Leonard pairs, spin models, and distance-regular graphs

Kazumasa Nomura Paul Terwilliger

Kazumasa Nomura, Paul Terwilliger Leonard pairs, spin models, and distance-regular graphs

The work of Caughman, Curtin, Nomura, and Wolff shows that for a distance-regular graph Γ affording a spin model, the irreducible modules for all the subconstituent algebras of Γ take a certain form.

We show that the converse is true: whenever all the irreducible modules for all the subconstituent algebras of Γ take this form, then Γ affords a spin model.

We explicitly construct this spin model when Γ has *q*-Racah type.

Our results rely heavily on the theory of spin Leonard pairs; the first half of the talk is about this theory.

This is joint work with Kazumasa Nomura.

イロン 不同 とうほう 不同 とう

We are the first to admit: we have not discovered any new spin model to date.

What we have shown, is that a new spin model would result from the discovery of a new distance-regular graph with the right sort of irreducible modules for its subconstituent algebras.

We be will discussing a type of square matrix, said to be **tridiagonal**.

The following matrices are tridiagonal.

$$\begin{pmatrix} 2 & 3 & 0 & 0 \\ 1 & 4 & 2 & 0 \\ 0 & 5 & 3 & 3 \\ 0 & 0 & 3 & 0 \end{pmatrix}, \qquad \begin{pmatrix} 2 & 3 & 0 & 0 \\ 0 & 4 & 2 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 1 & 5 \end{pmatrix}$$

Tridiagonal means each nonzero entry lies on either the diagonal, the subdiagonal, or the superdiagonal.

The tridiagonal matrix on the left is **irreducible**. This means that each entry on the subdiagonal is nonzero and each entry on the superdiagonal is nonzero.

The following conventions hold throughout the talk.

Let \mathbb{F} denote a field.

Every vector space discussed is understood to be over \mathbb{F} .

Every algebra discussed is understood to be associative, over $\mathbb{F},$ and have a multiplicative identity.

```
Fix an integer d \ge 0.
```

Let $Mat_{d+1}(\mathbb{F})$ denote the algebra consisting of the d+1 by d+1 matrices that have all entries in \mathbb{F} .

We index the rows and columns by $0, 1, \ldots, d$.

イロト イヨト イヨト イヨト 三日

The eigenvalues of an irreducible tridiagonal matrix

Consider an irreducible tridiagonal matrix in $Mat_{d+1}(\mathbb{F})$:

Recall that the eigenvalues of T are the roots of the characteristic polynomial of T.

This characteristic polynomial can be computed as follows.

.

The eigenvalues of an irreducible tridiagonal matrix, cont.

Let λ denote an indeterminate.

Let $\mathbb{F}[\lambda]$ denote the algebra consisting of the polynomials in λ that have all coefficients in \mathbb{F} .

Define some polynomials $\{P_i\}_{i=0}^{d+1}$ in $\mathbb{F}[\lambda]$ such that

$$P_0 = 1,$$

 $P_1 = \lambda - a_0,$
 $\lambda P_i = P_{i+1} + a_i P_i + b_{i-1} c_i P_{i-1}$ $(1 \le i \le d).$

The polynomial P_i is monic with degree *i* for $0 \le i \le d + 1$.

It is well known that P_{d+1} is the characteristic polynomial of T. We call $\{P_i\}_{i=0}^d$ the monic polynomial sequence (MPS) for T.

イロト 不得 トイラト イラト 二日

We recall some linear algebra for later use.

Let V denote a vector space with dimension d + 1.

Let $\mathbf{End}(V)$ denote the algebra consisting of the \mathbb{F} -linear maps from V to V.

Recall that each basis of V gives an algebra isomorphism $\operatorname{End}(V) \to \operatorname{Mat}_{d+1}(\mathbb{F}).$

This isomorphism is described as follows.

Let $\{v_i\}_{i=0}^d$ denote a basis for V.

For $A \in \text{End}(V)$ and $M \in \text{Mat}_{d+1}(\mathbb{F})$, we say that M represents A with respect to $\{v_i\}_{i=0}^d$ whenever

$$Av_j = \sum_{i=0}^d M_{i,j}v_i \qquad (0 \le j \le d).$$

The isomorphism sends each $A \in \text{End}(V)$ to the unique matrix in $\text{Mat}_{d+1}(\mathbb{F})$ that represents A with respect to $\{v_i\}_{i=0}^d$.

Next we define a Leonard pair.

Definition

A **Leonard pair** on V is an ordered pair A, A^* of elements in End(V) such that:

- (i) there exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A* is diagonal;
- (ii) there exists a basis for V with respect to which the matrix representing A^* is irreducible tridiagonal and the matrix representing A is diagonal.

For a Leonard pair A, A^* on V,

	basis 1	basis 2
A	irred. tridiagonal	diagonal
A^*	diagonal	irred. tridiagonal

イロン スピン イヨン イヨン

On the previous slide, we saw two irreducible tridiagonal matrices;

each comes with its MPS.

These two MPS are related by some equations called Askey-Wilson duality.

We give the details on the next slide.

Leonard pairs and Askey-Wilson duality

For a Leonard pair A, A^* on V, write

Let $\{P_i\}_{i=0}^d$ (resp. $\{P_i^*\}_{i=0}^d$) denote the MPS for T (resp. T^*). Then for $0 \le i \le d$,

$$P_i(\theta_0) \neq 0, \qquad P_i^*(\theta_0^*) \neq 0.$$

Moreover for $0 \le i, j \le d$,

$$\frac{P_i(\theta_j)}{P_i(\theta_0)} = \frac{P_j^*(\theta_i^*)}{P_j^*(\theta_0^*)}.$$
(1)

イロト 不得 トイラト イラト 二日

The equations (1) are called **Askey-Wilson duality**.

Kazumasa Nomura, Paul Terwilliger Leonard pairs, spin models, and distance-regular graphs

In 1982, Douglas Leonard classified all the pairs of MPS that satisfy Askey-Wilson duality.

A more detailed classification was given in 1985 by Bannai and Ito.

The MPS that show up in the solutions are listed below:

q-Racah, *q*-Hahn, dual *q*-Hahn, *q*-Krawtchouk, dual *q*-Krawtchouk, quantum *q*-Krawtchouk, affine *q*-Krawtchouk, Racah, Hahn, dual-Hahn, Krawtchouk, Bannai/Ito.

The above polynomials make up the terminating branch of the Askey scheme of orthogonal polynomials.

We invented the notion of a Leonard pair in order to clarify and simplify Leonard's theorem.

Replacing the polynomials by a pair of linear transformations provides a basis-free approach that we find illuminating.

