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Overview

There is a type of distance-regular graph, said to be
Q-polynomial.

In this talk, we discuss a generalized Q-polynomial property
involving a graph that is not necessarily distance-regular.

We give a detailed description of an example associated with the
projective geometry Ly(q).
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Preliminaries

Let X denote a nonempty finite set.

Let Matx(R) denote the R-algebra consisting of the matrices with
rows and columns indexed by X and all entries in R.

Let V = RX denote the vector space over R consisting of the
column vectors with coordinates indexed by X and all entries in R.

The algebra Matx(R) acts on V by left multiplication.
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Preliminaries, cont.

For all y € X, define a vector y € V that has y-coordinate 1 and
all other coordinates O.

The vectors {y},ex form a basis for V.

A Q-polynomial structure associated with the projective geom
Paul Terwilliger



The graph I

Let I = (X, R) denote a finite, undirected, connected graph,
without loops or multiple edges, with vertex set X, edge set R,
and path-length distance function 0.

For y € X and an integer i > 0, define the set
Fi(y) ={z € X|0(y,z) =i}.

We abbreviate I'(y) = 1(y).
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The weighted adjacency matrix

By a weighted adjacency matrix of I, we mean a matrix
A € Matx(R) that has (y, z)-entry

: : (v,z € X).
0, if y, z are not adjacent

%0, ify,z are adjacent;
Ayz =

Until further notice, we fix a weighted adjacency matrix A of [
that is diagonalizable over R.
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The adjacency algebra

Let M denote the subalgebra of Matx(RR) generated by A.
We call M the adjacency algebra for [ and A.

Let D + 1 denote the dimension of the vector space M.
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The adjacency algebra, cont.

Since A is diagonalizable, the vector space M has a basis {E,-},-’;O
such that

I

m

D

> Ei

i—0
EiE; = 0; jE; (0<i,j<D).

We call {E;}2., the primitive idempotents of A.
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The adjacency algebra, cont.

Since A € M, there exist real numbers {6;}2; such that

The scalars {0;}2, are mutually distinct since A generates M.

Note that

E;V (direct sum).

<
I
I

For 0 < i < D the subspace E;V is an eigenspace of A, and 6; is
the corresponding eigenvalue.
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The dual adjacency algebra

Until further notice, fix a vertex x € X.
Define the integer D = D(x) by

D = max{d(x,y)|y € X}.

We call D the diameter of [ with respect to x.

We have D < D, because the matrices {A'}2 ; are linearly
independent.
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The dual adjacency algebras, cont.

For 0 < i < D we define a diagonal matrix E = E*(x) in
Matx(R) that has (y, y)-entry

N )L, ifo(x,y) =1,
(E)yy = {O, it O(x,y) £ i (y € X).

We call {E*}2 the dual primitive idempotents of I with
respect to x.

A Q-polynomial structure associated with the projective geom
Paul Terwilliger



The dual adjacency algebras, cont.

We have

D
» E =1,

i=0

E'Er =0i;EF  (0<ij<D).

Consequently, the matrices {E;}2 ; form a basis for a
commutative subalgebra M* = M*(x) of Matx(R).

We call M* the dual adjacency algebra of I with respect to x.
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The subconstituents

Next we recall the subconstituents of [ with respect to x.
We have

EV = Span{yly € I'i(x)} (0<i<D).

Moreover,
V= Z E'V (direct sum).

For 0 </ < D the subspace E/*V is a common eigenspace for M*.

We call EfV the i*" subconstituent of I' with respect to x.
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The subconstituents, cont.

By the triangle inequality, for adjacent vertices y,z € X the
distances d(x, y) and J(x, z) differ by at most one.

Consequently
AEfV C EL V+EV+ELV (0<i<D),

where E*; =0 and EE+1 =0.
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The dual adjacency matrix

Next we discuss the concept of a dual adjacency matrix.

Definition

A matrix A* € Matx(R) is called a dual adjacency matrix of I'
(with respect to x and the ordering {E;}2 ;) whenever A*
generates M* and

AEV CE_V+EV+EnV (0<i<D),

where E_; = 0 and Ep4;1 = 0.
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Q-polynomial property

Next we discuss the Q-polynomial property.

Definition

We say that the ordering {E;}2 is Q-polynomial with respect
to x whenever there exists a dual adjacency matrix of I' with
respect to x and {E;}2 .

Definition

We say that A is Q-polynomial with respect to x whenever
there exists an ordering of the primitive idempotents of A that
is Q-polynomial with respect to x.
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Q-polynomial property, cont.

Assume that I has a dual adjacency matrix A* with respect to x
and the ordering {E;} 2.

