X(\mathbb{C})$ that have (y, z)-entries

$$R_{y,z} = \begin{cases} 1, & \text{if } y \text{ covers } z; \\ 0, & \text{if } y \text{ does not cover } z \end{cases}$$
$$L'_{y,z} = \begin{cases} 1, & \text{if } z \text{ covers } y; \\ 0, & \text{if } z \text{ does not cover } y \end{cases}$$

for $y, z \in X$. We call R (resp. L') the raising matrix (resp. lowering matrix) of $A_q(N, M)$.

For $z \in X$ we have

$$R\hat{z} = \sum_{y \text{ covers } z} \hat{y},$$
$$L'\hat{z} = \sum_{z \text{ covers } y} \hat{y}.$$

z covers y

Generalizing the Q-polynomial property to graphs that are not

Paul Terwilliger

The matrices R and L' are contained in **T**

Generalizing the Q-polynomial property to graphs that are not

The matrices R, L', A^* satisfy the following:

(i)
$$L' = R^t$$
, where t denotes transpose;

(ii)
$$A = R + (A^*)^{-1}L'$$
;

(iii) the algebra **T** is generated by R, L', A^* ;

(iv) **T** is closed under transpose and complex-conjugation;

(v) **T** is semisimple.

Lemma (Wen Liu 2016)

The matrices R, L', A^* are related as follows:

 $\begin{aligned} RA^* &= qA^*R, \qquad L'A^* = q^{-1}A^*L', \\ (L')^2R &- (q+1)L'RL' + qR(L')^2 = -(q+1)q^{N+M}L'A^*, \\ L'R^2 &- (q+1)RL'R + qR^2L' = -(q+1)q^{N+M}A^*R. \end{aligned}$

The above relations express the fact that the poset $A_q(N, M)$ is **uniform** in the sense of [Ter 1990].

Next, we describe the **T**-modules.

Recall the standard module V.

By a **T-module** we mean a subspace $W \subseteq V$ such that $\mathbf{T}W \subseteq W$.

A **T**-module W is said to be **irreducible** whenever $W \neq 0$ and W does not contain a **T**-module besides 0 and W.

Because **T** is semisimple, the standard module V is a direct sum of irreducible **T**-modules.

Next, we describe an irreducible \mathbf{T} -module W.

By the **endpoint** of W we mean $\min\{i|0 \le i \le N, E_i^*W \ne 0\}$.

By the **diameter** of W we mean $|\{i|0 \le i \le N, E_i^*W \ne 0\}| - 1$.

Using the theory of uniform posets (Ter 1990) we obtain the following result.

Lemma (Ter 1990)

For $0 \le r, d \le N$ the following are equivalent:

- (i) there exists an irreducible **T**-module with endpoint r and diameter d;
- (ii) $N-2r \leq d \leq N-r$ and $d \leq N+M-2r$.

We mention one significance of the endpoint and diameter.

Lemma

Let W and W' denote irreducible **T**-modules, with endpoints r, r' and diameters d, d' respectively. Then the following are equivalent:

(i) *W* and *W'* are isomorphic;
(ii) *r* = *r'* and *d* = *d'*.

let Ψ denote the set of isomorphism classes of irreducible T-modules. By the previous lemma, we view

$$\Psi = \{ (r,d) \mid 0 \le r, d \le N, \quad N-2r \le d \le N-r, \\ d \le N+M-2r \}.$$

We bring in some notation.

Definition

For
$$(r,d)\in \Psi$$
 define $\xi_i'(r,d)=rac{q^{N+M-r-d}(q^i-1)(q^{d+1-i}-1)}{(q-1)^2}\qquad(1\leq i\leq d).$

Using the theory of uniform posets (Ter 1990) we get the following result.

Lemma (Ter 1990)

Let W denote an irreducible **T**-module, with endpoint r and diameter d. There exists a basis $\{w_i\}_{i=0}^d$ of W such that (i) $w_i \in E_{r+i}^* V$ $(0 \le i \le d);$ (ii) $Rw_i = w_{i+1}$ $(0 \le i \le d-1),$ $Rw_d = 0;$ (iii) $L'w_i = \xi'_i(r, d)w_{i-1}$ $(1 \le i \le d),$ $L'w_0 = 0.$

Generalizing the Q-polynomial property to graphs that are no

Next, we adjust the lowering matrix L' to get a matrix L called the q-lowering matrix.

Definition

We define a matrix $L \in Mat_X(\mathbb{C})$ that has (y, z)-entry

$$L_{y,z} = egin{cases} q^{\dim y}, & ext{if } z ext{ covers } y; \ 0, & ext{if } z ext{ does not cover } y \end{cases}$$
 $(y,z\in X).$

We call *L* the *q*-lowering matrix for $\mathcal{A}_q(N, M)$.

We have $L' = A^*L$ and A = R + L.

Lemma

The algebra **T** is generated by R, L, A^* .

Paul Terwilliger

Generalizing the Q-polynomial property to graphs that are not

The matrices R, L, A^* are related as follows:

$$egin{aligned} RA^* &= qA^*R, & LA^* &= q^{-1}A^*L, \ L^2R &- q(q+1)LRL + q^3RL^2 &= -q^{N+M}(q+1)L, \ LR^2 &- q(q+1)RLR + q^3R^2L &= -q^{N+M}(q+1)R. \end{aligned}$$

The previous two equations are the **Down-Up Relations** due to **Benkart** and **Roby** (1998).

Next, we describe how L acts on an irreducible T-module.

Definition

For $(r, d) \in \Psi$ define $\xi_i(r, d) = \frac{q^{N+M-d}(q^i - 1)(q^d - q^{i-1})}{(q-1)^2} \qquad (1 \le i \le d).$

Note that $\xi_i(r, d) = q^{r+i-1}\xi'_i(r, d)$ for $1 \le i \le d$.

