Spin models and distance-regular graphs of *q*-Racah type

Kazumasa Nomura Paul Terwilliger

Kazumasa Nomura, Paul Terwilliger Spin models and distance-regular graphs of q-Racah type

ヨト・イヨト

The concept of a **spin model** was introduced by **V.F.R Jones** in 1989.

A spin model is a symmetric matrix over \mathbb{C} , that satisfies two conditions called **Type II** and **Type III**.

In this talk, we present a method for constructing spin models.

We start with a **distance-regular graph** Γ with diameter $D \geq 3$.

We assume that Γ is formally self-dual and *q*-Racah type.

We also assume that for each vertex x of Γ , the **subconstituent** algebra T = T(x) contains a certain central element Z = Z(x).

Using Z, we construct a spin model contained in the **Bose-Mesner algebra** of Γ .

This is joint work with Kazumasa Nomura.

イロト イヨト イヨト イヨト 三日

Let X denote a nonempty finite set.

An element of X is called a **vertex**.

Let $Mat_X(\mathbb{C})$ denote the \mathbb{C} -algebra of matrices that have rows and columns indexed by X and all entries in \mathbb{C} .

Let the matrix $J \in Mat_X(\mathbb{C})$ have all entries 1.

- Our first general goal is to define a **spin model**.
- There is a family of matrices in $Mat_X(\mathbb{C})$, said to have **Type II**.
- A spin model is a certain kind of Type II matrix.
- So, we begin by defining a Type II matrix.

イロト 不得 トイラト イラト・ラ

For matrices $A, B \in Mat_X(\mathbb{C})$ let $A \circ B$ denote the matrix in $Mat_X(\mathbb{C})$ that has (y, z)-entry $A_{y,z}B_{y,z}$ for all $y, z \in X$.

We call \circ the Hadamard product or entrywise product.

For example,

$$\begin{pmatrix} r & s \\ t & u \end{pmatrix} \circ \begin{pmatrix} r' & s' \\ t' & u' \end{pmatrix} = \begin{pmatrix} rr' & ss' \\ tt' & uu' \end{pmatrix}.$$

Kazumasa Nomura, Paul Terwilliger Spin models and distance-regular graphs of q-Racah type

イロト イポト イヨト イヨト

We will use the following notation.

Definition

Let $W \in Mat_X(\mathbb{C})$ have all entries nonzero.

Define a matrix $W^{(-)} \in \operatorname{Mat}_X(\mathbb{C})$ that has entries

$$W^{(-)}_{a,b}=rac{1}{W_{b,a}}$$
 $(a,b\in X).$

Thus

$$W^t \circ W^{(-)} = J.$$

Kazumasa Nomura, Paul Terwilliger Spin models and distance-regular graphs of q-Racah type

イロン スロン イヨン イヨン

Some notation, cont.

Example

Assume |X| = 2, and write

$$W = \begin{pmatrix} r & s \\ t & u \end{pmatrix}.$$

Then

$$W^{(-)} = \begin{pmatrix} r^{-1} & t^{-1} \\ s^{-1} & u^{-1} \end{pmatrix}.$$

Note that

$$W^t \circ W^{(-)} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = J.$$

Kazumasa Nomura, Paul Terwilliger

イロン イロン イヨン イヨン Spin models and distance-regular graphs of q-Racah type

臣

We now define a Type II matrix.

Definition (V.F.R. Jones 1989)

A matrix $W \in Mat_X(\mathbb{C})$ is called **Type II** whenever the following conditions hold:

(i) W has all entries nonzero;

(ii) $WW^{(-)} \in \text{Span}(I)$.

Kazumasa Nomura, Paul Terwilliger Spin models and distance-regular graphs of q-Racah type

イロト イポト イヨト イヨト

Type II matrix example

Example

Assume that |X| = 2. Let $W \in Mat_X(\mathbb{C})$ have all entries nonzero. Write

$$W = \begin{pmatrix} r & s \\ t & u \end{pmatrix}$$

We have

$$W^{(-)} = \begin{pmatrix} r^{-1} & t^{-1} \\ s^{-1} & u^{-1} \end{pmatrix}.$$

Observe that

$$WW^{(-)} = \begin{pmatrix} 2 & \frac{r}{t} + \frac{s}{u} \\ \frac{t}{r} + \frac{u}{s} & 2 \end{pmatrix}$$

Kazumasa Nomura, Paul Terwilliger

・ロト ・回ト ・ヨト ・ヨト Spin models and distance-regular graphs of q-Racah type

臣

The matrix W is Type II if and only if ru + st = 0. In this case,

 $WW^{(-)}=2I.$

The above example motivates the following result.