For more information see

P. Terwilliger: An algebraic approach to the Askey scheme of orthogonal polynomials. Orthogonal polynomials and special functions, 255–330, Lecture Notes in Math., 1883, Springer, Berlin, 2006; arXiv:math.QA/0408390.

We will be discussing a type of Leonard pair, said to be self-dual.

For an algebra \mathcal{A} , an **automorphism** of \mathcal{A} is an algebra isomorphism $\mathcal{A} \to \mathcal{A}$.

Let A, A^* denote a Leonard pair on V.

This Leonard pair is said to be **self-dual** whenever there exists an automorphism σ of End(V) that sends $A \leftrightarrow A^*$.

In this case σ is unique and $\sigma^2 = 1$; we call σ the **duality** for A, A^* .

When working with a Leonard pair, it is convenient to consider a closely related object called a Leonard system.

Before we define a Leonard system, we recall a few concepts from linear algebra.

For $A \in End(V)$, we say that A is **diagonalizable** whenever V is spanned by the eigenspaces of A.

We say that A is **multiplicity-free** whenever A is diagonalizable, and each eigenspace of A has dimension one.

Assume that A is multiplicity-free, and let $\{V_i\}_{i=0}^d$ denote an ordering of the eigenspaces of A.

For $0 \le i \le d$ define $E_i \in \text{End}(V)$ such that $(E_i - I)V_i = 0$ and $E_iV_j = 0$ if $j \ne i$ $(0 \le j \le d)$.

Thus E_i is the projection from V onto V_i .

We call E_i the **primitive idempotent** of A for V_i .

Let $\langle A \rangle$ denote the subalgebra of End(V) generated by A.

Then $\{A^i\}_{i=0}^d$ and $\{E_i\}_{i=0}^d$ each form a basis for the vector space $\langle A \rangle$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ → つへで

Leonard systems; preliminary comments

Let A, A^* denote a Leonard pair on V.

It is known that each of A, A^* is multiplicity-free.

Let $\{E_i\}_{i=0}^d$ denote an ordering of the primitive idempotents of A.

For $0 \leq i \leq d$ pick $0 \neq v_i \in E_i V$.

Then $\{v_i\}_{i=0}^d$ is a basis for V.

The ordering $\{E_i\}_{i=0}^d$ is said to be **standard** whenever the matrix representing A^* with respect to $\{v_i\}_{i=0}^d$ is irreducible tridiagonal.

If the ordering $\{E_i\}_{i=0}^d$ is standard, then the ordering $\{E_{d-i}\}_{i=0}^d$ is also standard, and no further ordering is standard.

A standard ordering of the primitive idempotents of A^* is similarly defined.

Kazumasa Nomura, Paul Terwilliger

Leonard pairs, spin models, and distance-regular graphs

Definition

By a **Leonard system** on V we mean a sequence

$$\Phi = (A; \{E_i\}_{i=0}^d; A^*; \{E_i^*\}_{i=0}^d)$$

of elements in $\operatorname{End}(V)$ such that:

- (i) A, A^* is a Leonard pair on V;
- (ii) $\{E_i\}_{i=0}^d$ is a standard ordering of the primitive idempotents of A;
- (iii) $\{E_i^*\}_{i=0}^d$ is a standard ordering of the primitive idempotents of A^* .

New Leonard systems from old

Until further notice, fix a Leonard system on V:

$$\Phi = (A; \{E_i\}_{i=0}^d; A^*; \{E_i^*\}_{i=0}^d).$$

Note that each of the following is a Leonard system on V:

$$\Phi^* = (A^*; \{E_i^*\}_{i=0}^d; A; \{E_i\}_{i=0}^d),$$

$$\Phi^{\downarrow} = (A; \{E_i\}_{i=0}^d; A^*; \{E_{d-i}^*\}_{i=0}^d),$$

$$\Phi^{\Downarrow} = (A; \{E_{d-i}\}_{i=0}^d; A^*; \{E_i^*\}_{i=0}^d).$$

Moreover, for $\alpha, \beta, \alpha^*, \beta^* \in \mathbb{F}$ with $\alpha \alpha^* \neq 0$, the sequence

$$(\alpha A + \beta I; \{E_i\}_{i=0}^d; \alpha^* A^* + \beta^* I; \{E_i^*\}_{i=0}^d)$$

is a Leonard system on V.

Definition

Referring to our Leonard system Φ , for any object ω associated with Φ , let ω^* denote the corresponding object for Φ^* .

Kazumasa Nomura, Paul Terwilliger Leonard pairs, spin models, and distance-regular graphs

Definition

Referring to our Leonard system

$$\Phi = (A; \{E_i\}_{i=0}^d; A^*; \{E_i^*\}_{i=0}^d),$$

for $0 \leq i \leq d$ let θ_i (resp. θ_i^*) denote the eigenvalue of A (resp. A^*) corresponding to E_i (resp. E_i^*).

We call $\{\theta_i\}_{i=0}^d$ (resp. $\{\theta_i^*\}_{i=0}^d$) the eigenvalue sequence (resp. dual eigenvalue sequence) of Φ .

We now define the Φ -standard basis of V.

Pick $0 \neq u \in E_0 V$.

The vectors $\{E_i^*u\}_{i=0}^d$ form a basis for V, said to be Φ -standard.

With respect to this basis the matrix representing A is irreducible tridiagonal, and the matrix representing A^* is diagonal with (i, i)-entry θ_i^* for $0 \le i \le d$.

The scalars $\{c_i\}_{i=1}^d$, $\{a_i\}_{i=0}^d$, $\{b_i\}_{i=0}^{d-1}$

With respect to the Φ -standard basis for V, the matrices representing A and A^* are

where $\{c_i\}_{i=1}^d$, $\{a_i\}_{i=0}^d$, $\{b_i\}_{i=0}^{d-1}$ are scalars in \mathbb{F} such that $b_{i-1}c_i \neq 0$ for $1 \leq i \leq d$.

By construction

$$\theta_0 = c_i + a_i + b_i \qquad (0 \le i \le d),$$

where $c_0 = 0$ and $b_d = 0$.

Kazumasa Nomura, Paul Terwilliger

Leonard pairs, spin models, and distance-regular graphs

Earlier we defined the Φ -standard basis for V. Next we define the Φ -split basis for V.

The following notation will be useful.

For $0 \leq i \leq d + 1$ define polynomials $\tau_i, \eta_i \in \mathbb{F}[\lambda]$ by

$$\tau_i = (\lambda - \theta_0)(\lambda - \theta_1) \cdots (\lambda - \theta_{i-1}),$$

$$\eta_i = (\lambda - \theta_d)(\lambda - \theta_{d-1}) \cdots (\lambda - \theta_{d-i+1}).$$

Each of τ_i , η_i is monic with degree *i* for $0 \le i \le d + 1$.

