The q-shuffle algebra, the alternating elements, and the positive part of $U_q(\widehat{\mathfrak{sl}}_2)$

Paul Terwilliger

University of Wisconsin-Madison

The q -shuffle algebra, the alternating elements, and the positiv

Paul Terwilliger

This talk is about the positive part U^+_q of the q -deformed enveloping algebra $U_q(\widehat{\mathfrak{sl}}_2)$.

Using a q -shuffle algebra realization of U_q^+ , we will define some elements in U_q^+ said to be alternating.

We will use the alternating elements to obtain a PBW basis for U_q^+ .

We will explain how this PBW basis is related to some previously known PBW bases, due to Damiani and Beck.

Finally, we will use the alternating elements to obtain a central extension of U_q^+ , called the alternating central extension.

Recall the natural numbers $\mathbb{N} = \{0, 1, 2, \ldots\}$ and integers $\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}.$

Fix a field \mathbb{F} .

Every vector space discussed is understood to be over F.

Every algebra discussed that has no Lie prefix, is understood to be associative, over $\mathbb F$, and has a multiplicative identity.

Let x, y denote noncommuting indeterminates.

Let V denote the free algebra with generators x, y .

By a **letter** in V we mean x or y.

For $n \in \mathbb{N}$, a word of length n in $\mathbb V$ is a product of letters $a_1a_2\cdots a_n$.

The word of length 0 is empty; it is called **trivial** and denoted by 1 .

The vector space V has a basis consisting of its words.

This basis is called standard.

The standard basis looks as follows:

1, x, y, y $xx, \quad xy, \quad yx, \quad yy,$ xxx, xxy, xyx, yxx, xyy, yxy, yyx, yyy,

We now define a type of word, called alternating.

The alternating words are:

For convenience, we name the alternating words as follows:

$$
W_0 = x, \t W_{-1} = xyx, \t W_{-2} = xyxyx, \t ...
$$

\n
$$
W_1 = y, \t W_2 = yxy, \t W_3 = yxyxy, \t ...
$$

\n
$$
G_1 = yx, \t G_2 = yxyx, \t G_3 = yxyxyx, \t ...
$$

\n
$$
\tilde{G}_1 = xy, \t \tilde{G}_2 = xyxy, \t \tilde{G}_3 = xyxyxy, \t ...
$$

For the rest of this talk, we fix a nonzero scalar $q \in \mathbb{F}$ that is not a root of unity.

Recall the notation

$$
[n]_q = \frac{q^n - q^{-n}}{q - q^{-1}} \qquad n \in \mathbb{Z}.
$$

We have been discussing the free algebra V .

There is another algebra structure on V , called the q-shuffle algebra.

This algebra is due to Marc Rosso 1995.

The *q*-shuffle product is denoted by \star .

The q-shuffle product

For letters u, v we have

$$
u\star v=uv+vuq^{\langle u,v\rangle}
$$

where

$$
\begin{array}{c|cc}\n\langle , \rangle & x & y \\
\hline\nx & 2 & -2 \\
y & -2 & 2\n\end{array}
$$

So

$$
x \star y = xy + q^{-2}yx,
$$

\n
$$
x \star x = (1 + q^2)xx,
$$

\n
$$
y \star x = yx + q^{-2}xy,
$$

\n
$$
y \star y = (1 + q^2)yy.
$$

The q -shuffle algebra, the alternating elements, and the positive

Paul Terwilliger

The *q*-shuffle product, cont.

For words u, v in V we now describe $u * v$.

Write $u = a_1 a_2 \cdots a_r$ and $v = b_1 b_2 \cdots b_s$.

To illustrate, we assume $r = 2$ and $s = 2$.