Kazumasa Nomura, Paul Terwilliger Spin models and distance-regular graphs of q-Racah type

イロン 不同 とうほう 不同 とう

Lemma

Assume that $W \in Mat_X(\mathbb{C})$ is type II. Then:

(i)
$$WW^{(-)} = |X|I;$$

(ii) W^{-1} exists;
(iii) $W^{-1} = |X|^{-1}W^{(-)}.$

イロン 不同 とくほど 不同 とう

크

The previous lemma yields the following characterization of the Type II matrices.

Corollary

For $W \in Mat_X(\mathbb{C})$ the following are equivalent: (i) W is type II; (ii) W^{-1} exists and

$$W^t \circ W^{-1} = |X|^{-1}J.$$

Kazumasa Nomura, Paul Terwilliger Spin models and distance-regular graphs of q-Racah type

(日) (四) (三) (三) (三)

Earlier we gave a 2×2 example of a Type II matrix.

Next, we give some larger examples.

イロト イボト イヨト イヨト

Example

Assume that |X| = 5, and let q denote a primitive 5th root of unity. Define the circulant matrix $W \in Mat_X(\mathbb{C})$ by

$$W = F egin{pmatrix} 1 & q & q^4 & q^9 & q^{16} \ q^{16} & 1 & q & q^4 & q^9 \ q^9 & q^{16} & 1 & q & q^4 \ q^4 & q^9 & q^{16} & 1 & q \ q & q^4 & q^9 & q^{16} & 1 \ \end{pmatrix},$$

 $F \in \mathbb{C}.$

where $0 \neq F \in \mathbb{C}$.

Kazumasa Nomura, Paul Terwilliger Spin models and distance-regular graphs of q-Racah type

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Using $q^5 = 1$ we obtain

$$W = F egin{pmatrix} 1 & q & q^{-1} & q^{-1} & q \ q & 1 & q & q^{-1} & q^{-1} \ q^{-1} & q & 1 & q & q^{-1} \ q^{-1} & q^{-1} & q & 1 & q \ q & q^{-1} & q^{-1} & q & 1 \end{pmatrix}.$$

Note that W is symmetric.

Kazumasa Nomura, Paul Terwilliger Spin models and distance-regular graphs of q-Racah type

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Note that

$$W^{(-)} = rac{1}{F} egin{pmatrix} 1 & q^{-1} & q & q & q^{-1} \ q^{-1} & 1 & q^{-1} & q & q \ q & q^{-1} & 1 & q^{-1} & q \ q & q & q^{-1} & 1 & q^{-1} \ q^{-1} & q & q & q^{-1} & 1 \end{pmatrix}.$$

Kazumasa Nomura, Paul Terwilliger Spin models and distance-regular graphs of q-Racah type

イロン イロン イヨン イヨン

Using

$$1 + q + q^2 + q^3 + q^4 = rac{q^5 - 1}{q - 1} = 0$$

we obtain

$$WW^{(-)}=5I.$$

Therefore, W is Type II.

Kazumasa Nomura, Paul Terwilliger Spin models and distance-regular graphs of *q*-Racah type

イロン 不同 とくほど 不同 とう

Э

We just constructed a Type II matrix of order 5.

The construction still works if we replace 5 any odd positive integer N.

The resulting Type II matrix is called the **odd cyclic model** of order N.

This example is due to V.F.R Jones (1989).

- The odd cyclic model has some extra algebraic structure that makes it a **spin model** for certain values of F.
- The spin model concept is defined on the next slide.
- Let $|X|^{1/2}$ denote the **positive** square root of |X|.

