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Overview

This talk is about the positive part U+
q of the q-deformed

enveloping algebra Uq(ŝl2).

Using a q-shuffle algebra realization of U+
q , we will define some

elements in U+
q said to be alternating.

We will use the alternating elements to obtain a PBW basis for
U+
q .

We will explain how this PBW basis is related to some previously
known PBW bases, due to Damiani and Beck.

Finally, we will use the alternating elements to obtain a central
extension of U+

q , called the alternating central extension.
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Preliminaries

Recall the natural numbers N = {0, 1, 2, . . .} and integers
Z = {0,±1,±2, . . .}.

Fix a field F.

Every vector space discussed is understood to be over F.

Every algebra discussed that has no Lie prefix, is understood to be
associative, over F, and has a multiplicative identity.
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The free algebra V

Let x , y denote noncommuting indeterminates.

Let V denote the free algebra with generators x , y .

By a letter in V we mean x or y .

For n ∈ N, a word of length n in V is a product of letters
a1a2 · · · an.

The word of length 0 is empty; it is called trivial and denoted by 1.
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The standard basis for V

The vector space V has a basis consisting of its words.

This basis is called standard.

The standard basis looks as follows:

1,

x , y ,

xx , xy , yx , yy ,

xxx , xxy , xyx , yxx , xyy , yxy , yyx , yyy ,

. . . . . . . . .
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The alternating words

We now define a type of word, called alternating.

The alternating words are:

x , xyx , xyxyx , . . .

y , yxy , yxyxy , . . .

xy , xyxy , xyxyxy , . . .

yx , yxyx , yxyxyx , . . .
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Names for the alternating words

For convenience, we name the alternating words as follows:

W0 = x , W−1 = xyx , W−2 = xyxyx , . . .

W1 = y , W2 = yxy , W3 = yxyxy , . . .

G1 = yx , G2 = yxyx , G3 = yxyxyx , . . .

G̃1 = xy , G̃2 = xyxy , G̃3 = xyxyxy , . . .
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The scalar q

For the rest of this talk, we fix a nonzero scalar q ∈ F that is not a
root of unity.

Recall the notation

[n]q =
qn − q−n

q − q−1
n ∈ Z.
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The q-shuffle algebra V

We have been discussing the free algebra V.

There is another algebra structure on V, called the q-shuffle
algebra.

This algebra is due to Marc Rosso 1995.

The q-shuffle product is denoted by ?.

Paul Terwilliger
The q-shuffle algebra, the alternating elements, and the positive part of Uq(ŝl2)



The q-shuffle product

For letters u, v we have

u ? v = uv + vuq〈u,v〉

where
〈 , 〉 x y

x 2 −2
y −2 2

So

x ? y = xy + q−2yx , y ? x = yx + q−2xy ,

x ? x = (1 + q2)xx , y ? y = (1 + q2)yy .
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The q-shuffle product, cont.

For words u, v in V we now describe u ? v .

Write u = a1a2 · · · ar and v = b1b2 · · · bs .

To illustrate, we assume r = 2 and s = 2.

We have

u ? v = a1a2b1b2

+ a1b1a2b2q
〈a2,b1〉

+ a1b1b2a2q
〈a2,b1〉+〈a2,b2〉

+ b1a1a2b2q
〈a1,b1〉+〈a2,b1〉

+ b1a1b2a2q
〈a1,b1〉+〈a2,b1〉+〈a2,b2〉

+ b1b2a1a2q
〈a1,b1〉+〈a1,b2〉+〈a2,b1〉+〈a2,b2〉
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A q-shuffle product example

For example,

xy ? xy = xyXY 1

+ xXyYq−2

+ XxyY 1

+ xXYy1

+ XxYyq2

+ XYxy1

= xyxy2 + xxyy(q + q−1)2.
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The q-shuffle algebra

Theorem (Rosso 1995)

The q-shuffle product ? turns the vector space V into an algebra
with multiplicative identity 1.

The above algebra is called the q-shuffle algebra V.
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Some relations

Our next goal is to describe how the alternating words are related,
with respect to the q-shuffle product.

As we will see, the relations come in three types I, II, III.

Paul Terwilliger
The q-shuffle algebra, the alternating elements, and the positive part of Uq(ŝl2)



Commutators and q-commutators

The following notation will be useful.

