A *Q*-polynomial structure associated with the projective geometry $L_N(q)$

Paul Terwilliger

University of Wisconsin-Madison

A Q-polynomial structure associated with the projective geom

There is a type of distance-regular graph, said to be Q-polynomial.

In this talk, we discuss a generalized Q-polynomial property involving a graph that is not necessarily distance-regular.

We give a detailed description of an example associated with the **projective geometry** $L_N(q)$.

Let X denote a nonempty finite set.

Let $Mat_X(\mathbb{R})$ denote the \mathbb{R} -algebra consisting of the matrices with rows and columns indexed by X and all entries in \mathbb{R} .

Let $V = \mathbb{R}^X$ denote the vector space over \mathbb{R} consisting of the column vectors with coordinates indexed by X and all entries in \mathbb{R} .

The algebra $Mat_X(\mathbb{R})$ acts on V by left multiplication.

For all $y \in X$, define a vector $\hat{y} \in V$ that has y-coordinate 1 and all other coordinates 0.

The vectors $\{\hat{y}\}_{y \in X}$ form a basis for V.

Let $\Gamma = (X, \mathcal{R})$ denote a finite, undirected, connected graph, without loops or multiple edges, with vertex set X, edge set \mathcal{R} , and path-length distance function ∂ .

For $y \in X$ and an integer $i \ge 0$, define the set

$$\Gamma_i(y) = \{z \in X | \partial(y, z) = i\}.$$

We abbreviate $\Gamma(y) = \Gamma_1(y)$.

Definition

By a weighted adjacency matrix of Γ , we mean a matrix $A \in \operatorname{Mat}_X(\mathbb{R})$ that has (y, z)-entry

$$A_{y,z} = egin{cases}
eq 0, & ext{if } y,z ext{ are adjacent;} \\
0, & ext{if } y,z ext{ are not adjacent} & (y,z\in X). \end{cases}$$

Until further notice, we fix a weighted adjacency matrix A of Γ that is diagonalizable over \mathbb{R} .

Let M denote the subalgebra of $Mat_X(\mathbb{R})$ generated by A.

We call M the **adjacency algebra** for Γ and A.

Let $\mathcal{D} + 1$ denote the dimension of the vector space M.

Since A is diagonalizable, the vector space M has a basis $\{E_i\}_{i=0}^{D}$ such that

$$\sum_{i=0}^{\mathcal{D}} E_i = I,$$

$$E_i E_j = \delta_{i,j} E_i \qquad (0 \le i, j \le \mathcal{D}).$$

We call $\{E_i\}_{i=0}^{\mathcal{D}}$ the **primitive idempotents of** *A*.

The adjacency algebra, cont.

Since $A \in M$, there exist real numbers $\{\theta_i\}_{i=0}^{\mathcal{D}}$ such that

$$A=\sum_{i=0}^{\mathcal{D}}\theta_i E_i.$$

The scalars $\{\theta_i\}_{i=0}^{\mathcal{D}}$ are mutually distinct since A generates M.

Note that

$$V = \sum_{i=0}^{\mathcal{D}} E_i V$$
 (direct sum).

For $0 \le i \le D$ the subspace $E_i V$ is an eigenspace of A, and θ_i is the corresponding eigenvalue.

A Q-polynomial structure associated with the projective geom

Until further notice, fix a vertex $x \in X$.

Define the integer D = D(x) by

$$D = \max\{\partial(x, y) | y \in X\}.$$

We call *D* the **diameter of** Γ **with respect to** *x*.

We have $D \leq D$, because the matrices $\{A^i\}_{i=0}^D$ are linearly independent.

For $0 \le i \le D$ we define a diagonal matrix $E_i^* = E_i^*(x)$ in $Mat_X(\mathbb{R})$ that has (y, y)-entry

$$(E_i^*)_{y,y} = \begin{cases} 1, & \text{if } \partial(x,y) = i; \\ 0, & \text{if } \partial(x,y) \neq i \end{cases}$$
 $(y \in X).$

We call $\{E_i^*\}_{i=0}^D$ the dual primitive idempotents of Γ with respect to x.