イロト イボト イヨト

Definition (V.F.R. Jones 1989)

A matrix $W \in Mat_X(\mathbb{C})$ is called a **spin model** whenever the following (i)–(iii) hold:

- (i) W is symmetric;
- (ii) *W* is Type II;
- (iii) for all $a, b, c \in X$,

$$\sum_{e \in X} \frac{W_{e,b} W_{e,c}}{W_{e,a}} = |X|^{1/2} \frac{W_{b,c}}{W_{a,b} W_{c,a}}.$$

Item (iii) is called the **type III** condition or the **star-triangle** condition.

イロト 不得 トイラト イラト・ラ

Our next general goal is to explain how **algebraic graph theory** is relevant to spin models.

To see the relevance, we return to the odd cyclic model with N = 5:

$$W = F egin{pmatrix} 1 & q & q^{-1} & q^{-1} & q \ q & 1 & q & q^{-1} & q^{-1} \ q^{-1} & q & 1 & q & q^{-1} \ q^{-1} & q^{-1} & q & 1 & q \ q & q^{-1} & q^{-1} & q & 1 \end{pmatrix}, \quad 0
eq F \in \mathbb{C}.$$

Kazumasa Nomura, Paul Terwilliger Spin models and distance-regular graphs of q-Racah type

イロン 不同 とうほう 不同 とう

We can write

$$W=F\Big(1A_0+qA_1+q^{-1}A_2\Big),$$

where $A_0 = I$ and

$$A_1 = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{pmatrix}.$$

Kazumasa Nomura, Paul Terwilliger Spin models and distance-regular graphs of *q*-Racah type

イロン 不良 とくほど 不良 とう

Observations:

- We view the 5-cycle as an undirected graph Γ;
- A₁ is the adjacency matrix of Γ;
- A_2 is the "distance 2" matrix of Γ ;
- $A_1^2 = A_2 + 2A_0$ and $A_1A_2 = A_1 + A_2$;
- A_0, A_1, A_2 form a basis for a commutative algebra M;
- $W \in M$.

イロト 不得 トイラト イラト・ラ

The graph Γ belongs to a family of graphs said to be **distance-regular**.

The algebra M is called the **Bose-Mesner algebra** of Γ .

As we will see, a good strategy for finding spin models is to look inside the Bose-Mesner algebra of a distance-regular graph.

This approach is due to **Francois Jaeger** (1992).

・ロト ・周ト ・ヨト ・ヨト 一日

Our next general goal is to review the definition and basic features of a distance-regular graph.

Let $\Gamma = (X, \mathcal{R})$ denote a finite, undirected, connected graph, without loops or multiple edges, with vertex set X and adjacency relation \mathcal{R} .

Let ∂ denote the path-length distance function for $\Gamma,$ and define

$$D = \max\{\partial(y, z) | y, z \in X\}.$$

We call D the **diameter** of Γ .

・ 同 ト ・ ヨ ト ・ ヨ ト

For $y \in X$ and $0 \le i \le D$ define the set

$$\Gamma_i(y) = \{z \in X | \partial(y, z) = i\}.$$

The graph Γ is called **distance-regular** whenever for all integers $h, i, j \ (0 \le h, i, j \le D)$ and all $y, z \in X$ with $\partial(y, z) = h$, the number

$$p_{i,j}^h = |\Gamma_i(y) \cap \Gamma_j(z)|$$

is independent of y and z.

The $p_{i,i}^h$ are called the **intersection numbers** of Γ .

For the rest of this talk, we assume that Γ is distance-regular with diameter $D \geq 3$.

Next, we recall the distance matrices of Γ .

For $0 \le i \le D$ define $A_i \in Mat_X(\mathbb{C})$ that has (y, z)-entry

$$(A_i)_{y,z} = \begin{cases} 1, & \text{if } \partial(y,z) = i; \\ 0, & \text{if } \partial(y,z) \neq i \end{cases} \qquad (y,z \in X).$$

We call A_i the *i*th **distance matrix** of Γ . We abbreviate $A = A_1$ and call this the **adjacency matrix** of Γ .

The distance matrices $\{A_i\}_{i=0}^D$ satisfy

(i)
$$A_0 = I$$
;
(ii) $J = \sum_{i=0}^{D} A_i$;
(iii) $A_i^t = A_i \ (0 \le i \le D)$;
(iv) $\overline{A_i} = A_i \ (0 \le i \le D)$;
(v) $A_i A_j = \sum_{h=0}^{D} p_{i,j}^h A_h \ (0 \le i, j \le D)$.