We have

$$
u * v = a_1 a_2 b_1 b_2
$$

+ a_1 b_1 a_2 b_2 q^(a_2, b_1)
+ a_1 b_1 b_2 a_2 q^(a_2, b_1)+^(a_2, b_2)
+ b_1 a_1 a_2 b_2 q^(a_1, b_1)+^(a_2, b_1)
+ b_1 a_1 b_2 a_2 q^(a_1, b_1)+^(a_2, b_1)+^(a_2, b_2)
+ b_1 b_2 a_1 a_2 q^(a_1, b_1)+^(a_1, b_2)+^(a_2, b_1)+^(a_2, b_2)

For example,

$$
xy * xy = xyXY1
$$

+
$$
xXyYq^{-2}
$$

+
$$
XxyY1
$$

+
$$
xXYy1
$$

+
$$
XxYyq^{2}
$$

+
$$
XYxy1
$$

=
$$
xyxy2 + xxyy(q + q^{-1})^{2}
$$
.

The q -shuffle algebra, the alternating elements, and the positiv

Theorem (Rosso 1995)

The q-shuffle product \star turns the vector space $\mathbb {V}$ into an algebra with multiplicative identity 1.

The above algebra is called the *q*-shuffle algebra V .

Our next goal is to describe how the alternating words are related, with respect to the q -shuffle product.

As we will see, the relations come in three types I, II, III.

The following notation will be useful.

For elements R , S in any algebra, their **commutator** is

$$
[R,S]=RS-SR
$$

and their q -commutator is

$$
[R, S]_q = qRS - q^{-1}SR.
$$

Type I relations for the alternating words

For $k \in \mathbb{N}$, consider how W_0 and W_{k+1} are related.

For example, take $k = 2$.

We have $W_0 = x$ and $W_3 = yxyxy$.

 $W_0 \star W_3 = xYXYXY1$ $+ YxXYXYq^{-2}$ $+$ YXxYXY1 + $YXY_XXY_0^{-2}$ $+$ YXYXxY1 + $YXYXYxa^{-2}$ $=$ xyxyxy + yxxyxy $(1+q^{-2})$ + yxyxxy(1 + q^{-2}) + yxyxyx q^{-2} .

The q -shuffle algebra, the alternating elements, and the positiv

Type I relations for the alternating words, cont.

Also,

$$
W_3 \star W_0 = yxyxyX1
$$

+ $yxyxxyq^{-2}$
+ $yxxyxy1$
+ $yxxyxyq^{-2}$
+ $yxxyxy1$
+ $xyxyxyq^{-2}$
= $xyxyxyq^{-2}$ + $yxxyxy(1 + q^{-2})$
+ $yxyxxy(1 + q^{-2})$ + $yxyxxyx$.

So in the q-shuffle algebra V ,

$$
[W_0, W_3] = W_0 * W_3 - W_3 * W_0
$$

= $(1 - q^{-2})xyxyxy + (q^{-2} - 1)yyxyxy$
= $(1 - q^{-2})(\tilde{G}_3 - G_3).$

In fact for $k \in \mathbb{N}$,

$$
[W_0, W_{k+1}] = (1 - q^{-2})(\tilde{G}_{k+1} - G_{k+1}).
$$

The q -shuffle algebra, the alternating elements, and the positive

Type I relations for the alternating words, cont.

For $k \in \mathbb{N}$, consider how W_0 and G_{k+1} are related.

For example, take $k = 2$.

We have $W_0 = x$ and $G_3 = yxyxyx$.

 $W_0 \star G_3 = xYXYXYX1$ $+$ YxXYXYXa⁻² $+$ YXxYXYX1 $+$ YXYxXYXa⁻² $+$ YXYXxYX1 $+$ YXYXYxXq⁻² $+$ YXYXYXx1 $=$ xyxyxyx + yxxyxyx $(1+q^{-2})$

+ yxyxxyx(1 + q^{-2}) + yxyxyxx(1 + q^{-2}).

The q -shuffle algebra, the alternating elements, and the positiv

Paul Terwilliger

Type I relations for the alternating words, cont.

Also,

 $G_3 \star W_0 = yxyxyxX1$ + $vxxvXxa^2$ $+$ yxyx X yx 1 + $vxyXxyxq^2$ $+$ yxXyxyx1 $+$ vXxvxvx a^2 $+ X$ yxyxyx 1 $=$ xyxyxyx + yxxyxyx(1 + q^2) $+$ yxyxyx(1 + q^2) + yxyxyxx(1 + q^2). So in the *q*-shuffle algebra V ,

$$
[W_0, G_3]_q = qW_0 \star G_3 - q^{-1}G_3 \star W_0
$$

= $(q - q^{-1})xyxyxyx$
= $(q - q^{-1})W_{-3}$.