A D D A D D A D D A D D A

For $0 \neq u \in E_0^* V$ the vectors $\{\tau_i(A)u\}_{i=0}^d$ form a basis for V, said to be Φ -split.

With respect to this basis, the matrices representing A and A^* are

$$A: \begin{pmatrix} \theta_0 & & & \mathbf{0} \\ 1 & \theta_1 & & & \\ & 1 & \theta_2 & & \\ & & \ddots & & \\ & & & \ddots & \\ \mathbf{0} & & & & 1 & \theta_d \end{pmatrix}, A^*: \begin{pmatrix} \theta_0^* & \varphi_1 & & & \mathbf{0} \\ & \theta_1^* & \varphi_2 & & & \\ & & & \theta_2^* & \cdot & \\ & & & & \ddots & \\ & & & & & \ddots & \\ \mathbf{0} & & & & & & \theta_d^* \end{pmatrix},$$

where $\{\varphi_i\}_{i=1}^d$ are nonzero scalars in \mathbb{F} .

Definition

We call the sequence $\{\varphi_i\}_{i=1}^d$ the first split sequence of Φ .

Let $\{\phi_i\}_{i=1}^d$ denote the first split sequence of Φ^{\downarrow} .

We call $\{\phi_i\}_{i=1}^d$ the second split sequence of Φ .

By the **parameter array** of Φ we mean the sequence

 $(\{\theta_i\}_{i=0}^d; \{\theta_i^*\}_{i=0}^d; \{\varphi_i\}_{i=1}^d; \{\phi_i\}_{i=1}^d).$

Kazumasa Nomura, Paul Terwilliger Leonard pairs, spin models, and distance-regular graphs

Lemma

The Leonard system Φ is uniquely determined up to isomorphism by its parameter array.

Lemma

The scalars $\{c_i\}_{i=1}^d$, $\{b_i\}_{i=0}^{d-1}$ of Φ are determined by the parameter array of Φ in the following way:

$$c_{i} = \phi_{i} \frac{\eta_{d-i}^{*}(\theta_{i}^{*})}{\eta_{d-i+1}^{*}(\theta_{i-1}^{*})} \qquad (1 \le i \le d),$$

$$b_{i} = \varphi_{i+1} \frac{\tau_{i}^{*}(\theta_{i}^{*})}{\tau_{i+1}^{*}(\theta_{i+1}^{*})} \qquad (0 \le i \le d-1)$$

< ロ > < 同 > < 三 > < 三 >

Earlier we defined duality for Leonard pairs. We now define duality for Leonard systems.

The Leonard system Φ is said to be **self-dual** whenever there exists an automorphism σ of End(V) that sends $A \leftrightarrow A^*$ and $E_i \leftrightarrow E_i^*$ for $0 \le i \le d$.

In this case, σ is unique and $\sigma^2 = 1$; we call σ the **duality** of Φ .

Lemma

The Leonard system Φ is self-dual if and only if $\theta_i = \theta_i^*$ for $0 \le i \le d$. In this case, $\phi_i = \phi_{d-i+1}$ for $1 \le i \le d$.

イロン 不同 とうほう 不同 とう

The classification of Leonard systems

Theorem (Ter 2001)

Given scalars $(\{\theta_i\}_{i=0}^d; \{\theta_i^*\}_{i=0}^d; \{\varphi_i\}_{i=1}^d; \{\phi_i\}_{i=1}^d)$ (*) in \mathbb{F} . Then there exists a Leonard system Φ over \mathbb{F} with parameter array (*) if and only if the following conditions hold.

(i) $\theta_i \neq \theta_j$, $\theta_i^* \neq \theta_j^*$ if $i \neq j$, $(0 \le i, j \le d)$. (ii) $\varphi_i \neq 0$, $\phi_i \neq 0$ $(1 \le i \le d)$. (iii) $\varphi_i = \phi_1 \sum_{h=0}^{i-1} \frac{\theta_h - \theta_{d-h}}{\theta_0 - \theta_d} + (\theta_i^* - \theta_0^*)(\theta_{i-1} - \theta_d)$ $(1 \le i \le d)$. (iv) $\phi_i = \varphi_1 \sum_{h=0}^{i-1} \frac{\theta_h - \theta_{d-h}}{\theta_0 - \theta_d} + (\theta_i^* - \theta_0^*)(\theta_{d-i+1} - \theta_0)$ $(1 \le i \le d)$. (v) The expressions

$$\frac{\theta_{i-2}-\theta_{i+1}}{\theta_{i-1}-\theta_i}, \qquad \frac{\theta_{i-2}^*-\theta_{i+1}^*}{\theta_{i-1}^*-\theta_i^*}$$

are equal and independent of i for $2 \le i \le d - 1$. Moreover, if (i)–(v) hold then Φ is unique up to isomorphism.

Leonard pairs, spin models, and distance-regular graphs

On the previous slide we gave many conditions on a parameter array.

The most general solution is called q-**Racah**, and described as follows.

Start with nonzero scalars a, b, c, q in $\mathbb F$ such that $q^4 \neq 1$ and

•
$$q^{2i} \neq 1$$
 for $1 \leq i \leq d$;

- neither of a^2 , b^2 is among $q^{2d-2}, q^{2d-4}, \dots, q^{2-2d}$;
- none of abc, $a^{-1}bc$, $ab^{-1}c$, abc^{-1} is among $q^{d-1}, q^{d-3}, \ldots, q^{1-d}$.

Leonard systems of *q*-Racah type, cont.

Define

$$\begin{split} \theta_i &= aq^{2i-d} + a^{-1}q^{d-2i},\\ \theta_i^* &= bq^{2i-d} + b^{-1}q^{d-2i} \end{split}$$

for $0 \leq i \leq d$, and

$$\begin{split} \varphi_i &= a^{-1} b^{-1} q^{d+1} (q^i - q^{-i}) (q^{i-d-1} - q^{d-i+1}) \\ &\times (q^{-i} - abcq^{i-d-1}) (q^{-i} - abc^{-1}q^{i-d-1}), \\ \phi_i &= a b^{-1} q^{d+1} (q^i - q^{-i}) (q^{i-d-1} - q^{d-i+1}) \\ &\times (q^{-i} - a^{-1} bcq^{i-d-1}) (q^{-i} - a^{-1} bc^{-1}q^{i-d-1}) \end{split}$$

for $1 \leq i \leq d$.

Kazumasa Nomura, Paul Terwilliger Leonard pairs, spin models, and distance-regular graphs

Then the sequence

$$(\{\theta_i\}_{i=0}^d; \{\theta_i^*\}_{i=0}^d; \{\varphi_i\}_{i=1}^d; \{\phi_i\}_{i=1}^d)$$

is the parameter array of a Leonard system Φ over \mathbb{F} , said to have q-Racah type.

