A Q-polynomial structure associated with the projective geometry $L_N(q)$

Paul Terwilliger

University of Wisconsin-Madison

A Q [-polynomial structure associated with the projective geometry](#page-47-0)

Paul Terwilliger

There is a type of distance-regular graph, said to be Q-polynomial.

In this talk, we discuss a generalized Q-polynomial property involving a graph that is not necessarily distance-regular.

We give a detailed description of an example associated with the projective geometry $L_N(q)$.

Let X denote a nonempty finite set.

Let ${\rm Mat}_X(\mathbb{R})$ denote the \mathbb{R} -algebra consisting of the matrices with rows and columns indexed by X and all entries in \mathbb{R} .

Let $V=\mathbb{R}^X$ denote the vector space over $\mathbb R$ consisting of the column vectors with coordinates indexed by X and all entries in \mathbb{R} .

The algebra $\text{Mat}_X(\mathbb{R})$ acts on V by left multiplication.

For all $y \in X$, define a vector $\hat{y} \in V$ that has y-coordinate 1 and all other coordinates 0.

The vectors $\{\hat{y}\}_{y \in X}$ form a basis for V.

Let $\Gamma = (X, \mathcal{R})$ denote a finite, undirected, connected graph, without loops or multiple edges, with vertex set X, edge set \mathcal{R} , and path-length distance function ∂ .

For $y \in X$ and an integer $i \geq 0$, define the set

$$
\Gamma_i(y)=\{z\in X|\partial(y,z)=i\}.
$$

We abbreviate $\Gamma(\nu) = \Gamma_1(\nu)$.

Definition

By a weighted adjacency matrix of $Γ$, we mean a matrix $A \in Mat_{\mathbf{X}}(\mathbb{R})$ that has (y, z) -entry

$$
A_{y,z} = \begin{cases} \neq 0, & \text{if } y, z \text{ are adjacent;} \\ 0, & \text{if } y, z \text{ are not adjacent.} \end{cases} \qquad (y, z \in X).
$$

Until further notice, we fix a weighted adjacency matrix A of Γ that is diagonalizable over \mathbb{R} .

Let M denote the subalgebra of ${\rm Mat}_X(\mathbb{R})$ generated by A.

We call M the adjacency algebra for Γ and A .

Let $D+1$ denote the dimension of the vector space M.

Since A is diagonalizable, the vector space M has a basis $\{E_i\}_{i=0}^{\mathcal{D}}$ such that

$$
\sum_{i=0}^{\mathcal{D}} E_i = I,
$$

\n
$$
E_i E_j = \delta_{i,j} E_i \qquad (0 \le i, j \le \mathcal{D}).
$$

We call $\{E_i\}_{i=0}^{\mathcal{D}}$ the **primitive idempotents of** A .

The adjacency algebra, cont.

Since $A \in M$, there exist real numbers $\{\theta_i\}_{i=0}^{\mathcal{D}}$ such that

$$
A=\sum_{i=0}^{\mathcal{D}}\theta_iE_i.
$$

The scalars $\{\theta_i\}_{i=0}^{\mathcal{D}}$ are mutually distinct since A generates M .

Note that

$$
V = \sum_{i=0}^{\mathcal{D}} E_i V \qquad \text{(direct sum)}.
$$

For $0\leq i\leq \mathcal{D}$ the subspace E_iV is an eigenspace of A , and θ_i is the corresponding eigenvalue.

Until further notice, fix a vertex $x \in X$.

Define the integer $D = D(x)$ by

$$
D=\max\{\partial(x,y)|y\in X\}.
$$

We call D the diameter of Γ with respect to x.

We have $D\leq\mathcal{D}$, because the matrices $\{A^{i}\}_{i=0}^{D}$ are linearly independent.