In fact for $k \in \mathbb{N}$,

$$
[W_0, G_{k+1}]_q = (q - q^{-1})W_{-k-1}.
$$

The q -shuffle algebra, the alternating elements, and the positive

We just displayed several Type I relations for the alternating words.

Additional Type I relations can be obtained via symmetry, such as exchanging x, y .

In the next slide we display all the Type I relations.

Lemma (Type I relations)

For $k \in \mathbb{N}$ the following relations hold in the q-shuffle algebra \mathbb{V} :

$$
[W_0, W_{k+1}] = [W_{-k}, W_1] = (1 - q^{-2})(\tilde{G}_{k+1} - G_{k+1}),
$$

\n
$$
[W_0, G_{k+1}]_q = [\tilde{G}_{k+1}, W_0]_q = (q - q^{-1})W_{-k-1},
$$

\n
$$
[G_{k+1}, W_1]_q = [W_1, \tilde{G}_{k+1}]_q = (q - q^{-1})W_{k+2}.
$$

Next, we display the Type II relations for the alternating words.

These relations are a bit more involved.

They are obtained by induction on the length; we omit the proof.

Lemma (Type II relations)

For $k, \ell \in \mathbb{N}$ the following relations hold in the q-shuffle algebra \mathbb{V} :

$$
[W_{-k}, W_{-\ell}] = 0, \t [W_{k+1}, W_{\ell+1}] = 0,
$$

\n
$$
[G_{k+1}, G_{\ell+1}] = 0, \t [\tilde{G}_{k+1}, \tilde{G}_{\ell+1}] = 0,
$$

\n
$$
[W_{-k}, W_{\ell+1}] + [W_{k+1}, W_{-\ell}] = 0,
$$

\n
$$
[W_{-k}, \tilde{G}_{\ell+1}] + [G_{k+1}, W_{-\ell}] = 0,
$$

\n
$$
[W_{k+1}, \tilde{G}_{\ell+1}] + [\tilde{G}_{k+1}, W_{\ell+1}] = 0,
$$

\n
$$
[W_{k+1}, \tilde{G}_{\ell+1}] + [\tilde{G}_{k+1}, W_{\ell+1}] = 0,
$$

\n
$$
[\tilde{G}_{k+1}, G_{\ell+1}] + [G_{k+1}, \tilde{G}_{\ell+1}] = 0.
$$

Next, we display the Type III relations for the alternating words.

These relations are obtained by induction on the length; again we omit the proof.

For notational convenience, define

$$
G_0 = 1, \qquad \qquad \tilde{G}_0 = 1.
$$

Lemma (Type III relations)

For $n \geq 1$ the following relations hold in the q-shuffle algebra \mathbb{V} :

$$
\sum_{k=0}^{n} G_k \star \tilde{G}_{n-k} q^{n-2k} = q \sum_{k=0}^{n-1} W_{-k} \star W_{n-k} q^{n-1-2k},
$$

$$
\sum_{k=0}^{n} G_k \star \tilde{G}_{n-k} q^{2k-n} = q \sum_{k=0}^{n-1} W_{n-k} \star W_{-k} q^{n-1-2k},
$$

$$
\sum_{k=0}^{n} \tilde{G}_k \star G_{n-k} q^{n-2k} = q \sum_{k=0}^{n-1} W_{n-k} \star W_{-k} q^{2k+1-n},
$$

$$
\sum_{k=0}^{n} \tilde{G}_k \star G_{n-k} q^{2k-n} = q \sum_{k=0}^{n-1} W_{-k} \star W_{n-k} q^{2k+1-n}.
$$

The q -shuffle algebra, the alternating elements, and the positiv

Paul Terwilliger

We just gave the relations of type I, II, III.

Next, we consider their implications.

Definition

Let U denote the subalgebra of the q -shuffle algebra V generated by x, y.

We are going to show that U contains the alternating words.