The 4-tuple (a, b, c, q) is called the **Huang data** of Φ .

The Leonard system Φ is self-dual if and only if a = b.

We return our attention to an arbitrary Leonard system on V:

$$\Phi = (A; \{E_i\}_{i=0}^d; A^*; \{E_i^*\}_{i=0}^d).$$

Our next goal is to define some elements $\{A_i\}_{i=0}^d$ that form a basis for the vector space $\langle A \rangle$.

We call the $\{A_i\}_{i=0}^d$ the **pseudo distance-matrices** of Φ .

To define these matrices, we first introduce a certain bijection $\rho: \langle A \rangle \rightarrow \langle A^* \rangle$.

The bijection ρ is \mathbb{F} -linear but not an algebra homomorphism.

A D D A D D A D D A D D A

Lemma

There exists a unique \mathbb{F} -linear map $\rho : \langle A \rangle \to \langle A^* \rangle$ such that for $Y \in \langle A \rangle$,

$$YE_0^*E_0=Y^{\rho}E_0.$$

Moreover ρ is a bijection.

Kazumasa Nomura, Paul Terwilliger Leonard pairs, spin models, and distance-regular graphs
The scalar ν and the inverse of ρ

In order to describe the inverse of ρ , we introduce a scalar $\nu \in \mathbb{F}$.

The scalar ν satisfies

$$\nu E_0 E_0^* E_0 = E_0, \qquad \qquad \nu E_0^* E_0 E_0^* = E_0^*.$$

We have $\nu \neq 0$ and

$$\nu^{-1} = \mathrm{tr}(E_0 E_0^*).$$

It turns out that

$$\nu = \frac{\eta_d(\theta_0)\eta_d^*(\theta_0^*)}{\phi_1\phi_2\cdots\phi_d}.$$

We call ν the **pseudo size** of Φ .

Lemma

The inverse of ρ is $\nu \rho^*$.

Leonard pairs, spin models, and distance-regular graphs

Definition

For $0 \leq i \leq d$ let $A_i \in \langle A \rangle$ denote the ρ -preimage of E_i^* .

We call A_i the *i*th **pseudo distance-matrix** of Φ .

By the construction, ρ sends $A_i \mapsto E_i^*$ and $E_i \mapsto \nu^{-1}A_i^*$ for $0 \le i \le d$.

Kazumasa Nomura, Paul Terwilliger Leonard pairs, spin models, and distance-regular graphs

イロト 不得 トイラト イラト 二日

Lemma

For $0 \leq i \leq d$,

$$A_i E_0^* E_0 = E_i^* E_0,$$

 $A_i^* E_0 E_0^* = E_i E_0^*,$

 $E_i E_0^* E_0 = \nu^{-1} A_i^* E_0,$ $E_i^* E_0 E_0^* = \nu^{-1} A_i E_0^*.$

ヘロン ヘヨン ヘヨン ヘヨン

3

Kazumasa Nomura, Paul Terwilliger Leonard pairs, spin models, and distance-regular graphs

Lemma

The following hold:

(i) the elements $\{A_i\}_{i=0}^d$ form a basis for the vector space $\langle A \rangle$; (ii) $A_0 = I$; (iii) $\sum_{i=0}^d A_i = \nu E_0$.

Lemma

For $d \ge 1$, $A = c_1 A_1 + a_0 I$.

Kazumasa Nomura, Paul Terwilliger Leonard pairs, spin models, and distance-regular graphs

<ロ> (四) (四) (三) (三) (三)

Next we define some scalars $\{k_i\}_{i=0}^d$.

Definition

For $0 \le i \le d$ let $k_i \in \mathbb{F}$ denote the eigenvalue of A_i associated with E_0 . Thus

 $A_i E_0 = k_i E_0.$

We call k_i the *i*th **pseudo valency** of Φ .

Kazumasa Nomura, Paul Terwilliger Leonard pairs, spin models, and distance-regular graphs

イロト イボト イヨト イヨト

Lemma

We have

(i) $k_0 = 1;$ (ii) $\sum_{i=0}^{d} k_i = \nu;$ (iii) for $0 \le i \le d$,

$$k_i=\frac{b_0b_1\cdots b_{i-1}}{c_1c_2\ldots c_i};$$

(iv) for $0 \leq i \leq d$,

$$k_i = \frac{\varphi_1 \varphi_2 \cdots \varphi_i}{\phi_1 \phi_2 \cdots \phi_i} \frac{\eta_d^*(\theta_0^*)}{\tau_i^*(\theta_i^*) \eta_{d-i}^*(\theta_i^*)}.$$

Kazumasa Nomura, Paul Terwilliger

Leonard pairs, spin models, and distance-regular graphs

<ロ> (四) (四) (三) (三) (三) (三)

Next we define some scalars p_{ij}^h .

Since $\{A_i\}_{i=0}^d$ form a basis for $\langle A \rangle$, there exist scalars $p_{ij}^h \in \mathbb{F}$ $(0 \le h, i, j \le d)$ such that

$$A_i A_j = \sum_{h=0}^d p_{ij}^h A_h \qquad (0 \le i, j \le d).$$

We call the scalars p_{ii}^h the **pseudo intersection numbers** of Φ .

イロト イボト イヨト イヨト

For notational convenience define

$$q_{ij}^h = (p_{ij}^h)^* \qquad (0 \le h, i, j \le d).$$

By construction

$$A_i^*A_j^*=\sum_{h=0}^d q_{ij}^hA_h^*$$
 $(0\leq i,j\leq d).$

We call the scalars q_{ii}^h the **pseudo Krein parameters** of Φ .

・ロト ・回ト ・ヨト ・ヨト

Next we consider a type of Leonard pair, said to have spin.

The notion of a spin Leonard pair was introduced by Brian Curtin in 2007.

イロト イヨト イヨト イヨト

Lemma

Let A, A^* denote a Leonard pair on V.

For an invertible $W \in \langle A \rangle$ and invertible $W^* \in \langle A^* \rangle$ the following are equivalent:

$$WA^*W^{-1} = (W^*)^{-1}AW^*,$$

 $W^{-1}A^*W = W^*A(W^*)^{-1},$
 $W^*WA^* = AW^*W,$
 $A^*WW^* = WW^*A.$

Kazumasa Nomura, Paul Terwilliger Leonard pairs, spin models, and distance-regular graphs

イロト イヨト イヨト イヨト

Definition

Let A, A^* denote a Leonard pair on V.

A **Boltzmann pair** for A, A^* is an ordered pair W, W^* such that

- (i) W is an invertible element of $\langle A \rangle$;
- (ii) W^* is an invertible element of $\langle A^* \rangle$;
- (iii) W, W^* satisfy the four equivalent conditions in the previous lemma.