For $0 \le i \le D$ we define a diagonal matrix $E_i^* = E_i^*(x)$ in $\text{Mat}_X(\mathbb{R})$ that has (y, y) -entry

$$
(E_i^*)_{y,y} = \begin{cases} 1, & \text{if } \partial(x,y) = i; \\ 0, & \text{if } \partial(x,y) \neq i \end{cases} \qquad (y \in X).
$$

We call $\{E^*_i\}_{i=0}^D$ the **dual primitive idempotents of** $\mathsf{\Gamma}$ **with** respect to x.

We have

$$
\sum_{i=0}^{D} E_i^* = I,
$$

\n
$$
E_i^* E_j^* = \delta_{i,j} E_i^*
$$
 $(0 \le i, j \le D).$

Consequently, the matrices $\{E^*_i\}_{i=0}^D$ form a basis for a commutative subalgebra $M^* = M^*(x)$ of ${\rm Mat}_X(\mathbb{R}).$

We call M^* the <mark>dual adjacency algebra of Γ with respect to</mark> x.

Next we recall the subconstituents of Γ with respect to x. We have

$$
E_i^* V = \mathrm{Span}\{\hat{y}|y \in \Gamma_i(x)\} \qquad (0 \le i \le D).
$$

Moreover,

$$
V = \sum_{i=0}^{D} E_i^* V \qquad \text{(direct sum)}.
$$

For $0 \le i \le D$ the subspace E_i^*V is a common eigenspace for M^* .

We call E_i^*V the i^{th} subconstituent of Γ with respect to $x.$

By the triangle inequality, for adjacent vertices $y, z \in X$ the distances $\partial(x, y)$ and $\partial(x, z)$ differ by at most one.

Consequently

$$
AE_i^*V \subseteq E_{i-1}^*V + E_i^*V + E_{i+1}^*V \qquad (0 \le i \le D),
$$

where $E_{-1}^* = 0$ and $E_{D+1}^* = 0$.

Next we discuss the concept of a dual adjacency matrix.

Definition

A matrix $A^* \in Mat_X(\mathbb{R})$ is called a dual adjacency matrix of Γ (with respect to x and the ordering $\{E_i\}_{i=0}^{\mathcal{D}}$) whenever A^* generates M[∗] and

$$
A^*E_iV\subseteq E_{i-1}V+E_iV+E_{i+1}V\qquad(0\leq i\leq \mathcal{D}),
$$

where $E_{-1} = 0$ and $E_{\mathcal{D}+1} = 0$.

Next we discuss the Q-polynomial property.

Definition

We say that the ordering $\{E_i\}_{i=0}^{\mathcal{D}}$ is Q-polynomial with respect to x whenever there exists a dual adjacency matrix of Γ with respect to x and $\{E_i\}_{i=0}^{\mathcal{D}}$.

Definition

We say that \overline{A} is Q-polynomial with respect to x whenever there exists an ordering of the primitive idempotents of A that is Q-polynomial with respect to x.

Q-polynomial property, cont.

Assume that Γ has a dual adjacency matrix A^* with respect to x and the ordering $\{E_i\}_{i=0}^{\mathcal{D}}$.

Since $A^*\in M^*$, there exist real numbers $\{\theta^*_i\}_{i=0}^D$ such that

$$
A^* = \sum_{i=0}^D \theta_i^* E_i^*.
$$

The scalars $\{\theta^*_i\}_{i=0}^D$ are mutually distinct since \mathcal{A}^* generates $\mathcal{M}^*.$

We mentioned earlier that the sum $\mathit{V}=\sum_{i=0}^{D}E_{i}^{*}V$ is direct.

For $0 \le i \le D$ the subspace E_i^*V is an eigenspace of A^* , and θ_i^* is the corresponding eigenvalue.

For the rest of this talk, we illustrate the Q-polynomial property using an example.

This example is based on the projective geometry $L_N(q)$.

Given a finite field $GF(q)$ and an integer $N \geq 1$, we define a poset $L_N(q)$ as follows.

Let V denote a vector space over $GF(q)$ that has dimension N.

Let the set X consist of the subspaces of V .

The set X , together with the containment relation, is a poset denoted $L_N(q)$ and called a **projective geometry**.