Obtaining the alternating words from x, y

Lemma

Using the equations below, the alternating words are recursively obtained from x, y in the following order:

 $W_0, W_1, G_1, \tilde{G}_1, W_{-1}, W_2, G_2, \tilde{G}_2, \ldots$

We have $W_0 = x$ and $W_1 = y$. For $n > 1$,

$$
G_n = \frac{q \sum_{k=0}^{n-1} W_{-k} \star W_{n-k} q^{n-1-2k} - \sum_{k=1}^{n-1} G_k \star \tilde{G}_{n-k} q^{n-2k}}{q^n + q^{-n}} + \frac{W_n \star W_0 - W_0 \star W_n}{(1 + q^{-2n})(1 - q^{-2})},
$$

$$
\tilde{G}_n = G_n + \frac{W_0 \star W_n - W_n \star W_0}{1 - q^{-2}}, \qquad W_{-n} = \frac{qW_0 \star G_n - q^{-1} G_n \star W_0}{q - q^{-1}},
$$

$$
W_{n+1} = \frac{qG_n \star W_1 - q^{-1}W_1 \star G_n}{q - q^{-1}}.
$$

The above recursion implies the following result.

Theorem (Ter 2018)

The alternating words are contained in U.

We mention a second application of the relations of Type I, II, III.

The
\n
$$
The letters x, y \text{ satisfy}
$$

\n
$$
x \times x \times x \times y - [3]_q x \times x \times y \times x + [3]_q x \times y \times x \times x - y \times x \times x \times x = 0,
$$
\n
$$
y \times y \times y \times x - [3]_q y \times y \times x \times y + [3]_q y \times x \times y \times y - x \times y \times y \times y = 0.
$$

The above relations are called the q -Serre relations.

The *q*-Serre relations are familiar in the theory of quantum groups.

Earlier we mentioned the q-deformed enveloping algebra $U_q(\widehat{\mathfrak{sl}}_2)$.

Next, we explain what this algebra has to do with U .

Definition

Define the algebra U_q^+ by generators A, B and relations

$$
A^{3}B - [3]_{q}A^{2}BA + [3]_{q}ABA^{2} - BA^{3} = 0,
$$

$$
B^{3}A - [3]_{q}B^{2}AB + [3]_{q}BAB^{2} - AB^{3} = 0.
$$

We call U_q^+ the **positive part of** $U_q(\widehat{\mathfrak{sl}}_2)$.

We saw that x and y satisfy the q -Serre relations with respect to the q-shuffle product.

Therefore, there exists an algebra homomorphism $\natural: U^+_q \to U$ that sends $A \mapsto x$ and $B \mapsto y$.

Theorem (Rosso 1995)

The map \downarrow is an isomorphism.

We now use \natural to pull back the alternating words into U_q^+ .

Definition

By an **alternating element** of U_q^+ , we mean the \natural -preimage of an alternating word.

We will use the same notation

$$
\{W_{-k}\}_{k\in\mathbb{N}},\quad \{W_{k+1}\}_{k\in\mathbb{N}},\quad \{G_{k+1}\}_{k\in\mathbb{N}},\quad \{\tilde{G}_{k+1}\}_{k\in\mathbb{N}}
$$

for the alternating elements of U_q^+ .

Next, we use the alternating elements to obtain a basis for $\, U^+_q. \,$ Let us recall some definitions.

Let A denote an algebra.

We will be discussing a type of basis for A , called a Poincaré-Birkhoff-Witt (or PBW) basis.

This consists of a subset $\Omega \subseteq A$ and a linear order \lt on Ω , such that the following is a linear basis for the vector space A :

$$
a_1 a_2 \cdots a_n \qquad n \in \mathbb{N}, \qquad a_1, a_2, \ldots, a_n \in \Omega,
$$

$$
a_1 \le a_2 \le \cdots \le a_n.
$$

Here is the classic example of a PBW basis.

Example (Poincaré, Birkhoff, Witt)

Let Ω denote any basis for a Lie algebra L. Then with respect to any linear order, Ω becomes a PBW basis for the universal enveloping algebra $U(L)$.

We return our attention to the algebra $\mathit{U}^+_q.$

It is tempting to guess that the alternating elements of U_q^+ form a PBW basis for U_q^+ .

This guess is incorrect, but not far off. It can be corrected as follows.