Since A* € M*, there exist real numbers {07}2  such that

D
A=) 0iE.
i=0
The scalars {9;5‘},0:0 are mutually distinct since A* generates M*.

We mentioned earlier that the sum V = ZiD:O E;V is direct.

For 0 </ < D the subspace E/V is an eigenspace of A*, and 0 is
the corresponding eigenvalue.
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The projective geometry Ly(q)

For the rest of this talk, we illustrate the Q-polynomial property
using an example.

This example is based on the projective geometry Ly(q).
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The projective geometry Ly(q), cont.

Given a finite field GF(q) and an integer N > 1, we define a poset
Ln(q) as follows.

Let V denote a vector space over GF(g) that has dimension N.
Let the set X consist of the subspaces of V.

The set X, together with the containment relation, is a poset
denoted Ly(q) and called a projective geometry.

The partial order is denoted by <.
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The projective geometry Ly(q), cont.

Next we define a graph I with vertex set X.

Vertices y,z € X are adjacent in [ whenever one of y, z covers the
other one.

The graph T is the Hasse diagram of the poset Ly(q).

The rest of this talk is about the graph I.
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The distinguished vertex x

Let O denote the zero subspace of V.
Recall the distinguished vertex x of T.

For the rest of this talk, we choose x = 0.
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The projective geometry Ly(q), cont.

Lemma

The following (i)—(iii) hold for the graph T :
(i) for y € X we have 0(0,y) = dim y;
(ii) T has diameter N with respect to the vertex 0;
(iv) T is bipartite with bipartition X = X+ U X~, where

XT ={y € X| dimy is even},
X~ ={y e X| dimy is odd}.
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The projective geometry Ly(g), cont.

For the rest of this paper we adopt the following notation.

Definition
Define Ef = E/(0) for 0 <i < N.

Further define M* = M*(0).

By construction the matrices {E/} ; form a basis for M*.

Recall the standard module V = RX. We have

EfV = Span{y |dimy = i} (0<i<N).

A Q-polynomial structure associated with the projective geom
Paul Terwilliger



Some notation

For n € N define
q"—1
g—1°

["]q =
We further define
[nlg = [nlgln — 1]q - - [2]g[Uq-

We interpret [0]!q =1. For 0 </ < n define

<7>q B [/']!q[[":]!ji]!q'
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The vertex 0 is distance-regularized

By combinatorial counting, we obtain the following results.

For0<i< N andy € l;(0) we have
(1) IF(y) N Ti—1(0)] = [ilq;
(i) IF(y) NTit2(0)] = [N — i]g-

The above lemma implies that the vertex 0 is
distance-regularized in the sense of Godsil.
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The subconstituents of [ with respect to 0

The following result is well known.

For0<i<N,
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The split bases of V

Recall that the vectors {§},cx form a basis for the standard
module V. We now introduce four additional bases for V, said to
be split.

For y € X define

=Yg

z<y

yiT — Zf(_l)dimz,

z<y
y” _ q("’*‘;imy) 2q(Nfdim z)dimy,

y<z
N—dim y)

yTT — q( > 2q(N7dimz)dimy(_1)dimz'

y<z

4
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The split bases of V/, cont.

Each of following is a basis for the vector space V:

{yi\L}yGXa {y\LT}yEXa {yT\L}yEX7 {yTT}yEX-

Definition
The above bases for V are said to be split.
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The weighted adjacency matrix A

The following matrix A was introduced by S. Ghosh and M.
Srinivasan in 2021.

Definition

Define a matrix A € Matx(R) that has (y, z)-entry

if y covers z;

1
Ay 2 =< qimY if z covers y; y,z € X.

if y, z are not adjacent

Note that A is a weighted adjacency matrix of I.
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The eigenvalues of A

Next we compute the eigenvalues of A.

e S 2

Z covers y
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The eigenvalues of A, cont.

Lemma (Ghosh and Srinivasan 2021)

The matrix A is diagonalizable with eigenvalues {6;}Y ;, where

Moreover, for 0 < i < N the dimension of the 0;-eigenspace of the
A is equal to (N)q.

i
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The dual adjacency matrix A*.

Definition

Define a diagonal matrix A* € Matx(R) with (y, y)-entry

—dim y

A, =4q y e X.

We have

N
A* = Z q 'Er.
i=0

Moreover, A* generates M*.
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The eigenvalues of A*.

The eigenvalues of A* are {6} ,N:o, where

0 =q' (0<i <N).

Moreover, for 0 < i < N the 07 -eigenspace of A* is equal to EF'V.

Shortly, we will show that A* is a dual adjacency matrix with
respect to 0 and the ordering {E;} 7 .