The Leonard pair A, A^* is said to have **spin** whenever there exists a Boltzmann pair for A, A^* .

In 2007 Brian Curtin classified up to isomorphism the spin Leonard pairs, and he described their Boltzmann pairs.

イロン 不同 とうほう 不同 とう

Until further notice, let A, A^* denote a spin Leonard pair on V with Boltzmann pair W, W^* .

Lemma

The following hold.

- (i) For nonzero scalars $\alpha, \alpha^* \in \mathbb{F}$ the pair $\alpha W, \alpha^* W^*$ is a Boltzmann pair for A, A^* .
- (ii) The pair W^{-1} , $(W^*)^{-1}$ is a Boltzmann pair for A, A^* .

イロト イボト イヨト イヨト

The products WW^*W and W^*WW^*

Next we investigate the products

 $WW^*W, \qquad W^*WW^*.$

Kazumasa Nomura, Paul Terwilliger Leonard pairs, spin models, and distance-regular graphs

イロト イヨト イヨト イヨト 三日

The products WW^*W and W^*WW^* , cont.

Lemma

The following agree up to a nonzero scalar factor in \mathbb{F} :

 $WW^*W, \qquad W^*WW^*.$

Kazumasa Nomura, Paul Terwilliger Leonard pairs, spin models, and distance-regular graphs

イロン イヨン イヨン

An action of the group $\mathrm{PSL}_2(\mathbb{Z})$

Using W and W^* we obtain an action of the modular group $PSL_2(\mathbb{Z})$ on End(V) as a group of automorphisms.

Recall that $\text{PSL}_2(\mathbb{Z})$ has a presentation by generators ψ , σ and relations $\psi^3 = 1$, $\sigma^2 = 1$.

Lemma (Curtin 2007)

The group $PSL_2(\mathbb{Z})$ acts on End(V) such that ψ sends

 $Y \mapsto (WW^*)^{-1} YWW^*$

and σ sends

$$Y\mapsto (WW^*W)^{-1}YWW^*W$$

for $Y \in \text{End}(V)$.

Leonard pairs, spin models, and distance-regular graphs

э

Lemma

The spin Leonard pair A, A^* is self-dual with duality σ .

Kazumasa Nomura, Paul Terwilliger Leonard pairs, spin models, and distance-regular graphs

イロト イヨト イヨト イヨト

Definition

The Boltzmann pair W, W^* is said to be **balanced** whenever

 $WW^*W = W^*WW^*.$

If W, W^* is not balanced, then we can balance it by multiplying one of W, W^* by an appropriate nonzero scalar in \mathbb{F} .

イロン 不同 とくほど 不同 とう

Extending the spin Leonard pair A, A^* to a self-dual Leonard system Φ

Until further notice, assume that W, W^* is balanced.

By construction, the duality σ sends $W \leftrightarrow W^*$.

Let $\{E_i\}_{i=0}^d$ denote a standard ordering of the primitive idempotents of A.

Define $E_i^* = E_i^\sigma$ for $0 \le i \le d$.

Then the sequence

$$\Phi = (A; \{E_i\}_{i=0}^d; A^*; \{E_i^*\}_{i=0}^d)$$

is a self-dual Leonard system on V with duality σ .

A D D A D D A D D A D D A

The scalars f and $\{t_i\}_{i=0}^d$

Since $\{E_i\}_{i=0}^d$ is a basis for $\langle A \rangle$ and W is an invertible element in $\langle A \rangle$, there exist nonzero scalars f, $\{t_i\}_{i=0}^d$ in \mathbb{F} such that $t_0 = 1$ and

$$W=f\sum_{i=0}^d t_i E_i.$$

Applying the duality σ we obtain

$$W^* = f \sum_{i=0}^d t_i E_i^*.$$

The scalar f is "free" and can be adjusted to have any nonzero value.

Kazumasa Nomura, Paul Terwilliger Leonard pairs, spin models, and distance-regular graphs

The elements W, W^* and the bijections ρ , ρ^*

Recall the bijections

$$\rho: \langle A \rangle \to \langle A^* \rangle, \qquad \qquad \rho^*: \langle A^* \rangle \to \langle A \rangle.$$

Next we find the action of ρ on $W^{\pm 1}$ and ρ^* on $(W^*)^{\pm 1}$.

For notational convenience define

$$\gamma = \nu^{-1} \sum_{i=0}^d k_i t_i.$$

Kazumasa Nomura, Paul Terwilliger Leonard pairs, spin models, and distance-regular graphs

The elements W, W^* and the bijections ρ , ρ^*

Lemma

The bijection ρ sends

$$W \mapsto f^2 \gamma (W^*)^{-1},$$

$$W^{-1} \mapsto f^{-2} \gamma^{-1} \nu^{-1} W^*.$$

The bijection ρ^* sends

$$W^* \mapsto f^2 \gamma W^{-1},$$

$$(W^*)^{-1} \mapsto f^{-2} \gamma^{-1} \nu^{-1} W$$

イロト イヨト イヨト イヨト

Moreover $\gamma \neq 0$.

Kazumasa Nomura, Paul Terwilliger Leonard pairs, spin models, and distance-regular graphs

Recall the basis $\{A_i\}_{i=0}^d$ for $\langle A \rangle$ and the basis $\{A_i^*\}_{i=0}^d$ for $\langle A^* \rangle$. Next we express $W^{\pm 1}$ in the basis $\{A_i\}_{i=0}^d$ and $(W^*)^{\pm 1}$ in the basis $\{A_i^*\}_{i=0}^d$.

Kazumasa Nomura, Paul Terwilliger Leonard pairs, spin models, and distance-regular graphs

イロト イポト イヨト イヨト

Main result on W, W^*

Theorem

We have

$$W = f\gamma \sum_{i=0}^{d} t_i^{-1} A_i,$$

$$W^{-1} = \nu^{-1} f^{-1} \gamma^{-1} \sum_{i=0}^{d} t_i A_i,$$

$$W^* = f\gamma \sum_{i=0}^{d} t_i^{-1} A_i^*,$$

$$(W^*)^{-1} = \nu^{-1} f^{-1} \gamma^{-1} \sum_{i=0}^{d} t_i A_i^*.$$

Kazumasa Nomura, Paul Terwilliger

Leonard pairs, spin models, and distance-regular graphs

ヘロト ヘロト ヘヨト ヘヨト

臣

We return our attention to an arbitrary Leonard system on V:

$$\Phi = (A; \{E_i\}_{i=0}^d; A^*; \{E_i^*\}_{i=0}^d).$$

Until further notice, assume that Φ has *q*-Racah type with Huang data (a, b, c, q).

We consider the case a = b = c.