Consequently the matrices $\{A_i\}_{i=0}^{D}$ form a basis for a commutative subalgebra M of $Mat_X(\mathbb{C})$, called the **Bose-Mesner algebra** of Γ .

The matrix A generates M.

The matrices $\{A_i\}_{i=0}^{D}$ are symmetric and mutually commute, so they can be simultaneously diagonalized over the real numbers.

Consequently *M* has a second basis $\{E_i\}_{i=0}^{D}$ such that (i) $E_0 = |X|^{-1}J$; (ii) $I = \sum_{i=0}^{D} E_i$; (iii) $E_i^t = E_i \ (0 \le i \le D)$; (iv) $\overline{E_i} = E_i \ (0 \le i \le D)$; (v) $E_i E_j = \delta_{i,j} E_i \ (0 \le i, j \le D)$.

We call $\{E_i\}_{i=0}^D$ the **primitive idempotents** of Γ .

The first and second eigenmatrices for Γ

Since $\{A_i\}_{i=0}^D$ and $\{E_i\}_{i=0}^D$ are bases for M, there exist matrices $P, Q \in \operatorname{Mat}_{D+1}(\mathbb{C})$ such that for $0 \le j \le D$,

$$A_j = \sum_{i=0}^{D} P_{i,j} E_i, \qquad E_j = |X|^{-1} \sum_{i=0}^{D} Q_{i,j} A_i.$$

Note that

$$PQ = QP = |X|I.$$

We call P (resp. Q) the first eigenmatrix (resp. second eigenmatrix) of Γ .

イロト 不得下 イヨト イヨト 二日

Next, we recall the Krein parameters of Γ .

Note that $A_i \circ A_j = \delta_{i,j}A_i \ (0 \le i,j \le D)$.

Therefore *M* is closed under \circ . Consequently, there exist $q_{i,j}^h \in \mathbb{C}$ $(0 \le h, i, j \le D)$ such that

$$E_i \circ E_j = |X|^{-1} \sum_{h=0}^D q_{i,j}^h E_h \qquad (0 \le i,j \le D).$$

It is known that $q_{i,j}^h$ is real and nonnegative $(0 \le h, i, j \le D)$.

The scalars $q_{i,i}^h$ are called the **Krein parameters** of Γ .

イロン イヨン イヨン イヨン

Until further notice, fix a vertex $x \in X$. We call x the **base** vertex.

For $0 \le i \le D$ let $E_i^* = E_i^*(x)$ denote the diagonal matrix in $Mat_X(\mathbb{C})$ that has (y, y)-entry

$$(E_i^*)_{y,y} = \begin{cases} 1, & \text{if } \partial(x,y) = i; \\ 0, & \text{if } \partial(x,y) \neq i \end{cases} \qquad (y \in X).$$

We call E_i^* the *i*th **dual primitive idempotent of** Γ **with respect to** *x*.

イロト イヨト イヨト イヨト 三日

The dual primitive idempotents satisfy

(i)
$$I = \sum_{i=0}^{D} E_i^*;$$

(ii) $(E_i^*)^t = E_i^* \ (0 \le i \le D);$
(iii) $\overline{E_i^*} = E_i^* \ (0 \le i \le D);$
(iv) $E_i^* E_j^* = \delta_{i,j} E_i^* \ (0 \le i, j \le D).$

Consequently the matrices $\{E_i^*\}_{i=0}^D$ form a basis for a commutative subalgebra $M^* = M^*(x)$ of $Mat_X(\mathbb{C})$.

We call M^* the **dual Bose-Mesner algebra of** Γ with respect to x.

We recall the dual distance matrices of Γ .

For $0 \le i \le D$ let $A_i^* = A_i^*(x)$ denote the diagonal matrix in $Mat_X(\mathbb{C})$ that has (y, y)-entry

$$(A_i^*)_{y,y} = |X|(E_i)_{x,y}$$
 $(y \in X).$

It turns out the matrices $\{A_i^*\}_{i=0}^D$ form a basis for M^* .