For elements R,S in any algebra, their commutator is

[R,S ] = RS − SR

and their q-commutator is

[R, S ]q = qRS − q−1SR.
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Type I relations for the alternating words

For k ∈ N, consider how W0 and Wk+1 are related.

For example, take k = 2.

We have W0 = x and W3 = yxyxy .

W0 ?W3 = xYXYXY 1

+ YxXYXYq−2

+ YXxYXY 1

+ YXYxXYq−2

+ YXYXxY 1

+ YXYXYxq−2

= xyxyxy + yxxyxy(1 + q−2)

+ yxyxxy(1 + q−2) + yxyxyxq−2.
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Type I relations for the alternating words, cont.

Also,

W3 ?W0 = yxyxyX1

+ yxyxXyq−2

+ yxyXxy1

+ yxXyxyq−2

+ yXxyxy1

+ Xyxyxyq−2

= xyxyxyq−2 + yxxyxy(1 + q−2)

+ yxyxxy(1 + q−2) + yxyxyx .
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Type I relations for the alternating words, cont.

So in the q-shuffle algebra V,

[W0,W3] = W0 ?W3 −W3 ?W0

= (1− q−2)xyxyxy + (q−2 − 1)yxyxyx

= (1− q−2)(G̃3 − G3).

In fact for k ∈ N,

[W0,Wk+1] = (1− q−2)(G̃k+1 − Gk+1).
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Type I relations for the alternating words, cont.

For k ∈ N, consider how W0 and Gk+1 are related.

For example, take k = 2.

We have W0 = x and G3 = yxyxyx .

W0 ? G3 = xYXYXYX1

+ YxXYXYXq−2

+ YXxYXYX1

+ YXYxXYXq−2

+ YXYXxYX1

+ YXYXYxXq−2

+ YXYXYXx1

= xyxyxyx + yxxyxyx(1 + q−2)

+ yxyxxyx(1 + q−2) + yxyxyxx(1 + q−2).
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Type I relations for the alternating words, cont.

Also,

G3 ?W0 = yxyxyxX1

+ yxyxyXxq2

+ yxyxXyx1

+ yxyXxyxq2

+ yxXyxyx1

+ yXxyxyxq2

+ Xyxyxyx1

= xyxyxyx + yxxyxyx(1 + q2)

+ yxyxxyx(1 + q2) + yxyxyxx(1 + q2).
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Type I relations for the alternating words, cont.

So in the q-shuffle algebra V,

[W0,G3]q = qW0 ? G3 − q−1G3 ?W0

= (q − q−1)xyxyxyx

= (q − q−1)W−3.

In fact for k ∈ N,

[W0,Gk+1]q = (q − q−1)W−k−1.
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Relations for the alternating words, I

We just displayed several Type I relations for the alternating words.

Additional Type I relations can be obtained via symmetry, such as
exchanging x , y .

In the next slide we display all the Type I relations.
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Relations for the alternating words, I

Lemma (Type I relations)

For k ∈ N the following relations hold in the q-shuffle algebra V:

[W0,Wk+1] = [W−k ,W1] = (1− q−2)(G̃k+1 − Gk+1),

[W0,Gk+1]q = [G̃k+1,W0]q = (q − q−1)W−k−1,

[Gk+1,W1]q = [W1, G̃k+1]q = (q − q−1)Wk+2.
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Relations for the alternating words, II

Next, we display the Type II relations for the alternating words.

These relations are a bit more involved.

They are obtained by induction on the length; we omit the proof.
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Relations for the alternating words, II

Lemma (Type II relations)

For k, ` ∈ N the following relations hold in the q-shuffle algebra V:

[W−k ,W−`] = 0, [Wk+1,W`+1] = 0,

[Gk+1,G`+1] = 0, [G̃k+1, G̃`+1] = 0,

[W−k ,W`+1] + [Wk+1,W−`] = 0,

[W−k ,G`+1] + [Gk+1,W−`] = 0,

[W−k , G̃`+1] + [G̃k+1,W−`] = 0,

[Wk+1,G`+1] + [Gk+1,W`+1] = 0,

[Wk+1, G̃`+1] + [G̃k+1,W`+1] = 0,

[G̃k+1,G`+1] + [Gk+1, G̃`+1] = 0.
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Relations for the alternating words, III

Next, we display the Type III relations for the alternating words.

These relations are obtained by induction on the length; again we
omit the proof.