イロト イポト イヨト イヨト

The *q*-Racah case with a = b = c

Lemma

Assume that a = b = c. Define

$$W = f \sum_{i=0}^{d} t_i E_i,$$
 $W^* = f \sum_{i=0}^{d} t_i E_i^*$

such that $0 \neq f \in \mathbb{F}$ and

$$t_i = (-1)^i a^{-i} q^{i(d-i)}$$
 $(0 \le i \le d).$

Then W, W^* is a Boltzmann pair for A, A^* .

Kazumasa Nomura, Paul Terwilliger Leonard pairs, spin models, and distance-regular graphs

イロン 不同 とうほう 不同 とう

Э

The *q*-Racah case with a = b = c, cont.

Lemma

Assume that a = b = c. Then

$$b_{i} = \frac{(q^{i-d} - q^{d-i})(aq^{i-d} - a^{-1}q^{d-i})(a^{3} - q^{d-2i-1})}{a(aq^{2i-d} - a^{-1}q^{d-2i})(a + q^{d-2i-1})},$$

$$c_{i} = \frac{a(q^{i} - q^{-i})(aq^{i} - a^{-1}q^{-i})(a^{-1} - q^{d-2i+1})}{(aq^{2i-d} - a^{-1}q^{d-2i})(a + q^{d-2i+1})}$$

for $1 \leq i \leq d-1$ and

$$b_0 = rac{(q^{-d}-q^d)(a^3-q^{d-1})}{a(a+q^{d-1})}, \ c_d = rac{(q^{-d}-q^d)(a-q^{d-1})}{q^{d-1}(a+q^{1-d})}.$$

Kazumasa Nomura, Paul Terwilliger

Leonard pairs, spin models, and distance-regular graphs

イロト イヨト イヨト イヨト

Э

We are done discussing Leonard pairs and Leonard systems.

Next we consider spin models.

From now on, assume that $\mathbb{F} = \mathbb{C}$.

イロト イヨト イヨト イヨト

Let X denote a nonempty finite set.

Let $Mat_X(\mathbb{C})$ denote the algebra consisting of the matrices that have rows and columns indexed by X and all entries in \mathbb{C} .

For $R \in Mat_X(\mathbb{C})$ and $x, y \in X$ the (x, y)-entry of R is denoted by R(x, y).

Let V denote the vector space over \mathbb{C} consisting of the column vectors whose entries are indexed by X.

The algebra $Mat_X(\mathbb{C})$ acts on V by left multiplication.

A D D A D D A D D A D D A

Definition

A matrix $W \in Mat_X(\mathbb{C})$ is said to be **type II** whenever W is symmetric with all entries nonzero and

$$\sum_{y \in X} \frac{\mathsf{W}(a, y)}{\mathsf{W}(b, y)} = |X| \delta_{a, b} \qquad (a, b \in X).$$
(2)

Condition (2) asserts that the Hadamard inverse of W is |X| times the ordinary inverse of W.

イロト イボト イヨト イヨト

The Nomura algebra

Next we recall the Nomura algebra of a type II matrix.

Definition

Assume $W \in Mat_X(\mathbb{C})$ is type II. For $b, c \in X$ define a vector $\mathbf{u}_{b,c} \in V$ that has y-entry

$$\frac{\mathsf{W}(b,y)}{\mathsf{W}(c,y)}$$

for $y \in X$. Further define

$$\begin{split} & \mathsf{N}(\mathsf{W}) = \\ & \{B \in \operatorname{Mat}_X(\mathbb{C}) \,|\, B \text{ is symmetric}, \ B\mathbf{u}_{b,c} \in \mathbb{C}\mathbf{u}_{b,c} \text{ for all } b,c \in X\}. \end{split}$$

Lemma (Nomura 1997)

Assume $W \in Mat_X(\mathbb{C})$ is type II.

Then N(W) is a commutative subalgebra of $Mat_X(\mathbb{C})$ that contains the all 1's matrix J and is closed under the Hadamard product.

We call N(W) the **Nomura algebra** of W.

For a real number $\alpha > 0$ let $\alpha^{1/2}$ denote the **positive** square root of α .

Definition (V. F. R. Jones 1989)

A matrix $\mathsf{W}\in \operatorname{Mat}_{\mathsf{X}}(\mathbb{C})$ is called a spin model whenever W is type II and

$$\sum_{y \in X} \frac{W(a, y)W(b, y)}{W(c, y)} = |X|^{1/2} \frac{W(a, b)}{W(a, c)W(b, c)}$$
(3)

for all $a, b, c \in X$.

A D D A D D A D D A D D A

Spin models and type II matrices, cont.

Condition (3) on the previous slide can be expressed as follows.

For $x \in X$ define a diagonal matrix $W^* = W^*(x)$ in $Mat_X(\mathbb{C})$ that has diagonal entries

$$W^*(y,y) = rac{|X|^{1/2}}{W(x,y)}$$
 $(y \in X).$

Condition (3) asserts that for all $x \in X$,

$$WW^*W = W^*WW^*,$$

where $W^* = W^*(x)$. This observation is due to A. Munemasa (1994).

Lemma (Nomura 1997)

Assume $W \in Mat_X(\mathbb{C})$ is a spin model. Then $W \in N(W)$.

Kazumasa Nomura, Paul Terwilliger Leonard pairs, spin models, and distance-regular graphs

イロン 不同 とくほど 不同 とう

Hadamard matrices

Next we consider some examples of type II matrices and spin models.

Definition

A matrix $H \in \operatorname{Mat}_X(\mathbb{C})$ is called **Hadamard** whenever every entry is ± 1 and $HH^t = |X| I$.

Example

The matrix

is Hadamard.

Kazumasa Nomura, Paul Terwilliger

Leonard pairs, spin models, and distance-regular graphs

・ロト ・日下 ・ヨト ・ヨト

э

A symmetric Hadamard matrix is type II.

More generally, for $W \in Mat_X(\mathbb{C})$ and $0 \neq \alpha \in \mathbb{C}$ the following are equivalent:

- (i) W is type II with all entries $\pm \alpha$;
- (ii) there exists a symmetric Hadamard matrix H such that $\mathbf{W}=\alpha\mathbf{H}.$

Definition

A type II matrix $W \in Mat_X(\mathbb{C})$ is said to have **Hadamard type** whenever W is a scalar multiple of a symmetric Hadamard matrix.

イロト イヨト イヨト イヨト
We briefly consider spin models of Hadamard type.

Example

Recall our example H of a Hadamard matrix. Then $\sqrt{-1}\,\mathrm{H}$ is a spin model of Hadamard type.

Spin models of Hadamard type sometimes cause technical problems, so occasionally we will assume that a spin model under discussion does not have Hadamard type.

イロト イボト イヨト イヨト

We now bring in distance-regular graphs.