The partial order is denoted by \leq .

Next we define a graph Γ with vertex set X.

Vertices $y, z \in X$ are adjacent in Γ whenever one of y, z covers the other one.

The graph Γ is the Hasse diagram of the poset $L_N(q)$.

The rest of this talk is about the graph Γ.

Let $\mathbf 0$ denote the zero subspace of $\mathbb V$.

Recall the distinguished vertex x of Γ .

For the rest of this talk, we choose $x = 0$.

The following (i) – (i) iii) hold for the graph Γ :

(i) for
$$
y \in X
$$
 we have $\partial(\mathbf{0}, y) = \dim y$;

(ii) Γ has diameter N with respect to the vertex $\mathbf{0}$;

(iv) Γ is bipartite with bipartition $X = X^+ \cup X^-$, where

$$
X^+ = \{ y \in X | \dim y \text{ is even} \},
$$

$$
X^- = \{ y \in X | \dim y \text{ is odd} \}.
$$

For the rest of this paper we adopt the following notation.

Definition

Define $E_i^* = E_i^*(0)$ for $0 \le i \le N$.

Further define $M^* = M^*(0)$.

By construction the matrices $\{E_i^*\}_{i=0}^N$ form a basis for M^* .

Recall the standard module $V = \mathbb{R}^X$. We have

$$
E_i^* V = \operatorname{Span} \{ \hat{y} \mid \dim y = i \} \qquad (0 \le i \le N).
$$

A Q [-polynomial structure associated with the projective geometry](#page-0-0)

Some notation

For $n \in \mathbb{N}$ define

$$
[n]_q=\frac{q^n-1}{q-1}.
$$

We further define

$$
[n]_q^! = [n]_q[n-1]_q \cdots [2]_q[1]_q.
$$

We interpret $[0]_q^!=1$. For $0\leq i\leq n$ define

$$
\binom{n}{i}_q = \frac{[n]_q^!}{[i]_q^! [n-i]_q^!}.
$$

A Q[-polynomial structure associated with the projective geometry](#page-0-0)

By combinatorial counting, we obtain the following results.

Lemma

For
$$
0 \le i \le N
$$
 and $y \in \Gamma_i(\mathbf{0})$ we have
\n(i) $|\Gamma(y) \cap \Gamma_{i-1}(\mathbf{0})| = [i]_q;$
\n(ii) $|\Gamma(y) \cap \Gamma_{i+1}(\mathbf{0})| = [N - i]_q.$

The above lemma implies that the vertex $\mathbf 0$ is distance-regularized in the sense of Godsil.

The following result is well known.

Lemma

For
$$
0 \le i \le N
$$
,
\n
$$
|\Gamma_i(\mathbf{0})| = \binom{N}{i}_q.
$$

The split bases of V

Recall that the vectors $\{\hat{y}\}_{y \in X}$ form a basis for the standard module V. We now introduce four additional bases for V, said to be split.

Definition

For $y \in X$ define

$$
y^{\downarrow\downarrow} = \sum_{z \le y} \hat{z},
$$

\n
$$
y^{\downarrow\uparrow} = \sum_{z \le y} \hat{z}(-1)^{\dim z},
$$

\n
$$
y^{\uparrow\downarrow} = q^{\binom{N - \dim y}{2}} \sum_{y \le z} \hat{z} q^{(N - \dim z) \dim y},
$$

\n
$$
y^{\uparrow\uparrow} = q^{\binom{N - \dim y}{2}} \sum_{y \le z} \hat{z} q^{(N - \dim z) \dim y} (-1)^{\dim z}.
$$

A Q [-polynomial structure associated with the projective geometry](#page-0-0)

Paul Terwilliger

Each of following is a basis for the vector space V :

$$
\{y^{\downarrow\downarrow}\}_{y\in X}, \quad \{y^{\downarrow\uparrow}\}_{y\in X}, \quad \{y^{\uparrow\downarrow}\}_{y\in X}, \quad \{y^{\uparrow\uparrow}\}_{y\in X}.
$$

Definition

The above bases for V are said to be split.