イロン スロン イロン イロン

We have

(i)
$$A_0^* = I$$
;
(ii) $\sum_{i=0}^{D} A_i^* = |X| E_0^*$;
(iii) $(A_i^*)^t = A_i^* \ (0 \le i \le D)$;
(iv) $\overline{A_i^*} = A_i^* \ (0 \le i \le D)$;
(v) $A_i^* A_j^* = \sum_{h=0}^{D} q_{i,j}^h A_h^* \ (0 \le i, j \le D)$.

We call A_i^* the *i*th dual distance matrix of Γ with respect to x and the ordering $\{E_j\}_{j=0}^D$.

・ロト ・回ト ・ヨト ・ヨト
The dual distance matrices and dual primitive idempotents are related as follows.

For $0 \le j \le D$, $A_j^* = \sum_{i=0}^{D} Q_{i,j} E_i^*, \qquad E_j^* = |X|^{-1} \sum_{i=0}^{D} P_{i,j} A_i^*.$

イロト イヨト イヨト イヨト 三日

Let T = T(x) denote the subalgebra of $Mat_X(\mathbb{C})$ generated by M and M^* .

The algebra T is finite-dimensional and noncommutative.

We call T the **subconstituent algebra** (or Terwilliger algebra) of Γ with respect to x.

The algebras M and M^* are related as follows.

Lemma (Ter 1992) For $0 \le h, i, j \le D$ we have (i) $E_h^* A_i E_j^* = 0$ if and only if $p_{i,j}^h = 0$; (ii) $E_h A_i^* E_j = 0$ if and only if $q_{i,j}^h = 0$.

The above relations are called the **triple-product relations**.

The ordering $\{E_i\}_{i=0}^D$ is said to be **formally self-dual** whenever P = Q.

It is known that in this case,

$$p_{i,j}^h = q_{i,j}^h \qquad (0 \le h, i, j \le D).$$

Kazumasa Nomura, Paul Terwilliger Spin models and distance-regular graphs of q-Racah type

イロト イヨト イヨト イヨト

Formal self-duality, cont.

Assume that the ordering $\{E_i\}_{i=0}^D$ is formally self-dual.

Define

$$\theta_i = P_{i,1} = Q_{i,1} \qquad (0 \le i \le D).$$

Note that

$$A = \sum_{i=0}^{D} \theta_i E_i, \qquad A^* = \sum_{i=0}^{D} \theta_i E_i^*,$$

where we abbreviate $A^* = A_1^*(x)$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Lemma

Assume that the ordering $\{E_i\}_{i=0}^D$ is formally self-dual. Then:

- (i) the scalars $\{\theta_i\}_{i=0}^D$ are mutually distinct;
- (ii) M^* is generated by A^* ;
- (iii) T is generated by A, A^* .

Assume that the ordering $\{E_i\}_{i=0}^D$ is formally self-dual.

This ordering is said to have *q*-Racah type whenever there exist $q, a, \alpha, \varepsilon \in \mathbb{C}$ such that

$$\begin{aligned} q \neq 0, \quad q^2 \neq 1, \quad q^2 \neq -1, \quad a\alpha \neq 0, \\ \theta_i &= \alpha (aq^{2i-D} + a^{-1}q^{D-2i}) + \varepsilon \qquad (0 \le i \le D). \end{aligned}$$

イロン スロン イヨン イヨン

From now on, we make two assumptions about Γ .

Assumption 1: We assume that there exists an ordering $\{E_i\}_{i=0}^D$ of the primitive idempotents of Γ that is formally self-dual and q-Racah type. We fix nonzero $a, \alpha \in \mathbb{C}$ and $\varepsilon \in \mathbb{C}$ such that

$$\theta_i = \alpha (aq^{2i-D} + a^{-1}q^{D-2i}) + \varepsilon \qquad (0 \le i \le D).$$

Recall that A is the adjacency matrix of Γ .

Assumption 2: We assume that for all $x \in X$,

$$\sum_{i=0}^{D} E_{i}^{*} \frac{A - \varepsilon I}{\alpha} E_{i}^{*} \left(1 + \frac{\theta_{i} - \varepsilon}{\alpha} \frac{1}{q + q^{-1}} \right)$$

$$= \sum_{i=0}^{D} E_{i} \frac{A^{*} - \varepsilon I}{\alpha} E_{i} \left(1 + \frac{\theta_{i} - \varepsilon}{\alpha} \frac{1}{q + q^{-1}} \right),$$
(1)

where $A^* = A_1^*(x)$ and $E_i^* = E_i^*(x)$ for $0 \le i \le D$.