Theorem (Ter 2018)

A PBW basis for U_q^+ is obtained by the elements

 $\{W_{-i}\}_{i\in\mathbb{N}},\qquad \{\tilde{\mathsf{G}}_{j+1}\}_{j\in\mathbb{N}},\qquad \{W_{k+1}\}_{k\in\mathbb{N}}$

in any linear order $<$ that satisfies

$$
W_{-i} < \tilde{G}_{j+1} < W_{k+1} \qquad i, j, k \in \mathbb{N}.
$$

The above PBW basis for U_q^+ is called $\mathop{\mathsf{alternating}}$.

We just defined the alternating PBW basis for U_q^+ .

Next, we explain how this PBW basis is related to some earlier PBW bases for U_q^+ , due to Damiani and Beck.

In 1993, Ilia Damiani obtained a PBW basis for U_q^+ , involving some elements

$$
\{E_{n\delta+\alpha_0}\}_{n=0}^\infty, \qquad \{E_{n\delta+\alpha_1}\}_{n=0}^\infty, \qquad \{E_{n\delta}\}_{n=1}^\infty.
$$

These elements are recursively defined as follows:

$$
E_{\alpha_0}=A, \qquad E_{\alpha_1}=B, \qquad E_{\delta}=q^{-2}BA-AB,
$$

and for $n > 1$,

$$
E_{n\delta+\alpha_0}=\frac{[E_{\delta},E_{(n-1)\delta+\alpha_0}]}{q+q^{-1}},\qquad E_{n\delta+\alpha_1}=\frac{[E_{(n-1)\delta+\alpha_1},E_{\delta}]}{q+q^{-1}},
$$

$$
E_{n\delta}=q^{-2}E_{(n-1)\delta+\alpha_1}A-AE_{(n-1)\delta+\alpha_1}.
$$

The q -shuffle algebra, the alternating elements, and the positiv

Paul Terwilliger

Theorem (Damiani 1993)

A PBW basis for U_q^+ is obtained by the elements

$$
\{E_{n\delta+\alpha_0}\}_{n=0}^\infty, \qquad \{E_{n\delta+\alpha_1}\}_{n=0}^\infty, \qquad \{E_{n\delta}\}_{n=1}^\infty
$$

in linear order

$$
E_{\alpha_0} < E_{\delta + \alpha_0} < E_{2\delta + \alpha_0} < \cdots
$$
\n
$$
\cdots < E_{\delta} < E_{2\delta} < E_{3\delta} < \cdots
$$
\n
$$
\cdots < E_{2\delta + \alpha_1} < E_{\delta + \alpha_1} < E_{\alpha_1}.
$$

Moreover the elements ${E_{n\delta}}_{n=1}^{\infty}$ mutually commute.

The q -shuffle algebra, the alternating elements, and the positiv

The Damiani PBW basis elements are defined recursively.

Next we describe these elements in closed form, using the q -shuffle algebra.

The Catalan words in V

Give each letter a weight:

$$
\overline{x} = 1, \qquad \qquad \overline{y} = -1.
$$

A word $a_1 a_2 \cdots a_n$ in $\mathbb {V}$ is **Catalan** whenever $\overline{a}_1 + \overline{a}_2 + \cdots + \overline{a}_i$ is nonnegative for $1 \le i \le n-1$ and zero for $i = n$. In this case *n* is even.

Example

For $0 \le n \le 3$ we give the Catalan words of length 2n.

The q -shuffle algebra, the alternating elements, and the positiv

Definition

For $n \in \mathbb{N}$ define

$$
C_n =
$$
\n
$$
\sum a_1 a_2 \cdots a_{2n} [1]_q [1 + \overline{a}_1]_q [1 + \overline{a}_1 + \overline{a}_2]_q \cdots [1 + \overline{a}_1 + \overline{a}_2 + \cdots + \overline{a}_{2n}]_q,
$$

where the sum is over all the Catalan words $a_1 a_2 \cdots a_{2n}$ in V that have length 2n.

We call C_n the n^{th} Catalan element of V.