For notational convenience, define

G0 = 1, G̃0 = 1.
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Relations for the alternating elements, III

Lemma (Type III relations)

For n ≥ 1 the following relations hold in the q-shuffle algebra V:

n∑
k=0

Gk ? G̃n−kq
n−2k = q

n−1∑
k=0

W−k ?Wn−kq
n−1−2k ,

n∑
k=0

Gk ? G̃n−kq
2k−n = q

n−1∑
k=0

Wn−k ?W−kq
n−1−2k ,

n∑
k=0

G̃k ? Gn−kq
n−2k = q

n−1∑
k=0

Wn−k ?W−kq
2k+1−n,

n∑
k=0

G̃k ? Gn−kq
2k−n = q

n−1∑
k=0

W−k ?Wn−kq
2k+1−n.
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The subalgebra U

We just gave the relations of type I, II, III.

Next, we consider their implications.

Definition

Let U denote the subalgebra of the q-shuffle algebra V
generated by x , y .

We are going to show that U contains the alternating words.
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Obtaining the alternating words from x , y

Lemma

Using the equations below, the alternating words are recursively
obtained from x , y in the following order:

W0, W1, G1, G̃1, W−1, W2, G2, G̃2, . . .

We have W0 = x and W1 = y. For n ≥ 1,

Gn =
q
∑n−1

k=0 W−k ?Wn−kq
n−1−2k −

∑n−1
k=1 Gk ? G̃n−kq

n−2k

qn + q−n

+
Wn ?W0 −W0 ?Wn

(1 + q−2n)(1− q−2)
,

G̃n = Gn +
W0 ?Wn −Wn ?W0

1− q−2
, W−n =

qW0 ? Gn − q−1Gn ?W0

q − q−1
,

Wn+1 =
qGn ?W1 − q−1W1 ? Gn

q − q−1
.
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The alternating words are contained in U

The above recursion implies the following result.

Theorem (Ter 2018)

The alternating words are contained in U.
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The q-Serre relations

We mention a second application of the relations of Type I, II, III.

Theorem (Rosso 1995)

The letters x , y satisfy

x ? x ? x ? y − [3]qx ? x ? y ? x + [3]qx ? y ? x ? x − y ? x ? x ? x = 0,

y ? y ? y ? x − [3]qy ? y ? x ? y + [3]qy ? x ? y ? y − x ? y ? y ? y = 0.

The above relations are called the q-Serre relations.

The q-Serre relations are familiar in the theory of quantum groups.
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The algebra U+
q

Earlier we mentioned the q-deformed enveloping algebra Uq(ŝl2).

Next, we explain what this algebra has to do with U.

Definition

Define the algebra U+
q by generators A,B and relations

A3B − [3]qA
2BA + [3]qABA

2 − BA3 = 0,

B3A− [3]qB
2AB + [3]qBAB

2 − AB3 = 0.

We call U+
q the positive part of Uq(ŝl2).
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The algebra U is isomorphic to U+
q

We saw that x and y satisfy the q-Serre relations with respect to
the q-shuffle product.

Therefore, there exists an algebra homomorphism \ : U+
q → U that

sends A 7→ x and B 7→ y .

Theorem (Rosso 1995)

The map \ is an isomorphism.
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The alternating elements of U+
q

We now use \ to pull back the alternating words into U+
q .

Definition

By an alternating element of U+
q , we mean the \-preimage of

an alternating word.

We will use the same notation

{W−k}k∈N, {Wk+1}k∈N, {Gk+1}k∈N, {G̃k+1}k∈N

for the alternating elements of U+
q .
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A basis for U+
q

Next, we use the alternating elements to obtain a basis for U+
q .

Let us recall some definitions.
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PBW bases

Let A denote an algebra.

We will be discussing a type of basis for A, called a
Poincaré-Birkhoff-Witt (or PBW) basis.

This consists of a subset Ω ⊆ A and a linear order < on Ω, such
that the following is a linear basis for the vector space A:

a1a2 · · · an n ∈ N, a1, a2, . . . , an ∈ Ω,

a1 ≤ a2 ≤ · · · ≤ an.
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PBW bases, cont.

Here is the classic example of a PBW basis.

Example (Poincaré, Birkhoff, Witt)

Let Ω denote any basis for a Lie algebra L. Then with respect
to any linear order, Ω becomes a PBW basis for the universal
enveloping algebra U(L).
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A PBW basis for U+
q

We return our attention to the algebra U+
q .

It is tempting to guess that the alternating elements of U+
q form a

PBW basis for U+
q .