We have

$$\sum_{i=0}^{D} E_{i}^{*} = I,$$

$$E_{i}^{*} E_{j}^{*} = \delta_{i,j} E_{i}^{*} \qquad (0 \le i, j \le D).$$

Consequently, the matrices $\{E_i^*\}_{i=0}^D$ form a basis for a commutative subalgebra $M^* = M^*(x)$ of $Mat_X(\mathbb{R})$.

We call M^* the **dual adjacency algebra of** Γ with respect to x.

Next we recall the subconstituents of Γ with respect to x. We have

$$E_i^*V = \operatorname{Span}\{\hat{y}| y \in \Gamma_i(x)\} \qquad (0 \le i \le D).$$

Moreover,

$$V = \sum_{i=0}^{D} E_i^* V$$
 (direct sum).

For $0 \le i \le D$ the subspace $E_i^* V$ is a common eigenspace for M^* .

We call $E_i^* V$ the *i*th subconstituent of Γ with respect to *x*.

By the triangle inequality, for adjacent vertices $y, z \in X$ the distances $\partial(x, y)$ and $\partial(x, z)$ differ by at most one.

Consequently

$$AE_i^*V \subseteq E_{i-1}^*V + E_i^*V + E_{i+1}^*V \qquad (0 \le i \le D),$$

where $E_{-1}^* = 0$ and $E_{D+1}^* = 0.$

Next we discuss the concept of a dual adjacency matrix.

Definition

A matrix $A^* \in Mat_X(\mathbb{R})$ is called a **dual adjacency matrix of** Γ (with respect to x and the ordering $\{E_i\}_{i=0}^{\mathcal{D}}$) whenever A^* generates M^* and

$$A^*E_iV \subseteq E_{i-1}V + E_iV + E_{i+1}V \qquad (0 \le i \le \mathcal{D}),$$

where $E_{-1} = 0$ and $E_{\mathcal{D}+1} = 0$.

Next we discuss the Q-polynomial property.

Definition

We say that the ordering $\{E_i\}_{i=0}^{\mathcal{D}}$ is *Q*-polynomial with respect to *x* whenever there exists a dual adjacency matrix of Γ with respect to *x* and $\{E_i\}_{i=0}^{\mathcal{D}}$.

Definition

We say that A is Q-polynomial with respect to x whenever there exists an ordering of the primitive idempotents of A that is Q-polynomial with respect to x.

Q-polynomial property, cont.

Assume that Γ has a dual adjacency matrix A^* with respect to x and the ordering $\{E_i\}_{i=0}^{\mathcal{D}}$.

Since $A^* \in M^*$, there exist real numbers $\{\theta_i^*\}_{i=0}^D$ such that

$$A^* = \sum_{i=0}^D \theta_i^* E_i^*.$$

The scalars $\{\theta_i^*\}_{i=0}^D$ are mutually distinct since A^* generates M^* .

We mentioned earlier that the sum $V = \sum_{i=0}^{D} E_i^* V$ is direct.

For $0 \le i \le D$ the subspace $E_i^* V$ is an eigenspace of A^* , and θ_i^* is the corresponding eigenvalue.

For the rest of this talk, we illustrate the Q-polynomial property using an example.

This example is based on the projective geometry $L_N(q)$.

Given a finite field GF(q) and an integer $N \ge 1$, we define a poset $L_N(q)$ as follows.

Let \mathbb{V} denote a vector space over GF(q) that has dimension N.

Let the set X consist of the subspaces of \mathbb{V} .

The set X, together with the containment relation, is a poset denoted $L_N(q)$ and called a **projective geometry**.

The partial order is denoted by \leq .

Next we define a graph Γ with vertex set X.

Vertices $y, z \in X$ are adjacent in Γ whenever one of y, z covers the other one.

The graph Γ is the Hasse diagram of the poset $L_N(q)$.