Let the matrix Z = Z(x) be the common value of (1).

イロト 不得 トイラト イラト・ラ

Our goal for the rest of this talk, is to construct a spin model $W \in M$.

We will construct W using the matrix Z.

Kazumasa Nomura, Paul Terwilliger Spin models and distance-regular graphs of q-Racah type

イロト イヨト イヨト イヨト

As we discuss the matrix Z, the following abbreviations will be convenient.

Define

$$\vartheta_i = aq^{2i-D} + a^{-1}q^{D-2i} \qquad (0 \le i \le D).$$

By construction,

$$\theta_i = \alpha \vartheta_i + \varepsilon$$
 $(0 \le i \le D).$

Kazumasa Nomura, Paul Terwilliger Spin models and distance-regular graphs of q-Racah type

イロン イヨン イヨン

Э

Define

$$A = \frac{A - \varepsilon I}{\alpha}, \qquad B = \frac{A^* - \varepsilon I}{\alpha}.$$

By construction,

$$\mathsf{A} = \sum_{i=0}^{D} \vartheta_i E_i, \qquad \mathsf{B} = \sum_{i=0}^{D} \vartheta_i E_i^*.$$

Kazumasa Nomura, Paul Terwilliger Spin models and distance-regular graphs of q-Racah type

・ロト ・回ト ・ヨト ・ヨト

By Assumption 2 and the definition of Z,

$$\sum_{i=0}^{D} E_i^* \mathsf{A} E_i^* \left(1 + \frac{\vartheta_i}{q+q^{-1}} \right) = Z = \sum_{i=0}^{D} E_i \mathsf{B} E_i \left(1 + \frac{\vartheta_i}{q+q^{-1}} \right).$$

Kazumasa Nomura, Paul Terwilliger Spin models and distance-regular graphs of *q*-Racah type

イロト イヨト イヨト イヨト

Z is central in T

Lemma

The following (i)-(iv) hold: (i) $Z \in T$; (ii) for 0 < i < D. $ZE_i = E_i Z = E_i \mathsf{B} E_i \left(1 + \frac{\vartheta_i}{a + a^{-1}} \right);$ (iii) for $0 \leq i < D$, $ZE_i^* = E_i^*Z = E_i^*AE_i^*\left(1 + \frac{\vartheta_i}{q + q^{-1}}\right);$

(iv) Z is central in T.

イロト イヨト イヨト イヨト 三日

The matrix Z is related to A, B as follows. Abbreviate $\beta = q^2 + q^{-2}$.

Lemma

$$\begin{aligned} \mathsf{A}^2\mathsf{B} &-\beta\mathsf{A}\mathsf{B}\mathsf{A} + \mathsf{B}\mathsf{A}^2 + (q^2 - q^{-2})^2\mathsf{B} \\ &= (q^2 - q^{-2})^2Z - (q - q^{-1})(q^2 - q^{-2})Z\mathsf{A}, \\ \mathsf{B}^2\mathsf{A} &-\beta\mathsf{B}\mathsf{A}\mathsf{B} + \mathsf{A}\mathsf{B}^2 + (q^2 - q^{-2})^2\mathsf{A} \\ &= (q^2 - q^{-2})^2Z - (q - q^{-1})(q^2 - q^{-2})Z\mathsf{B}. \end{aligned}$$

The above result is obtained using the triple-product relations.

Kazumasa Nomura, Paul Terwilliger Spin models and distance-regular graphs of q-Racah type

(日) (四) (三) (三) (三)

The relations on the previous slide are a special case of the **universal Askey-Wilson relations** (Ter 2011).

The original Askey-Wilson relations (for which Z becomes a scalar) are due to **Alexei Zhedanov** (1990).

Next, we put the previous relations in \mathbb{Z}_3 -symmetric form.

Note that $C \in T$.

