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Overview

In this talk, we consider a Q-polynomial distance-regular graph Γ.

For a vertex x of Γ the corresponding subconstituent algebra
T = T (x) is generated by the adjacency matrix A and the dual
adjacency matrix A∗ = A∗(x) with respect to x .

We introduce a T -module N = N(x) called the nucleus of Γ with
respect to x .

We will show that the irreducible T -submodules of N have a
property called thin.

Under the assumption that Γ is a nonbipartite dual polar graph, we
give an explicit basis for N and the action of A,A∗ on this basis.
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Overview, cont.

Some of our main results are applications of the theory of
tridiagonal pairs.

We now turn our attention to this theory.
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Tridiagonal pairs

Let F denote a field.

Let V denote a nonzero vector space over F with finite dimension.

Let the F-algebra End(V ) consist of the F-linear maps from V to
V .

Consider an ordered pair A,A∗ of maps in End(V ).
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The definition of a tridiagonal pair

The above pair A,A∗ is called a tridiagonal pair whenever:

(i) each of A,A∗ is diagonalizable;

(ii) there exists an ordering {Vi}di=0 of the eigenspaces of A such
that

A∗Vi ⊆ Vi−1 + Vi + Vi+1 (0 ≤ i ≤ d),

where V−1 = 0 and Vd+1 = 0;

(iii) there exists an ordering {V ∗i }δi=0 of the eigenspaces of A∗

such that

AV ∗i ⊆ V ∗i−1 + V ∗i + V ∗i+1 (0 ≤ i ≤ δ),

where V ∗−1 = 0 and V ∗δ+1 = 0;

(iv) there does not exist a subspace W ⊆ V such that AW ⊆W ,
A∗W ⊆W , W 6= 0, W 6= V .
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Comments

Referring to the above definition, it turns out that d = δ; we call
this common value the diameter of the tridiagonal pair.

The tridiagonal pairs were introduced in 2001 by Ito, Tanabe, and
Terwilliger.
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Leonard pairs

We mention a special type of tridiagonal pair.

Referring to the tridiagonal pair A,A∗ on V , the following are
equivalent:

(i) dimVi = 1 for 0 ≤ i ≤ d ;

(ii) dimV ∗i = 1 for 0 ≤ i ≤ d .

We call A,A∗ a Leonard pair whenever (i), (ii) hold.
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A characterization of Leonard pairs

We are going to characterize the Leonard pairs among all the
tridiagonal pairs.

We will use the following notation.

For B ∈ End(V ) let 〈B〉 denote the subalgebra of End(V )
generated by B.
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A characterization of Leonard pairs

Theorem (Nomura+Ter, 2007)

Referring to the tridiagonal pair A,A∗ on V , the following are
equivalent:

(i) there exists a nonzero v ∈ V ∗0 and nonzero S ∈ 〈A〉 such that
Sv ∈ V ∗d ;

(ii) A,A∗ is a Leonard pair.

Assume that (i), (ii) hold. Then SV ∗0 = V ∗d .

We will use the above theorem shortly.
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Distance-regular graphs

We now turn our attention to graph theory.

For the rest of this talk, we take F = C.

From now on, Γ denotes a Q-polynomial distance-regular graph,
with vertex set X , path-length distance function ∂, and diameter
D ≥ 1.

For x ∈ X and 0 ≤ i ≤ D the set Γi (x) consists of the vertices
y ∈ X at distance ∂(x , y) = i .

We call Γi (x) the ith subconstituent of Γ with respect to x .
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Distance-regular graphs

Let MatX (C) denote the C-algebra consisting of the matrices that
have rows and columns indexed by X and all entries in C.

Let V = CX denote the vector space over C, consisting of the
column vectors that have coordinates indexed by X and all entries
in C.

The algebra MatX (C) acts on V by left multiplication. We call V
the standard module.
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Distance-regular graphs

We endow V with a Hermitean form 〈 , 〉 such that 〈u, v〉 = utv
for all u, v ∈ V . Here t denotes transpose and − denotes complex
conjugation.

For x ∈ X define a vector x̂ ∈ V that has x-coordinate 1 and all
other coordinates 0.