The rest of this talk is about the graph Γ .

Let $\mathbf{0}$ denote the zero subspace of \mathbb{V} .

Recall the distinguished vertex x of Γ .

For the rest of this talk, we choose $x = \mathbf{0}$.

The following (i)–(iii) hold for the graph Γ :

(i) for
$$y \in X$$
 we have $\partial(\mathbf{0}, y) = \dim y$;

(ii) Γ has diameter N with respect to the vertex **0**;

(iv) Γ is bipartite with bipartition $X = X^+ \cup X^-$, where

$$X^+ = \{ y \in X | \dim y \text{ is even} \},\$$

$$X^- = \{ y \in X | \dim y \text{ is odd} \}.$$

A Q-polynomial structure associated with the projective geom

For the rest of this paper we adopt the following notation.

Definition

Define $E_i^* = E_i^*(\mathbf{0})$ for $0 \le i \le N$.

Further define $M^* = M^*(\mathbf{0})$.

By construction the matrices $\{E_i^*\}_{i=0}^N$ form a basis for M^* .

Recall the standard module $V = \mathbb{R}^X$. We have

$$E_i^* V = \operatorname{Span}\{\hat{y} \mid \dim y = i\} \qquad (0 \le i \le N).$$

A Q-polynomial structure associated with the projective geom

Some notation

For $n \in \mathbb{N}$ define

$$[n]_q=\frac{q^n-1}{q-1}.$$

We further define

$$[n]_q^! = [n]_q [n-1]_q \cdots [2]_q [1]_q.$$

We interpret $[0]_q^! = 1$. For $0 \le i \le n$ define

$$\binom{n}{i}_q = \frac{[n]_q^!}{[i]_q^! [n-i]_q^!}.$$

A Q-polynomial structure associated with the projective geom

By combinatorial counting, we obtain the following results.

Lemma

For
$$0 \le i \le N$$
 and $y \in \Gamma_i(\mathbf{0})$ we have
(i) $|\Gamma(y) \cap \Gamma_{i-1}(\mathbf{0})| = [i]_q;$
(ii) $|\Gamma(y) \cap \Gamma_{i+1}(\mathbf{0})| = [N-i]_q.$

The above lemma implies that the vertex $\mathbf{0}$ is **distance-regularized** in the sense of Godsil.

The following result is well known.

Lemma

For
$$0 \leq i \leq N$$
, $|\Gamma_i(\mathbf{0})| = \binom{N}{i}_q.$

The split bases of V

Recall that the vectors $\{\hat{y}\}_{y \in X}$ form a basis for the standard module V. We now introduce four additional bases for V, said to be split.

Definition

For $y \in X$ define

$$\begin{split} y^{\downarrow\downarrow} &= \sum_{z \leq y} \hat{z}, \\ y^{\downarrow\uparrow} &= \sum_{z \leq y} \hat{z} (-1)^{\dim z}, \\ y^{\uparrow\downarrow} &= q^{\binom{N-\dim y}{2}} \sum_{y \leq z} \hat{z} q^{(N-\dim z)\dim y}, \\ y^{\uparrow\uparrow} &= q^{\binom{N-\dim y}{2}} \sum_{y \leq z} \hat{z} q^{(N-\dim z)\dim y} (-1)^{\dim z}. \end{split}$$

A Q-polynomial structure associated with the projective geom

Each of following is a basis for the vector space V:

$$\{y^{\downarrow\downarrow}\}_{y\in X}, \quad \{y^{\downarrow\uparrow}\}_{y\in X}, \quad \{y^{\uparrow\downarrow}\}_{y\in X}, \quad \{y^{\uparrow\uparrow}\}_{y\in X}.$$

Definition

The above bases for V are said to be **split**.

A Q-polynomial structure associated with the projective geom

The following matrix A was introduced by S. Ghosh and M. Srinivasan in 2021.