We assume the audience is familiar with the basic concepts and notation for this topic; a good reference is the book

A. E. Brouwer, A. M. Cohen, A. Neumaier. Distance-regular graphs 1989.

イロト イポト イヨト イヨト

Let Γ denote a distance-regular graph, with vertex set X, path-length distance function ∂ , and diameter $D \ge 3$.

Recall that the distance-matrices $\{A_i\}_{i=0}^D$ of Γ form a basis for the Bose-Mesner algebra M of Γ .

Assume that M contains a spin model W.

Definition

We say that Γ affords W whenever $W \in M \subseteq N(W)$.

Until further notice, assume that the spin model W is afforded by $\boldsymbol{\Gamma}.$

We now consider the consequences.

Kazumasa Nomura, Paul Terwilliger Leonard pairs, spin models, and distance-regular graphs

イロト イヨト イヨト イヨト

Lemma (Curtin+Nomura 1999)

There exists an ordering $\{E_i\}_{i=0}^D$ of the primitive idempotents of M with respect to which Γ is formally self-dual.

For this ordering the intersection numbers and Krein parameters satisfy

$$p_{ij}^h = q_{ij}^h \qquad (0 \le h, i, j \le D).$$

イロト イポト イヨト イヨト

Since $\{E_i\}_{i=0}^D$ is a basis for M and W is an invertible element in M, there exist nonzero scalars f, $\{t_i\}_{i=0}^D$ in \mathbb{C} such that $t_0 = 1$ and

$$\mathsf{W}=f\sum_{i=0}^{D}t_{i}\mathsf{E}_{i}.$$

Kazumasa Nomura, Paul Terwilliger Leonard pairs, spin models, and distance-regular graphs

・ロト ・回 ト ・ヨト ・ヨト

Lemma

The scalar f satisfies

$$f^{-2} = |X|^{-3/2} \sum_{i=0}^{D} \mathsf{k}_i t_i,$$

where $\{k_i\}_{i=0}^D$ are the valencies of Γ .

We call the above equation the standard normalization.

・ロト ・回 ト ・ヨト ・ヨト

We now bring in the dual Bose-Mesner algebra.

Until further notice, fix a vertex $x \in X$.

For $0 \le i \le D$ let $\mathsf{E}_i^* = \mathsf{E}_i^*(x)$ denote the diagonal matrix in $\operatorname{Mat}_X(\mathbb{C})$ that has (y, y)-entry 1 if $\partial(x, y) = i$ and 0 if $\partial(x, y) \ne i$ $(y \in X)$. By construction,

$$E_i^* E_j^* = \delta_{i,j} E_i^*$$
 (0 ≤ i, j ≤ D), $\sum_{i=0}^D E_i^* = I.$

Consequently $\{\mathsf{E}_i^*\}_{i=0}^D$ form a basis for a commutative subalgebra $\mathsf{M}^* = \mathsf{M}^*(x)$ of $\operatorname{Mat}_X(\mathbb{C})$, called the **dual Bose-Mesner algebra** of Γ with respect to x.

イロト 不得 トイラト イラト 二日

Lemma (Curtin 1999)

The matrix $W^* = W^*(x)$ satisfies

$$\mathsf{W}^* = f \sum_{i=0}^D t_i \mathsf{E}_i^*.$$

Kazumasa Nomura, Paul Terwilliger Leonard pairs, spin models, and distance-regular graphs

ヘロン 人間 とくほど くほどう

Э

Next we recall the dual distance-matrices.

For $0 \le i \le D$ let $A_i^* = A_i^*(x)$ denote the diagonal matrix in $Mat_X(\mathbb{C})$ whose (y, y)-entry is the (x, y)-entry of $|X|E_i$ $(y \in X)$. We have $A_0^* = I$ and

$$\mathsf{A}_i^*\mathsf{A}_j^* = \sum_{h=0}^D \mathsf{q}_{ij}^h \mathsf{A}_h^* \qquad (0 \le i, j \le D).$$

The matrices $\{A_i^*\}_{i=0}^D$ form a basis for M^{*}. We call $\{A_i^*\}_{i=0}^D$ the **dual distance-matrices of** Γ with respect to x.

How W, W* are related

Next we consider how W, W^* are related.

We mentioned earlier that

 $WW^*W = W^*WW^*.$

Lemma (Caughman and Wolff 2005)

We have

$$WA_1^*W^{-1} = (W^*)^{-1}A_1W^*.$$

We recognize the above equations from our discussion of Boltzmann pairs.

We now bring in the subconstituent algebra.

Let T = T(x) denote the subalgebra of $Mat_X(\mathbb{C})$ generated by M and M^{*}.

We call T the subconstituent algebra of Γ with respect to x.

イロン イロン イヨン イヨン

The algebra T is semisimple, so it is natural to consider the irreducible T-modules.

An irreducible T-module U is called **thin** whenever the dimension of $E_i U$ and $E_i^* U$ is at most 1 for $0 \le i \le D$.

Define the **endpoint** of *U* to be $\min\{i|\mathsf{E}_i^*U \neq 0\}$, and the **dual-endpoint** of *U* to be $\min\{i|\mathsf{E}_iU \neq 0\}$.

イロト イボト イヨト

Lemma (Curtin 1999)

Each irreducible T-module is thin, provided that W is not of Hadamard type.

Lemma (Curtin and Nomura 2004)

Let U denote a thin irreducible T-module. Then the endpoint of U is equal to the dual-endpoint of U.

Theorem (Caughman and Wolff 2005)

Let U denote a thin irreducible T-module. Then the pair A_1 , A_1^* acts on U as a spin Leonard pair, and W, W* acts on U as a balanced Boltzman pair for this Leonard pair.

イロト イヨト イヨト イヨト

We have been discussing a distance-regular graph Γ that affords a spin model W.

We showed that the existence of W implies that the irreducible modules for all the subconstituent algebras of Γ take a certain form.

We now reverse the logical direction.

We show that whenever the irreducible modules for all the subconstituent algebras of Γ take this form, then Γ affords a spin model W.

Let Γ denote a distance-regular graph with vertex set X and diameter $D \ge 3$.

Assumption

Assume that Γ is formally self-dual with respect to the ordering $\{\mathsf{E}_i\}_{i=0}^D$ of the primitive idempotents.