This guess is incorrect, but not far off. It can be corrected as
follows.
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The alternating PBW basis for U+
q

Theorem (Ter 2018)

A PBW basis for U+
q is obtained by the elements

{W−i}i∈N, {G̃j+1}j∈N, {Wk+1}k∈N

in any linear order < that satisfies

W−i < G̃j+1 < Wk+1 i , j , k ∈ N.

The above PBW basis for U+
q is called alternating.
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The PBW bases of Damiani and Beck

We just defined the alternating PBW basis for U+
q .

Next, we explain how this PBW basis is related to some earlier
PBW bases for U+

q , due to Damiani and Beck.
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A PBW basis for U+
q

In 1993, Ilia Damiani obtained a PBW basis for U+
q , involving

some elements

{Enδ+α0}
∞
n=0, {Enδ+α1}

∞
n=0, {Enδ}∞n=1.

These elements are recursively defined as follows:

Eα0 = A, Eα1 = B, Eδ = q−2BA− AB,

and for n ≥ 1,

Enδ+α0 =
[Eδ,E(n−1)δ+α0

]

q + q−1
, Enδ+α1 =

[E(n−1)δ+α1
,Eδ]

q + q−1
,

Enδ = q−2E(n−1)δ+α1
A− AE(n−1)δ+α1

.
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A PBW basis for U+
q , cont.

Theorem (Damiani 1993)

A PBW basis for U+
q is obtained by the elements

{Enδ+α0}
∞
n=0, {Enδ+α1}

∞
n=0, {Enδ}∞n=1

in linear order

Eα0 < Eδ+α0 < E2δ+α0 < · · ·
· · · < Eδ < E2δ < E3δ < · · ·
· · · < E2δ+α1 < Eδ+α1 < Eα1 .

Moreover the elements {Enδ}∞n=1 mutually commute.
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The Damiani PBW basis in closed form

The Damiani PBW basis elements are defined recursively.

Next we describe these elements in closed form, using the q-shuffle
algebra.
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The Catalan words in V

Give each letter a weight:

x = 1, y = −1.

A word a1a2 · · · an in V is Catalan whenever a1 + a2 + · · ·+ ai is
nonnegative for 1 ≤ i ≤ n − 1 and zero for i = n. In this case n is
even.

Example

For 0 ≤ n ≤ 3 we give the Catalan words of length 2n.

n Catalan words of length 2n

0 1
1 xy
2 xyxy , xxyy
3 xyxyxy , xxyyxy , xyxxyy , xxyxyy , xxxyyy
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The Catalan elements in V

Definition

For n ∈ N define

Cn =∑
a1a2 · · · a2n[1]q[1 + a1]q[1 + a1 + a2]q · · · [1 + a1 + a2 + · · ·+ a2n]q,

where the sum is over all the Catalan words a1a2 · · · a2n in V
that have length 2n.

We call Cn the nth Catalan element of V.
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The Catalan elements, cont.

Example

We have

C0 = 1, C1 = [2]qxy , C2 = [2]2qxyxy + [3]q[2]2qxxyy ,

C3 = [2]3qxyxyxy + [3]q[2]3qxxyyxy + [3]q[2]3qxyxxyy

+ [3]2q[2]3qxxyxyy + [4]q[3]2q[2]2qxxxyyy .
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The Damiani PBW basis in closed form, cont.

Recall the isomorphism \ : U+
q → U.

Theorem (Ter 2018)

The map \ sends

Enδ+α0 7→ q−2n(q − q−1)2nxCn,

Enδ+α1 7→ q−2n(q − q−1)2nCny

for n ≥ 0, and

Enδ 7→ −q−2n(q − q−1)2n−1Cn

for n ≥ 1.
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How Cn and G̃n are related

Next we explain how {Cn}n∈N and {G̃n}n∈N are related.

The explanation will involve generating functions.
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Some generating functions

Definition

We define some generating functions in the indeterminate t:

C (t) =
∑
n∈N

Cnt
n,

G̃ (t) =
∑
n∈N

G̃nt
n.
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How C (t) and G̃ (t) are related

Theorem (Ter 2018)

We have

G̃ (qt) ? C (−t) ? G̃ (q−1t) = 1.

Corollary (Ter 2018)

For n ≥ 1,

G̃n =
−1

[2n]q

n∑
i=1

(−1)i [2n − i ]qCi ? G̃n−i ,

Cn =
−1

[n]q

n−1∑
i=0

(−1)n−i [2n − i ]qCi ? G̃n−i .
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The Beck PBW basis for U+
q

We just described the Damiani PBW basis for U+
q .