イロン 不同 とうほう 不同 とう

The \mathbb{Z}_3 -symmetric Askey-Wilson relations

Lemma

We have

$$A + \frac{qBC - q^{-1}CB}{q^2 - q^{-2}} = Z,$$

$$B + \frac{qCA - q^{-1}AC}{q^2 - q^{-2}} = Z,$$

$$C + \frac{qAB - q^{-1}BA}{q^2 - q^{-2}} = Z.$$

Kazumasa Nomura, Paul Terwilliger Spin models and distance-regular graphs of *q*-Racah type

イロン イロン イヨン イヨン

In a moment, we will use the scalars

$$au_i = (-1)^i a^{-i} q^{i(D-i)} \qquad (0 \le i \le D).$$

Kazumasa Nomura, Paul Terwilliger Spin models and distance-regular graphs of q-Racah type

・ロト ・回ト ・ヨト ・ヨト

臣

Recall the Bose-Mesner algebra M of Γ .

Lemma

For an invertible matrix $W \in M$,

 $W^{-1}BW = C$

if and only if

$$W = f \sum_{i=0}^{D} \tau_i E_i, \qquad 0 \neq f \in \mathbb{C}.$$

Kazumasa Nomura, Paul Terwilliger Spin models and distance-regular graphs of q-Racah type

・ロト ・回ト ・ヨト ・ヨト

Э

Recall the dual Bose-Mesner algebra $M^* = M^*(x)$.

Lemma

For an invertible matrix $W^* \in M^*$,

$$W^* \mathsf{A}(W^*)^{-1} = \mathsf{C}$$

if and only if

$$W^* = f \sum_{i=0}^D \tau_i E_i^*, \qquad 0 \neq f \in \mathbb{C}.$$

Kazumasa Nomura, Paul Terwilliger Spin models and distance-regular graphs of *q*-Racah type

Definition

Pick $0 \neq f \in \mathbb{C}$. Define the matrices

$$W = f \sum_{i=0}^{D} \tau_i E_i, \qquad W^* = f \sum_{i=0}^{d} \tau_i E_i^*.$$

Note that $W \in M$ and $W^* \in M^*$. We call the pair W, W^* the **Boltzmann pair**.

Kazumasa Nomura, Paul Terwilliger Spin models and distance-regular graphs of q-Racah type

イロン 不同 とうほう 不同 とう

By construction, the matrices W, W* are invertible. Moreover,

AW = WA,	$W^*B=BW^*,$	
BW = WC,	$W^*A = CW^*.$	

We call these equations the intertwining relations.

イロト イヨト イヨト イヨト

Lemma

There exists an algebra isomorphism $\rho: T \to T$ that sends

$$S \mapsto (W^*W)^{-1}S(W^*W)$$

for all $S \in T$.

Kazumasa Nomura, Paul Terwilliger Spin models and distance-regular graphs of *q*-Racah type

イロト イヨト イヨト イヨト 三日

Using the intertwining relations we obtain the following result.

Lemma The isomorphism ρ sends $A \mapsto B \mapsto C \mapsto A.$

イロン イヨン イヨン イヨン

Corollary

The following hold: (i) $\rho(E_i) = E_i^* \ (0 \le i \le D);$ (ii) $\rho(W) = W^*.$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Using $\rho(W) = W^*$ we obtain the following result.

The above equation is called the **braid relation**.

Kazumasa Nomura, Paul Terwilliger Spin models and distance-regular graphs of q-Racah type

Recall that the distance matrices $\{A_i\}_{i=0}^D$ form a basis for M, and the dual distance matrices $\{A_i^*\}_{i=0}^D$ form a basis for M^* .

Our next general goal is to express $W^{\pm 1}$ as a linear combination of $\{A_i\}_{i=0}^D$, and $(W^*)^{\pm 1}$ as a linear combination of $\{A_i^*\}_{i=0}^D$.

イロト 不得 トイラト イラト 二日

For $0 \leq i \leq D$ define $k_i = p_{i,i}^0$.

Note that k_i is equal to the number of vertices in X at distance *i* from x.

We call k_i the *i*th **valency** of Γ .

イロト イヨト イヨト イヨト

Lemma

We have

$$|X| = \left(\sum_{i=0}^{D} \tau_i k_i\right) \left(\sum_{i=0}^{D} \tau_i^{-1} k_i\right).$$

The above identity is proved using $\rho(E_0) = E_0^*$.