Definition

Define a matrix $A \in \operatorname{Mat}_X(\mathbb{R})$ that has (y, z)-entry

$$A_{y,z} = \begin{cases} 1 & \text{if } y \text{ covers } z; \\ q^{\dim y} & \text{if } z \text{ covers } y; \\ 0 & \text{if } y, z \text{ are not adjacent} \end{cases} \quad y, z \in X.$$

Note that A is a weighted adjacency matrix of Γ .

Next we compute the eigenvalues of A.

Lemma (Ghosh and Srinivasan 2021)

The matrix A is diagonalizable with eigenvalues $\{\theta_i\}_{i=0}^N$, where

$$heta_i = rac{q^{N-i}-q^i}{q-1} \qquad (0\leq i\leq N).$$

Moreover, for $0 \le i \le N$ the dimension of the θ_i -eigenspace of the A is equal to $\binom{N}{i}_q$.

Definition

Define a diagonal matrix $A^* \in Mat_X(\mathbb{R})$ with (y, y)-entry

$$A_{y,y}^* = q^{-\dim y} \qquad y \in X.$$

Lemma

We have

$$A^*=\sum_{i=0}^N q^{-i}E_i^*.$$

Moreover, A^* generates M^* .

A Q-polynomial structure associated with the projective geom

The eigenvalues of A^* are $\{\theta_i^*\}_{i=0}^N$, where

$$\theta_i^* = q^{-i} \qquad (0 \le i \le N).$$

Moreover, for $0 \le i \le N$ the θ_i^* -eigenspace of A^* is equal to E_i^*V .

Shortly, we will show that A^* is a dual adjacency matrix with respect to **0** and the ordering $\{E_i\}_{i=0}^N$.

To prepare for this, we give the actions of A, A^* on the four split bases.

For $0 \leq i \leq N$ and $y \in \Gamma_i(\mathbf{0})$ we have

$$\begin{split} Ay^{\downarrow\downarrow} &= \theta_{N-i} y^{\downarrow\downarrow} + \sum_{z \text{ covers } y} z^{\downarrow\downarrow}, \\ A^* y^{\downarrow\downarrow} &= \theta_i^* y^{\downarrow\downarrow} + (q-1) q^{-i} \sum_{y \text{ covers } z} z^{\downarrow\downarrow}. \end{split}$$

A Q-polynomial structure associated with the projective geom

For $0 \leq i \leq N$ and $y \in \Gamma_i(\mathbf{0})$ we have

$$egin{aligned} &Ay^{\downarrow\uparrow}= heta_iy^{\downarrow\uparrow}-\sum\limits_{z ext{ covers } y}z^{\downarrow\uparrow},\ &A^*y^{\downarrow\uparrow}= heta_i^*y^{\downarrow\uparrow}+(q-1)q^{-i}\sum\limits_{y ext{ covers } z}z^{\downarrow\uparrow}. \end{aligned}$$

A Q-polynomial structure associated with the projective geom

For $0 \le i \le N$ and $y \in \Gamma_i(\mathbf{0})$ we have

$$egin{aligned} &Ay^{\uparrow\downarrow} = heta_i y^{\uparrow\downarrow} + \sum_{y ext{ covers } z} z^{\uparrow\downarrow}, \ &A^*y^{\uparrow\downarrow} = heta_i^* y^{\uparrow\downarrow} + (q^{-1}-1)q^{-i}\sum_{z ext{ covers } y} z^{\uparrow\downarrow}. \end{aligned}$$

A Q-polynomial structure associated with the projective geom

For $0 \le i \le N$ and $y \in \Gamma_i(\mathbf{0})$ we have

$$egin{aligned} &Ay^{\uparrow\uparrow}= heta_{N-i}y^{\uparrow\uparrow}-\sum_{y ext{ covers } z}z^{\uparrow\uparrow},\ &A^*y^{\uparrow\uparrow}= heta_i^*y^{\uparrow\uparrow}+(q^{-1}-1)q^{-i}\sum_{z ext{ covers } y}z^{\uparrow\uparrow}. \end{aligned}$$

A Q-polynomial structure associated with the projective geom

Recall the standard module V.