Example

We have

$$
C_0 = 1, \t C_1 = [2]_q xy, \t C_2 = [2]_q^2 xyxy + [3]_q [2]_q^2 xxyy,
$$

\n
$$
C_3 = [2]_q^3 xyxyxy + [3]_q [2]_q^3 xyxyy + [3]_q [2]_q^3 xyxyxy + [4]_q [3]_q^2 [2]_q^2 xxxyyy.
$$

The Damiani PBW basis in closed form, cont.

Recall the isomorphism $\natural: U^+_q \to U.$

Theorem (Ter 2018)

The map \natural sends

$$
E_{n\delta+\alpha_0}\mapsto q^{-2n}(q-q^{-1})^{2n}xC_n,
$$

$$
E_{n\delta+\alpha_1}\mapsto q^{-2n}(q-q^{-1})^{2n}C_ny
$$

for $n > 0$, and

$$
E_{n\delta}\mapsto -q^{-2n}(q-q^{-1})^{2n-1}C_n
$$

for $n > 1$.

The q -shuffle algebra, the alternating elements, and the positiv

Next we explain how $\{\mathcal{C}_n\}_{n\in\mathbb{N}}$ and $\{\tilde{\mathcal{G}}_n\}_{n\in\mathbb{N}}$ are related.

The explanation will involve generating functions.

Definition

We define some generating functions in the indeterminate t :

$$
C(t) = \sum_{n \in \mathbb{N}} C_n t^n,
$$

$$
\tilde{G}(t) = \sum_{n \in \mathbb{N}} \tilde{G}_n t^n.
$$

How $C(t)$ and $\tilde{G}(t)$ are related

Theorem (Ter 2018)

We have

$$
\tilde{G}(qt)\star C(-t)\star \tilde{G}(q^{-1}t)=1.
$$

Corollary (Ter 2018)

For $n > 1$,

$$
\tilde{G}_n = \frac{-1}{[2n]_q} \sum_{i=1}^n (-1)^i [2n - i]_q C_i \times \tilde{G}_{n-i},
$$

$$
C_n = \frac{-1}{[n]_q} \sum_{i=0}^{n-1} (-1)^{n-i} [2n - i]_q C_i \times \tilde{G}_{n-i}.
$$

The q -shuffle algebra, the alternating elements, and the positive

We just described the Damiani PBW basis for U^+_q .

Next we describe a variation on this PBW basis, due to J. Beck in 1994.

Recall the exponential function

$$
\exp z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \cdots
$$

Recall the indeterminate t.

Definition (Beck 1994)

Define the elements $\{E_{k\delta}^{\rm Beck}\}_{k=1}^\infty$ in U_q^+ such that

$$
\exp\left((q-q^{-1})\sum_{k=1}^{\infty}E_{k\delta}^{\text{Beck}}t^k\right)=1-(q-q^{-1})\sum_{k=1}^{\infty}E_{k\delta}t^k.
$$

The q -shuffle algebra, the alternating elements, and the positiv

Theorem (Beck 1994)

A PBW basis for U_q^+ is obtained by the elements

$$
\{E_{n\delta+\alpha_0}\}_{n=0}^\infty, \qquad \{E_{n\delta+\alpha_1}\}_{n=0}^\infty, \qquad \{E_{n\delta}^{\text{Beck}}\}_{n=1}^\infty
$$

in linear order

$$
E_{\alpha_0} < E_{\delta + \alpha_0} < E_{2\delta + \alpha_0} < \cdots \\
\cdots < E_{\delta}^{\text{Beck}} < E_{2\delta}^{\text{Beck}} < E_{3\delta}^{\text{Beck}} < \cdots \\
\cdots < E_{2\delta + \alpha_1} < E_{\delta + \alpha_1} < E_{\alpha_1}.
$$

The q -shuffle algebra, the alternating elements, and the positive

Recall the isomorphism $\natural: U^+_q \to U.$

Theorem (Ter 2021)

The map \natural sends

$$
E_{n\delta}^{\rm Beck}\mapsto \frac{[2n]_q}{n}q^{-2n}(q-q^{-1})^{2n-1}xC_{n-1}y
$$

for $n > 1$.

We emphasize that $xC_{n-1}y$ is with respect to the free product.