To prepare for this, we give the actions of A, A* on the four split
bases.
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The actions of A, A* on the split bases

Lemma

For0<i< N andy € Tl;(0) we have

Ay = On_iyt + Z zH,

z covers y

Ay =0ryN 4+ (g—1)g Y 2

Yy covers z
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The actions of A, A* on the split bases

Lemma

For0<i< N andy € Tl;(0) we have

Ay“ _ G;y“ _ Z ZM’

z covers y

Ay =0ty T4 (g-1)g" Y 2.

Yy covers z
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The actions of A, A* on the split bases

Lemma

For0<i< N andy € Tl;(0) we have

AyN _ gin + Z ZN’

y covers z

Ayl =oryN (gt —1)g Y M

Z covers y
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The actions of A, A* on the split bases

Lemma

For0<i< N andy € Tl;(0) we have

AyTT _ gN_I.yTT _ Z ZTT’

y covers z

Ayt =6y 4+ (gt —1)g > 2N

Z covers y
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The split decompositions of V.

Recall the standard module V.

By a decomposition of V we mean a sequence of nonzero
subspaces {U;}Y.; whose direct sum is equal to V.

For example, the sequences {E;V}N  and {EfV}N , are
decompositions of V.

Next we introduce four additional decompositions of V/, said to be
split.
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The split decompositions of V/, cont.

For 0 < i < N we define

(EgV+-+EV)N(EV+- + EniV),
UT=(EsV+.-- -+ EV)N(ENV + -+ EV),

(ExV+--+Ey_ V)N (EoV+ -+ Ey_i V),

(ExV 4+ Ef V)N (ENV + -+ EV).
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The split decompositions of V/, cont.

The following (i)—(iv) hold for 0 < i < N:
(i) the vectors { y“}yerl.(o) form a basis for U,-”;
(i) the vectors {y*"} er (o) form a basis for U,-“,'

)
(iii) the vectors { }/N}yer,v,,-(O) form a basis for U,-N,'
)

(iv) the vectors { }’TT}yer,\,_,(O) form a basis for Ulﬁ.
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The split decompositions of V/, cont.

Each of the following is a decomposition of V:

(UMY, (UMY, (UMY, UM,

Definition
The above four decompositions of V' are said to be split.
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The split decompositions of V/, cont.

Next we consider how the four split decompositions are related.

Lemma

Let 0 < i < N. In each row below, the three sums are equal:

EXV+...+E'V, Ug¢—|—---+Uiu, UéT—i—---—i-U,-”;
/A =y R STy )y
EV+ -+ EV, UI¢\1¢-|---~—|-U,¢V¢_,.7 U,T\,¢+---+U,TV¢_,~;
EnV ++ EnaiV, U+ + U, U+ Ul

v
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How A, A* act on the split decompositions of V

Next we consider how A, A* act on the four split decompositions.

Lemma

For0 < i< N we have
(A—On_il) U C U,

(A-o:nUiT C U,

(A—On_il U C Ul

(A-o0;1)Ul" c U,

(A — 011U C U,

* * J
(A" —orn U C U,
(A" — 05U € U,
(

A — oy Ul < Ul

Paul Terwilliger
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How A, A* act on the split decompositions of V

We can now easily show that A* is a dual adjacency matrix.

For0<i <N,

A'E;V CE _1V+EV+E1V.
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The proof

Sketch of Proof: We have
A'ElV CA(EV +---+ EV)
AU U
Cup sl
=EV+. -+ E1V
and
A*EV CAY(EV + -+ EyV)
= AU )
cull +-+ Uy
=E_V+- -+ EyV.
By the above comments,

AEV CE_1V+EV+EnV.
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The matrix A* is a dual adjacency matrix

The matrix A* is a dual adjacency matrix of [ with respect to the
vertex 0 and the ordering {E;} ..

The ordering {E;}. o Is Q-polynomial with respect to the vertex 0.

The weighted adjacency matrix A is Q-polynomial with respect to
the vertex 0.
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The tridiagonal relations

We remark that

AA = (q+q T+ DAA AL (g + g7 +1AAA? - ATA®
= gN2(q + 1)2(AA" — A*A),
ABA—(q+q "+ 1)APAA + (g4 q "+ 1)ATAA? — AAZ =0

The above equations are called the tridiagonal relations.
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Summary

In this talk, we first extended the Q-polynomial property to graphs
that are not necessarily distance-regular.

We then defined a graph I using the projective geometry Ly(q).

We considered I from the point of view of the distinguished vertex

0.

We defined a weighted adjacency matrix A of I, and examined its
eigenvalues/eigenspaces.

We then showed that A is Q-polynomial with respect to 0.

THANK YOU FOR YOUR ATTENTION!
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