The following matrix A was introduced by S. Ghosh and M. Srinivasan in 2021.

Definition

Define a matrix $A \in Mat_{\mathcal{X}}(\mathbb{R})$ that has (y, z) -entry

$$
A_{y,z} = \begin{cases} 1 & \text{if } y \text{ covers } z; \\ q^{\dim y} & \text{if } z \text{ covers } y; \\ 0 & \text{if } y, z \text{ are not adjacent} \end{cases} \quad y, z \in X.
$$

Note that A is a weighted adjacency matrix of Γ.

Next we compute the eigenvalues of A.

Lemma (Ghosh and Srinivasan 2021)

The matrix A is diagonalizable with eigenvalues $\{\theta_i\}_{i=0}^N$, where

$$
\theta_i = \frac{q^{N-i} - q^i}{q-1} \qquad (0 \leq i \leq N).
$$

Moreover, for $0 \le i \le N$ the dimension of the θ_i -eigenspace of the A is equal to $\binom{N}{i}_q$.

Definition

Define a diagonal matrix $A^* \in Mat_{X}(\mathbb{R})$ with (y, y) -entry

$$
A_{y,y}^* = q^{-\dim y} \qquad \qquad y \in X.
$$

Lemma

We have

$$
A^*=\sum_{i=0}^N q^{-i}E_i^*.
$$

Moreover, A^{*} generates M^{*}.

The eigenvalues of A^* are $\{\theta_i^*\}_{i=0}^N$, where

$$
\theta_i^* = q^{-i} \qquad (0 \leq i \leq N).
$$

Moreover, for $0 \le i \le N$ the θ_i^* -eigenspace of A^* is equal to E_i^*V .

Shortly, we will show that A^* is a dual adjacency matrix with respect to **0** and the ordering $\{E_i\}_{i=0}^N$.

To prepare for this, we give the actions of A, A^* on the four split bases.

For $0 \le i \le N$ and $y \in \Gamma_i(0)$ we have

$$
Ay^{\downarrow\downarrow} = \theta_{N-i}y^{\downarrow\downarrow} + \sum_{z \text{ covers } y} z^{\downarrow\downarrow},
$$

$$
A^*y^{\downarrow\downarrow} = \theta_i^*y^{\downarrow\downarrow} + (q-1)q^{-i} \sum_{y \text{ covers } z} z^{\downarrow\downarrow}.
$$

A Q [-polynomial structure associated with the projective geometry](#page-0-0)

For $0 \le i \le N$ and $y \in \Gamma_i(0)$ we have

$$
Ay^{\downarrow\uparrow} = \theta_i y^{\downarrow\uparrow} - \sum_{z \text{ covers } y} z^{\downarrow\uparrow},
$$

$$
A^* y^{\downarrow\uparrow} = \theta_i^* y^{\downarrow\uparrow} + (q-1)q^{-i} \sum_{y \text{ covers } z} z^{\downarrow\uparrow}.
$$

For $0 \le i \le N$ and $y \in \Gamma_i(0)$ we have

$$
Ay^{\uparrow\downarrow} = \theta_i y^{\uparrow\downarrow} + \sum_{y \text{ covers } z} z^{\uparrow\downarrow},
$$

$$
A^* y^{\uparrow\downarrow} = \theta_i^* y^{\uparrow\downarrow} + (q^{-1} - 1)q^{-i} \sum_{z \text{ covers } y} z^{\uparrow\downarrow}.
$$

For $0 \le i \le N$ and $y \in \Gamma_i(0)$ we have

$$
Ay^{\uparrow\uparrow} = \theta_{N-i}y^{\uparrow\uparrow} - \sum_{y \text{ covers } z} z^{\uparrow\uparrow},
$$

$$
A^*y^{\uparrow\uparrow} = \theta_i^*y^{\uparrow\uparrow} + (q^{-1} - 1)q^{-i} \sum_{z \text{ covers } y} z^{\uparrow\uparrow}.
$$

Recall the standard module V.