The elements $\{x \mathcal{C}_n y\}_{n\in\mathbb{N}}$ and $\{\tilde{G}_n\}_{n\in\mathbb{N}}$ are related as follows.

Theorem (Ter 2021)

We have

$$
\exp\left(-\sum_{k=1}^{\infty}\frac{(-1)^k[k]_q}{k}xC_{k-1}yt^k\right)=\tilde{G}(t).
$$

The function exp is with respect to the q-shuffle product.

We return our attention to the alternating PBW basis for $\, U^+_q. \,$

This PBW basis is obtained from the set of alternating elements of U_q^+ , by removing $\{G_{k+1}\}_{k\in\mathbb{N}}$.

This removal seems unnatural to us.

To fix the problem, we replace U_q^+ by a certain central extension of U_q^+ , denoted \mathcal{U}_q^+ .

Definition

We define the algebra \mathcal{U}_q^+ by generators

 $\{W_{-k}\}_{k\in\mathbb{N}},\quad \{W_{k+1}\}_{k\in\mathbb{N}},\quad \{\mathcal{G}_{k+1}\}_{k\in\mathbb{N}},\quad \{\tilde{\mathcal{G}}_{k+1}\}_{k\in\mathbb{N}}$

and the relations of Type I, II from the previous slides.

We call \mathcal{U}_q^+ the **alternating central extension** of U_q^+ .

For notational convenience define $\mathcal{G}_0=1$ and $\tilde{\mathcal{G}}_0=1.$

Next, we describe how \mathcal{U}_q^+ is related to U_q^+ .

Definition

Let $\{z_n\}_{n=1}^{\infty}$ denote mutually commuting indeterminates. Let $\mathbb{F}[z_1, z_2, \ldots]$ denote the algebra of polynomials in z_1, z_2, \ldots that have all coefficients in \mathbb{F} . For notational convenience define $z_0 = 1$.

Theorem (Terwilliger 2019)

There exists an algebra isomorphism $\varphi: \mathcal{U}_q^+ \to \mathcal{U}_q^+ \otimes \mathbb{F}[z_1, z_2, \ldots]$ that sends

$$
\mathcal{W}_{-n} \mapsto \sum_{k=0}^{n} W_{k-n} \otimes z_k, \qquad \mathcal{W}_{n+1} \mapsto \sum_{k=0}^{n} W_{n+1-k} \otimes z_k,
$$

$$
\mathcal{G}_n \mapsto \sum_{k=0}^{n} G_{n-k} \otimes z_k, \qquad \tilde{\mathcal{G}}_n \mapsto \sum_{k=0}^{n} \tilde{G}_{n-k} \otimes z_k
$$

for $n \in \mathbb{N}$.

In our final result, we give a PBW basis for \mathcal{U}^+_q .

Theorem (Terwilliger 2019)

A PBW basis for \mathcal{U}^+_q is obtained by the elements

 $\{ {\cal W}_{-i} \}_{i \in \mathbb{N}}, \qquad \{ \mathcal{G}_{j+1} \}_{j \in \mathbb{N}}, \qquad \{ \tilde{\mathcal{G}}_{k+1} \}_{k \in \mathbb{N}}, \qquad \{ {\cal W}_{\ell+1} \}_{\ell \in \mathbb{N}}$

in any linear order $<$ that satisfies

$$
\mathcal{W}_{-i} < \mathcal{G}_{j+1} < \tilde{\mathcal{G}}_{k+1} < \mathcal{W}_{\ell+1} \quad \text{if } i, j, k, \ell \in \mathbb{N}.
$$

We discussed the alternating words in the *q*-shuffle algebra V .

We showed that the alternating words are contained in the subalgebra $U \subset V$ generated by x and y.

It was previously known that the algebra U is isomorphic to the positive part U_q^+ of $U_q(\widehat{\mathfrak{sl}}_2)$.

We used the alternating words to obtain a PBW basis for $\, U^+_q.$

We explained how this PBW basis is related to the PBW bases due to Damiani and Beck.

Finally, we used the alternating words to obtain the alternating central extension of U_q^+ .

THANK YOU FOR YOUR ATTENTION!

The q -shuffle algebra, the alternating elements, and the positive