Next we describe a variation on this PBW basis, due to J. Beck in
1994.

Recall the exponential function

exp z = 1 + z +
z2

2!
+

z3

3!
+ · · ·
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The Beck PBW basis for U+
q , cont.

Recall the indeterminate t.

Definition (Beck 1994)

Define the elements {EBeck
kδ }∞k=1 in U+

q such that

exp

(
(q − q−1)

∞∑
k=1

EBeck
kδ tk

)
= 1− (q − q−1)

∞∑
k=1

Ekδt
k .
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The Beck PBW basis for U+
q , cont.

Theorem (Beck 1994)

A PBW basis for U+
q is obtained by the elements

{Enδ+α0}
∞
n=0, {Enδ+α1}

∞
n=0, {EBeck

nδ }∞n=1

in linear order

Eα0 < Eδ+α0 < E2δ+α0 < · · ·
· · · < EBeck

δ < EBeck
2δ < EBeck

3δ < · · ·
· · · < E2δ+α1 < Eδ+α1 < Eα1 .
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The Beck PBW basis in closed form

Recall the isomorphism \ : U+
q → U.

Theorem (Ter 2021)

The map \ sends

EBeck
nδ 7→ [2n]q

n
q−2n(q − q−1)2n−1xCn−1y

for n ≥ 1.

We emphasize that xCn−1y is with respect to the free product.
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How xCny and G̃n are related

The elements {xCny}n∈N and {G̃n}n∈N are related as follows.

Theorem (Ter 2021)

We have

exp

(
−
∞∑
k=1

(−1)k [k]q
k

xCk−1yt
k

)
= G̃ (t).

The function exp is with respect to the q-shuffle product.
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Comments on the alternating PBW basis for U+
q

We return our attention to the alternating PBW basis for U+
q .

This PBW basis is obtained from the set of alternating elements of
U+
q , by removing {Gk+1}k∈N.

This removal seems unnatural to us.

To fix the problem, we replace U+
q by a certain central extension of

U+
q , denoted U+

q .

Paul Terwilliger
The q-shuffle algebra, the alternating elements, and the positive part of Uq(ŝl2)



The algebra U+
q

Definition

We define the algebra U+
q by generators

{W−k}k∈N, {Wk+1}k∈N, {Gk+1}k∈N, {G̃k+1}k∈N

and the relations of Type I, II from the previous slides.

We call U+
q the alternating central extension of U+

q .

For notational convenience define G0 = 1 and G̃0 = 1.
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A polynomial algebra

Next, we describe how U+
q is related to U+

q .

Definition

Let {zn}∞n=1 denote mutually commuting indeterminates. Let
F[z1, z2, . . .] denote the algebra of polynomials in z1, z2, . . . that
have all coefficients in F. For notational convenience define z0 = 1.
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An isomorphism

Theorem (Terwilliger 2019)

There exists an algebra isomorphism ϕ : U+
q → U+

q ⊗ F[z1, z2, . . .]
that sends

W−n 7→
n∑

k=0

Wk−n ⊗ zk , Wn+1 7→
n∑

k=0

Wn+1−k ⊗ zk ,

Gn 7→
n∑

k=0

Gn−k ⊗ zk , G̃n 7→
n∑

k=0

G̃n−k ⊗ zk

for n ∈ N.
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A PBW basis for U+
q

In our final result, we give a PBW basis for U+
q .

Theorem (Terwilliger 2019)

A PBW basis for U+
q is obtained by the elements

{W−i}i∈N, {Gj+1}j∈N, {G̃k+1}k∈N, {W`+1}`∈N

in any linear order < that satisfies

W−i < Gj+1 < G̃k+1 <W`+1 i , j , k , ` ∈ N.
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Summary

We discussed the alternating words in the q-shuffle algebra V.

We showed that the alternating words are contained in the
subalgebra U ⊆ V generated by x and y .

It was previously known that the algebra U is isomorphic to the
positive part U+

q of Uq(ŝl2).

We used the alternating words to obtain a PBW basis for U+
q .

We explained how this PBW basis is related to the PBW bases due
to Damiani and Beck.

Finally, we used the alternating words to obtain the alternating
central extension of U+

q .

THANK YOU FOR YOUR ATTENTION!
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