Generalizing the Q-polynomial property to graphs that are not

Paul Terwilliger

Let W denote an irreducible T-module, with endpoint r and diameter d. Recall the basis $\{w_i\}_{i=0}^d$ of W. Then

$$Lw_i = \xi_i(r,d)w_{i-1}$$
 $(1 \leq i \leq d),$ $Lw_0 = 0.$

We have been discussing R, L, A^* .

Let us return our attention to A, A^* .

Our next goals are:

- determine how A, A* are related;
- show that A is diagonalizable;
- find the eigenvalues of A;
- describe how A^* acts on the eigenspaces of A.

We now describe how A, A^* are related.

For notational convenience, define

$$\beta = q + q^{-1}.$$

Lemma

The matrices A and A* satisfy

$$egin{aligned} &A^3A^*-(eta+1)A^2A^*A+(eta+1)AA^*A^2-A^*A^3\ &=q^{N+M-2}(q+1)^2(AA^*-A^*A),\ &(A^*)^2A-eta A^*AA^*+A(A^*)^2=0. \end{aligned}$$

Generalizing the Q-polynomial property to graphs that are not

Paul Terwilliger

Next, we show that A is diagonalizable, and we find its eigenvalues.

To do this, we consider the action of A on each irreducible **T**-module.

Let W denote an irreducible **T**-module, with endpoint r and diameter d. Consider the matrix that represents A with respect to the basis $\{w_i\}_{i=0}^d$ of W. This matrix is tridiagonal with entries

$$\begin{pmatrix} 0 & \xi_1 & & \mathbf{0} \\ 1 & 0 & \xi_2 & & \\ & 1 & 0 & \cdot & \\ & & \cdot & \cdot & \cdot \\ & & & \cdot & \cdot & \xi_d \\ \mathbf{0} & & & 1 & 0 \end{pmatrix},$$

where $\xi_i = \xi_i(r, d)$.

The matrix on the previous slide is well known in the theory of Leonard pairs.

Shortly we will describe its eigenvalues.

We bring in some notation.

Definition

Define the set

$$[N] = \{i \mid 2i \in \mathbb{Z}, \quad 0 \le i \le N\} \\ = \{0, 1/2, 1, 3/2, \dots, N\}.$$

The cardinality of [N] is 2N + 1.

The scalar q is real and $q \ge 2$; let $q^{1/2}$ denote the positive square root of q.

Lemma

The scalars $\{\theta_i\}_{i \in [N]}$ are mutually distinct.

Generalizing the Q-polynomial property to graphs that are not

Paul Terwilliger

Definition

Consider a linear map on a finite-dimensional vector space.

This map is called **multiplicity-free** whenever the map is diagonalizable, and each eigenspace has dimension one.

Let W denote an irreducible **T**-module. Let d denote the diameter of W, and define t = (N - d)/2. Then the action of A on W is multiplicity-free, with eigenvalues $\{\theta_{t+i}\}_{i=0}^{d}$.

The matrix A is diagonalizable, with eigenvalues $\{\theta_i\}_{i \in [N]}$.

Corollary

The dimension of **M** is 2N + 1.

Generalizing the Q-polynomial property to graphs that are not

The action of A^* on the eigenspaces of A

Next, we describe how A^* acts on the eigenspaces of A.

Lemma

For distinct $i, j \in [N]$,

 $E_i A^* E_j \neq 0$ if and only if |i - j| = 1.

Proof.

Recall that

$$egin{aligned} &\mathcal{A}^3 \mathcal{A}^* - (eta+1) \mathcal{A}^2 \mathcal{A}^* \mathcal{A} + (eta+1) \mathcal{A} \mathcal{A}^* \mathcal{A}^2 - \mathcal{A}^* \mathcal{A}^3 \ &= q^{N+M-2} (q+1)^2 (\mathcal{A} \mathcal{A}^* - \mathcal{A}^* \mathcal{A}). \end{aligned}$$

In this equation, multiply each term on the left by E_i and the right by E_j . Simplify the result using $E_iA = \theta_iE_i$ and $AE_j = \theta_jE_j$.

We can now easily show that A^* is a dual adjacency matrix.

Lemma

The matrix A^* is a dual adjacency matrix with respect to x and the following orderings of the primitive idempotents: (i) $E_0 < E_1 < E_2 < \cdots < E_N < E_{1/2} < E_{3/2} < \cdots < E_{N-1/2}$; (ii) $E_{1/2} < E_{3/2} < \cdots < E_{N-1/2} < E_0 < E_1 < E_2 < \cdots < E_N$.

The matrix A^* is a dual adjacency matrix, cont.

Corollary

The matrix A^* is a dual adjacency matrix of Γ with respect to x and A.

Paul Terwilliger

Generalizing the Q-polynomial property to graphs that are not

We now state our main result.

Theorem

The matrix A is Q-polynomial with respect to x.

Generalizing the Q-polynomial property to graphs that are not

Summary

In this talk, we first generalized the Q-polynomial property to graphs that are not necessarily distance-regular.

We defined a graph Γ using the **Attenuated Space poset** $\mathcal{A}_q(N, M)$.

We considered Γ from the point of view of the **base vertex** $x = \mathbf{0}$.

We defined the *q*-adjacency matrix A and a diagonal matrix A^* .

We showed that A^* is a **dual adjacency matrix** of Γ with respect to x and A.

Finally we showed that A is Q-polynomial with respect to x.

THANK YOU FOR YOUR ATTENTION!

Generalizing the Q-polynomial property to graphs that are no

Paul Terwilliger