Kazumasa Nomura, Paul Terwilliger Spin models and distance-regular graphs of *q*-Racah type

イロン イロン イヨン イヨン

Corollary

We have

$$\sum_{i=0}^D \tau_i k_i \neq 0, \qquad \qquad \sum_{i=0}^D \tau_i^{-1} k_i \neq 0.$$

Kazumasa Nomura, Paul Terwilliger Spin models and distance-regular graphs of q-Racah type

・ロト ・回ト ・ヨト ・ヨト

臣

Lemma

We have

$$W = f \frac{\sum_{i=0}^{D} \tau_i^{-1} A_i}{\sum_{i=0}^{D} \tau_i^{-1} k_i}, \qquad W^{-1} = \frac{1}{f} \frac{\sum_{i=0}^{D} \tau_i A_i}{\sum_{i=0}^{D} \tau_i k_i},$$
$$W^* = f \frac{\sum_{i=0}^{D} \tau_i^{-1} A_i^*}{\sum_{i=0}^{D} \tau_i^{-1} k_i}, \qquad (W^*)^{-1} = \frac{1}{f} \frac{\sum_{i=0}^{D} \tau_i A_i^*}{\sum_{i=0}^{D} \tau_i k_i}.$$

The first displayed equation is obtained using $\rho(E_0) = E_0^*$ and $E_0^* E_0 E_j^* = |X|^{-1} A_j$ for $0 \le j \le D$.

Kazumasa Nomura, Paul Terwilliger Spin models and distance-regular graphs of q-Racah type

イロト イヨト イヨト イヨト 三日

Recall the all 1's matrix $J \in Mat_X(\mathbb{C})$.

Lemma		
We have		
	$W \circ W^{-1} = X ^{-1} J.$	

Corollary

The matrix W is type II.

Kazumasa Nomura, Paul Terwilliger Spin models and distance-regular graphs of *q*-Racah type

イロン イヨン イヨン イヨン

Lemma For a, b, c $\in X$ we have $\sum_{e \in X} \frac{W_{e,b}W_{e,c}}{W_{e,a}} = \frac{f^2}{\sum_{i=0}^D \tau_i^{-1}k_i} \frac{W_{b,c}}{W_{a,b}W_{c,a}}.$

To prove the above lemma, take x = a and compute the (b, c)-entry for either side of

$$WW^*W = W^*WW^*.$$

Kazumasa Nomura, Paul Terwilliger Spin models and distance-regular graphs of q-Racah type

(日) (四) (三) (三) (三)

We now state our main result.

Theorem (Nom+Ter 2023)

The following are equivalent: (i) W is a spin model; (ii) $f^2 = |X|^{1/2} \sum_{i=0}^{D} \tau_i^{-1} k_i$.

イロン 不同 とくほど 不同 とう

We review our main results.

Under Assumptions 1, 2 we showed that the matrix

$$\mathsf{W} = f \sum_{i=0}^{D} \tau_i E_i$$

is a spin model, where

$$\tau_i = (-1)^i a^{-i} q^{i(D-i)} \qquad (0 \le i \le D),$$

$$f^2 = |X|^{1/2} \sum_{i=0}^D \tau_i^{-1} k_i.$$

Kazumasa Nomura, Paul Terwilliger Spin models and distance-regular graphs of q-Racah type

イロト イヨト イヨト イヨト
Moreover,

$$\begin{split} \mathsf{W} &= f \frac{\sum_{i=0}^{D} \tau_i^{-1} A_i}{\sum_{i=0}^{D} \tau_i^{-1} k_i}, \\ \mathsf{W}^{-1} &= \frac{1}{f} \frac{\sum_{i=0}^{D} \tau_i A_i}{\sum_{i=0}^{D} \tau_i k_i}. \end{split}$$

Kazumasa Nomura, Paul Terwilliger Spin models and distance-regular graphs of q-Racah type

・ロト ・回ト ・ヨト ・ヨト

In this talk, we considered a distance-regular graph Γ with diameter $D\geq 3.$

We assumed that Γ is formally self-dual and *q*-Racah type.

We also assumed that for each vertex x of Γ , the subconstituent algebra T = T(x) contains a certain central element Z = Z(x).

Using Z, we constructed a spin model W contained in the Bose-Mesner algebra M of Γ .

THANK YOU FOR YOUR ATTENTION!

イロト 不得下 イヨト イヨト 二日