By a **decomposition of** V we mean a sequence of nonzero subspaces $\{U_i\}_{i=0}^N$ whose direct sum is equal to V.

For example, the sequences $\{E_i V\}_{i=0}^N$ and $\{E_i^* V\}_{i=0}^N$ are decompositions of V.

Next we introduce four additional decompositions of V, said to be split.

The split decompositions of V, cont.

Definition

For $0 \le i \le N$ we define

$$U_i^{\downarrow\downarrow} = (E_0^*V + \dots + E_i^*V) \cap (E_0V + \dots + E_{N-i}V),$$

$$U_i^{\downarrow\uparrow} = (E_0^*V + \dots + E_i^*V) \cap (E_NV + \dots + E_iV),$$

$$U_i^{\uparrow\downarrow} = (E_N^*V + \dots + E_{N-i}^*V) \cap (E_0V + \dots + E_{N-i}V),$$

$$U_i^{\uparrow\uparrow} = (E_N^*V + \dots + E_{N-i}^*V) \cap (E_NV + \dots + E_iV).$$

A Q-polynomial structure associated with the projective geom

The following (i)–(iv) hold for
$$0 \le i \le N$$
:
(i) the vectors $\{y^{\downarrow\downarrow}\}_{y\in\Gamma_i(\mathbf{0})}$ form a basis for $U_i^{\downarrow\downarrow}$;
(ii) the vectors $\{y^{\downarrow\uparrow}\}_{y\in\Gamma_i(\mathbf{0})}$ form a basis for $U_i^{\downarrow\uparrow}$;
(iii) the vectors $\{y^{\uparrow\downarrow}\}_{y\in\Gamma_{N-i}(\mathbf{0})}$ form a basis for $U_i^{\uparrow\downarrow}$;
(iv) the vectors $\{y^{\uparrow\uparrow}\}_{y\in\Gamma_{N-i}(\mathbf{0})}$ form a basis for $U_i^{\uparrow\uparrow}$.

A Q-polynomial structure associated with the projective geom

The split decompositions of V, cont.

Lemma

Each of the following is a decomposition of V:

$$\{U_i^{\downarrow\downarrow}\}_{i=0}^N, \qquad \{U_i^{\downarrow\uparrow}\}_{i=0}^N, \qquad \{U_i^{\uparrow\downarrow}\}_{i=0}^N, \qquad \{U_i^{\uparrow\downarrow}\}_{i=0}^N, \qquad \{U_i^{\uparrow\uparrow}\}_{i=0}^N$$

Definition

The above four decompositions of V are said to be **split**.

The split decompositions of V, cont.

Next we consider how the four split decompositions are related.

Lemma

Let $0 \le i \le N$. In each row below, the three sums are equal:

$$E_{0}^{*}V + \dots + E_{i}^{*}V, \quad U_{0}^{\downarrow\downarrow} + \dots + U_{i}^{\downarrow\downarrow}, \quad U_{0}^{\downarrow\uparrow} + \dots + U_{i}^{\downarrow\uparrow};$$

$$E_{N}^{*}V + \dots + E_{N-i}^{*}V, \quad U_{0}^{\uparrow\downarrow} + \dots + U_{i}^{\uparrow\downarrow}, \quad U_{0}^{\uparrow\uparrow} + \dots + U_{i}^{\uparrow\uparrow};$$

$$E_{0}V + \dots + E_{i}V, \quad U_{N}^{\downarrow\downarrow} + \dots + U_{N-i}^{\downarrow\downarrow}, \quad U_{N}^{\uparrow\downarrow} + \dots + U_{N-i}^{\uparrow\downarrow};$$

$$E_{N}V + \dots + E_{N-i}V, \quad U_{N}^{\downarrow\uparrow} + \dots + U_{N-i}^{\downarrow\uparrow}, \quad U_{N}^{\uparrow\uparrow} + \dots + U_{N-i}^{\uparrow\uparrow}.$$

A Q-polynomial structure associated with the projective geom

How A, A^* act on the split decompositions of V

Next we consider how A, A^* act on the four split decompositions.