By a **decomposition of** V we mean a sequence of nonzero subspaces $\{U_i\}_{i=0}^N$ whose direct sum is equal to $V.$

For example, the sequences $\{E_iV\}_{i=0}^N$ and $\{E_i^*V\}_{i=0}^N$ are decompositions of V.

Next we introduce four additional decompositions of V , said to be split.

The split decompositions of V, cont.

Definition

For $0 \le i \le N$ we define

$$
U_i^{\downarrow \downarrow} = (E_0^* V + \cdots + E_i^* V) \cap (E_0 V + \cdots + E_{N-i} V),
$$

\n
$$
U_i^{\downarrow \uparrow} = (E_0^* V + \cdots + E_i^* V) \cap (E_N V + \cdots + E_i V),
$$

\n
$$
U_i^{\uparrow \downarrow} = (E_N^* V + \cdots + E_{N-i}^* V) \cap (E_0 V + \cdots + E_{N-i} V),
$$

\n
$$
U_i^{\uparrow \uparrow} = (E_N^* V + \cdots + E_{N-i}^* V) \cap (E_N V + \cdots + E_i V).
$$

A Q [-polynomial structure associated with the projective geometry](#page-0-0)

The following (i)–(iv) hold for
$$
0 \le i \le N
$$
:
\n(i) the vectors $\{y^{\downarrow\downarrow}\}_{y \in \Gamma_i(\mathbf{0})}$ form a basis for $U_i^{\downarrow\downarrow}$;
\n(ii) the vectors $\{y^{\downarrow\uparrow}\}_{y \in \Gamma_i(\mathbf{0})}$ form a basis for $U_i^{\downarrow\uparrow}$;
\n(iii) the vectors $\{y^{\uparrow\downarrow}\}_{y \in \Gamma_{N-i}(\mathbf{0})}$ form a basis for $U_i^{\uparrow\downarrow}$;
\n(iv) the vectors $\{y^{\uparrow\uparrow}\}_{y \in \Gamma_{N-i}(\mathbf{0})}$ form a basis for $U_i^{\uparrow\uparrow}$.

The split decompositions of V, cont.

Lemma

Each of the following is a decomposition of V:

$$
\{U_i^{\downarrow\downarrow}\}_{i=0}^N, \qquad \{U_i^{\downarrow\uparrow}\}_{i=0}^N, \qquad \{U_i^{\uparrow\downarrow}\}_{i=0}^N, \qquad \{U_i^{\uparrow\uparrow}\}_{i=0}^N.
$$

Definition

The above four decompositions of V are said to be **split**.

The split decompositions of V, cont.

Next we consider how the four split decompositions are related.

Lemma

Let $0 \le i \le N$. In each row below, the three sums are equal:

$$
E_0^* V + \cdots + E_i^* V, \quad U_0^{\downarrow \downarrow} + \cdots + U_i^{\downarrow \downarrow}, \quad U_0^{\downarrow \uparrow} + \cdots + U_i^{\downarrow \uparrow};
$$
\n
$$
E_N^* V + \cdots + E_{N-i}^* V, \quad U_0^{\uparrow \downarrow} + \cdots + U_i^{\uparrow \downarrow}, \quad U_0^{\uparrow \uparrow} + \cdots + U_i^{\uparrow \uparrow};
$$
\n
$$
E_0 V + \cdots + E_i V, \quad U_N^{\downarrow \downarrow} + \cdots + U_{N-i}^{\downarrow \downarrow}, \quad U_N^{\uparrow \downarrow} + \cdots + U_{N-i}^{\uparrow \downarrow};
$$
\n
$$
E_N V + \cdots + E_{N-i} V, \quad U_N^{\downarrow \uparrow} + \cdots + U_{N-i}^{\downarrow \uparrow}, \quad U_N^{\uparrow \uparrow} + \cdots + U_{N-i}^{\uparrow \uparrow}.
$$

How A, A^* act on the split decompositions of V

Next we consider how A , A^* act on the four split decompositions.