イロト イボト イヨト イヨト

A condition on the irreducible T-modules

Definition

Let f, $\{t_i\}_{i=0}^D$ denote nonzero scalars in \mathbb{C} such that $t_0 = 1$. Define

$$\mathsf{W}=f\sum_{i=0}^{D}t_{i}\mathsf{E}_{i}.$$

For $x \in X$ define

$$\mathsf{W}^*(\mathsf{x}) = f \sum_{i=0}^D t_i \mathsf{E}^*_i(x).$$

Kazumasa Nomura, Paul Terwilliger Leonard pairs, spin models, and distance-regular graphs

イロン 不同 とくほど 不同 とう

Theorem (Nomura and Ter, 2019)

Assume that for all $x \in X$ and all irreducible T(x)-modules U,

- (i) U is thin;
- (ii) U has the same endpoint and dual-endpoint;
- (iii) the pair A₁, A₁^{*}(x) acts on U as a spin Leonard pair, and W, W^{*}(x) acts on U as a balanced Boltzmann pair for this spin Leonard pair;
- (iv) f satisfies the standard normalization equation.

Then W is a spin model afforded by Γ .

イロト イボト イヨト イヨト

Next we make the previous theorem more explicit, under the assumption that Γ has *q*-Racah type.

Assumption

Assume that Γ is formally self-dual with respect to the ordering $\{\mathsf{E}_i\}_{i=0}^D$ of the primitive idempotents.

Fix nonzero scalars $a,q\in\mathbb{C}$ such that

$$q^{2i} \neq 1$$
 $(1 \le i \le D),$
 $a^2 q^{2i} \neq 1$ $(1 - D \le i \le D - 1),$
 $a^3 q^{2i - D - 1} \neq 1$ $(1 \le i \le D).$

Kazumasa Nomura, Paul Terwilliger Leonard pairs, spin models, and distance-regular graphs

イロト イヨト イヨト イヨト

An assumption on the eigenvalues

For $0 \le i \le D$ let θ_i denote the eigenvalue of A₁ associated with E_i.

Assumption

Assume that

$$\theta_i = \alpha(aq^{2i-D} + a^{-1}q^{D-2i}) + \beta \qquad (0 \le i \le D),$$

where

$$\alpha = \frac{(aq^{2-D} - a^{-1}q^{D-2})(a+q^{D-1})}{q^{D-1}(q^{-1} - q)(aq - a^{-1}q^{-1})(a-q^{1-D})},$$

$$\beta = \frac{q(a+a^{-1})(a+q^{-D-1})(aq^{2-D} - a^{-1}q^{D-2})}{(q-q^{-1})(a-q^{1-D})(aq - a^{-1}q^{-1})}.$$

Kazumasa Nomura, Paul Terwilliger

Leonard pairs, spin models, and distance-regular graphs

イロト イヨト イヨト イヨト

An assumption on the intersection numbers

Assumption

Assume that the intersection numbers of Γ satisfy

$$\begin{split} \mathsf{b}_{\mathsf{i}} &= \frac{\alpha(q^{i-D}-q^{D-i})(aq^{i-D}-a^{-1}q^{D-i})(a^3-q^{D-2i-1})}{a(aq^{2i-D}-a^{-1}q^{D-2i})(a+q^{D-2i-1})},\\ \mathsf{c}_{\mathsf{i}} &= \frac{\alpha a(q^i-q^{-i})(aq^i-a^{-1}q^{-i})(a^{-1}-q^{D-2i+1})}{(aq^{2i-D}-a^{-1}q^{D-2i})(a+q^{D-2i+1})} \end{split}$$

for $1 \leq i \leq D - 1$ and

$$\begin{split} \mathsf{b}_0 &= \frac{\alpha(q^{-D}-q^D)(a^3-q^{D-1})}{a(a+q^{D-1})},\\ \mathsf{c}_D &= \frac{\alpha(q^{-D}-q^D)(a-q^{D-1})}{q^{D-1}(a+q^{1-D})}. \end{split}$$

Leonard pairs, spin models, and distance-regular graphs

・ロト ・回ト ・ヨト ・ヨト

An assumption on the irreducible T-modules

Assumption

Assume that for all $x \in X$ and all irreducible T(x)-modules U,

- (i) U is thin;
- (ii) U has the same endpoint and dual-endpoint (called r);
- (iii) the intersection numbers $\{c_i(U)\}_{i=1}^d, \{b_i(U)\}_{i=0}^{d-1}$ satisfy

$$\begin{split} b_{i}(U) &= \\ \frac{\alpha a(q^{i-d}-q^{d-i})(aq^{2r+i-D}-a^{-1}q^{D-2r-i})(a^{3}-q^{3D-2d-6r-2i-1})}{aq^{D-d-2r}(aq^{2r+2i-D}-a^{-1}q^{D-2r-2i})(a+q^{D-2r-2i-1})}, \\ c_{i}(U) &= \\ \frac{\alpha a(q^{i}-q^{-i})(aq^{d+2r+i-D}-a^{-1}q^{D-d-2r-i})(a^{-1}-q^{2d-D+2r-2i+1})}{q^{d-D+2r}(aq^{2r+2i-D}-a^{-1}q^{D-2r-2i})(a+q^{D-2r-2i+1})} \\ for 1 \leq i \leq d-1 \text{ and} \end{split}$$

Leonard pairs, spin models, and distance-regular graphs

< ロ > < 同 > < 三 > < 三 >

An assumption on the irreducible T-modules, cont.

Assumption

(iii) (continued)

$$b_0(U) = \frac{\alpha(q^{-d} - q^d)(a^3 - q^{3D-2d-6r-1})}{aq^{D-d-2r}(a + q^{D-2r-1})},$$

$$c_d(U) = \frac{\alpha(q^{-d} - q^d)(a - q^{D-2r-1})}{q^{d-1}(a + q^{D-2d-2r+1})}.$$

Kazumasa Nomura, Paul Terwilliger Leonard pairs, spin models, and distance-regular graphs

・ロト ・回ト ・ヨト ・ヨト

The second main theorem

Theorem (Nomura and Ter, 2019)

Under the above assumptions, define a matrix

$$\mathsf{W} = f \sum_{i=0}^{D} t_i \mathsf{E}_i$$

where

$$t_i = (-1)^i a^{-i} q^{i(D-i)}$$
 $(0 \le i \le D)$

and

$$f^2 = |X|^{3/2} \prod_{i=0}^{D-1} \frac{1 - aq^{2i+1-D}}{1 - a^{-2}q^{2i}}.$$

Then W is a spin model afforded by Γ .

Kazumasa Nomura, Paul Terwilliger

Leonard pairs, spin models, and distance-regular graphs

In this talk we first described the spin Leonard pairs.

We then considered a distance-regular graph Γ that affords a spin model.

Using spin Leonard pairs we showed that all the irreducible modules for all the subconstituent algebras of Γ take a certain form.

We then reversed the logical direction. We assumed that all the irreducible modules for all the subconstituent algebras of Γ take this form, and showed that Γ affords a spin model.

We explicitly constructed this spin model when Γ has *q*-Racah type.

THANK YOU FOR YOUR ATTENTION!

Э