Lemma

For $0 \le i \le N$ we have

$$\begin{aligned} (A - \theta_{N-i}I)U_{i}^{\downarrow\downarrow} &\subseteq U_{i+1}^{\downarrow\downarrow}, & (A^{*} - \theta_{i}^{*}I)U_{i}^{\downarrow\downarrow} &\subseteq U_{i-1}^{\downarrow\downarrow}, \\ (A - \theta_{i}I)U_{i}^{\downarrow\uparrow} &\subseteq U_{i+1}^{\downarrow\uparrow}, & (A^{*} - \theta_{i}^{*}I)U_{i}^{\downarrow\uparrow} &\subseteq U_{i-1}^{\downarrow\uparrow}, \\ (A - \theta_{N-i}I)U_{i}^{\uparrow\downarrow} &\subseteq U_{i+1}^{\uparrow\downarrow}, & (A^{*} - \theta_{N-i}^{*}I)U_{i}^{\uparrow\downarrow} &\subseteq U_{i-1}^{\uparrow\downarrow}, \\ (A - \theta_{i}I)U_{i}^{\uparrow\uparrow} &\subseteq U_{i+1}^{\uparrow\uparrow}, & (A^{*} - \theta_{N-i}^{*}I)U_{i}^{\uparrow\uparrow} &\subseteq U_{i-1}^{\uparrow\uparrow}. \end{aligned}$$

A Q-polynomial structure associated with the projective geom

We can now easily show that A^* is a dual adjacency matrix.

The proof

Sketch of Proof: We have

$$A^*E_iV \subseteq A^*(E_0V + \dots + E_iV)$$

= $A^*(U_N^{\downarrow\downarrow} + \dots + U_{N-i}^{\downarrow\downarrow})$
 $\subseteq U_N^{\downarrow\downarrow} + \dots + U_{N-i-1}^{\downarrow\downarrow}$
= $E_0V + \dots + E_{i+1}V$

 and

$$A^* E_i V \subseteq A^* (E_i V + \dots + E_N V)$$

= $A^* (U_i^{\uparrow\uparrow} + \dots + U_N^{\uparrow\uparrow})$
 $\subseteq U_{i-1}^{\uparrow\uparrow} + \dots + U_N^{\uparrow\uparrow}$
= $E_{i-1} V + \dots + E_N V.$

By the above comments,

$$A^*E_iV\subseteq E_{i-1}V+E_iV+E_{i+1}V.$$

A Q-polynomial structure associated with the projective geom

The matrix A^* is a dual adjacency matrix

Corollary

The matrix A^* is a dual adjacency matrix of Γ with respect to the vertex **0** and the ordering $\{E_i\}_{i=0}^N$.

Corollary

The ordering $\{E_i\}_{i=0}^N$ is Q-polynomial with respect to the vertex **0**.

Theorem

The weighted adjacency matrix A is Q-polynomial with respect to the vertex **0**.

We remark that

$$egin{aligned} &A^3A^*-(q+q^{-1}+1)A^2A^*A+(q+q^{-1}+1)AA^*A^2-A^*A^3\ &=q^{N-2}(q+1)^2(AA^*-A^*A),\ &A^{*3}A-(q+q^{-1}+1)A^{*2}AA^*+(q+q^{-1}+1)A^*AA^{*2}-AA^{*3}=0. \end{aligned}$$

The above equations are called the tridiagonal relations.

In this talk, we first extended the Q-polynomial property to graphs that are not necessarily distance-regular.

We then defined a graph Γ using the projective geometry $L_N(q)$.

We considered Γ from the point of view of the distinguished vertex $\boldsymbol{0}.$

We defined a weighted adjacency matrix A of Γ , and examined its eigenvalues/eigenspaces.

We then showed that A is Q-polynomial with respect to **0**.

THANK YOU FOR YOUR ATTENTION!