Lemma

For $0 \le i \le N$ we have

$$
(A - \theta_{N-i}I)U_i^{\downarrow \downarrow} \subseteq U_{i+1}^{\downarrow \downarrow}, \qquad (A^* - \theta_i^*I)U_i^{\downarrow \downarrow} \subseteq U_{i-1}^{\downarrow \downarrow}, (A - \theta_iI)U_i^{\downarrow \uparrow} \subseteq U_{i+1}^{\downarrow \uparrow}, \qquad (A^* - \theta_i^*I)U_i^{\downarrow \uparrow} \subseteq U_{i-1}^{\downarrow \uparrow}, (A - \theta_{N-i}I)U_i^{\uparrow \downarrow} \subseteq U_{i+1}^{\uparrow \downarrow}, \qquad (A^* - \theta_{N-i}^*I)U_i^{\uparrow \downarrow} \subseteq U_{i-1}^{\uparrow \downarrow}, (A - \theta_iI)U_i^{\uparrow \uparrow} \subseteq U_{i+1}^{\uparrow \uparrow}, \qquad (A^* - \theta_{N-i}^*I)U_i^{\uparrow \uparrow} \subseteq U_{i-1}^{\uparrow \uparrow}.
$$

We can now easily show that A^* is a dual adjacency matrix.

The proof

Sketch of Proof: We have

$$
A^*E_iV \subseteq A^*(E_0V + \dots + E_iV)
$$

= $A^*(U_N^{\downarrow\downarrow} + \dots + U_{N-i}^{\downarrow\downarrow})$
 $\subseteq U_N^{\downarrow\downarrow} + \dots + U_{N-i-1}^{\downarrow\downarrow}$
= $E_0V + \dots + E_{i+1}V$

and

$$
A^*E_iV \subseteq A^*(E_iV + \cdots + E_NV)
$$

= $A^*(U_i^{\uparrow\uparrow} + \cdots + U_N^{\uparrow\uparrow})$
 $\subseteq U_{i-1}^{\uparrow\uparrow} + \cdots + U_N^{\uparrow\uparrow}$
= $E_{i-1}V + \cdots + E_NV.$

By the above comments,

$$
A^*E_iV\subseteq E_{i-1}V+E_iV+E_{i+1}V.
$$

A Q[-polynomial structure associated with the projective geometry](#page-0-0)

Paul Terwilliger

The matrix A^* is a dual adjacency matrix

Corollary

The matrix A^* is a dual adjacency matrix of Γ with respect to the vertex **0** and the ordering $\{E_i\}_{i=0}^N$.

Corollary

The ordering $\{E_i\}_{i=0}^N$ is Q-polynomial with respect to the vertex **0**.

Theorem

The weighted adjacency matrix A is Q-polynomial with respect to the vertex $\mathbf 0$

We remark that

$$
A^{3}A^{*} - (q + q^{-1} + 1)A^{2}A^{*}A + (q + q^{-1} + 1)AA^{*}A^{2} - A^{*}A^{3}
$$

= $q^{N-2}(q+1)^{2}(AA^{*} - A^{*}A),$

$$
A^{*3}A - (q + q^{-1} + 1)A^{*2}AA^{*} + (q + q^{-1} + 1)A^{*}AA^{*2} - AA^{*3} = 0.
$$

The above equations are called the **tridiagonal relations**.

In this talk, we first extended the Q -polynomial property to graphs that are not necessarily distance-regular.

We then defined a graph Γ using the projective geometry $L_N(q)$.

We considered Γ from the point of view of the distinguished vertex $\mathbf{0}$

We defined a weighted adjacency matrix A of Γ, and examined its eigenvalues/eigenspaces.

We then showed that A is Q-polynomial with respect to $\mathbf{0}$.

THANK YOU FOR YOUR ATTENTION!