Observe that the set {x̂ |x ∈ X} is an orthonormal basis for V .
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Distance-regular graphs

We will discuss:

• the intersection numbers phi ,j (0 ≤ h, i , j ≤ D);

• the distance matrices Ai (0 ≤ i ≤ D);

• the adjacency matrix A = A1;

• the primitive idempotents Ei (0 ≤ i ≤ D);

• the eigenvalues θi (0 ≤ i ≤ D);

• the Krein parameters qhi ,j (0 ≤ h, i , j ≤ D);
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Distance-regular graphs, cont.

We fix x ∈ X .

We will discuss:

• the dual distance matrices A∗i = A∗i (x) (0 ≤ i ≤ D);

• the dual adjacency matrix A∗ = A∗1;

• the dual primitive idempotents E ∗i = E ∗i (x) (0 ≤ i ≤ D);

• the dual eigenvalues θ∗i (0 ≤ i ≤ D);

• the subconstituent algebra T = T (x) generated by A,A∗.
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Triple product relations

We recall the triple product relations.

Lemma (Ter 1992)

For 0 ≤ h, i , j ≤ D:

E ∗i AhE
∗
j = 0 if and only if phi ,j = 0;

EiA
∗
hEj = 0 if and only if qhi ,j = 0.
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The triple product relations, cont.

Among the triple product relations, we emphasize the cases h = 1
and h = D.
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The triple product relations for h = 1

Here is the case h = 1.

Lemma

For 0 ≤ i , j ≤ D:

E ∗i AE
∗
j =

{
0, if |i − j | > 1;

6= 0, if |i − j | = 1;

EiA
∗Ej =

{
0, if |i − j | > 1;

6= 0, if |i − j | = 1.

Paul Terwilliger The nucleus of a Q-polynomial distance-regular graph



The triple product relations for h = D

Here is the case h = D.

Lemma

For 0 ≤ i , j ≤ D:

E ∗i ADE
∗
j =

{
0, if i + j < D;

6= 0, if i + j = D;

EiA
∗
DEj =

{
0, if i + j < D;

6= 0, if i + j = D.
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The matrices AD and A∗D are invertible

We mention a fact for later use.

Lemma (Mamart 2018)

The matrices AD and A∗D are invertible.
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T -modules

For convenience, we adopt the following convention.

By a T -module, we mean a T -submodule of the standard module
V .
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Irreducible T -modules

Definition

A T -module W is said to be irreducible whenever W 6= 0 and
W does not contain a T -module besides 0 and W .

Lemma (Ter 92)

Every T-module is an orthogonal direct sum of irreducible
T -modules. In particular, the standard T-module V is an
orthogonal direct sum of irreducible T -modules.
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The thin condition

Definition

Let W denote an irreducible T -module. It is known that the
following are equivalent:

(i) dimEiW ≤ 1 (0 ≤ i ≤ D);

(ii) dimE ∗i W ≤ 1 (0 ≤ i ≤ D).

We say that W is thin whenever (i), (ii) hold.
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Irreducible T -modules and tridiagonal pairs

We now explain how irreducible T -modules are related to
tridiagonal pairs.

Lemma (Ter 92)

Let W denote an irreducible T -module. Then A,A∗ act on W as a
tridiagonal pair. This tridiagonal pair is a Leonard pair if only if W
is thin.
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Endpoint, dual endpoint, and diameter

Let W denote an irreducible T -module. By the endpoint of W we
mean

min{i |0 ≤ i ≤ D, E ∗i W 6= 0}.

By the dual endpoint of W , we mean

min{i |0 ≤ i ≤ D, EiW 6= 0}.

By the diameter of W , we mean∣∣{i |0 ≤ i ≤ D, E ∗i W 6= 0}
∣∣− 1.

By [Pascasio 2003] the diameter of W is equal to∣∣{i |0 ≤ i ≤ D, EiW 6= 0}
∣∣− 1.
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The primary T -module

Example (Ter 92)

There exists a unique irreducible T -module that has diameter
D; this T -module is called primary. An irreducible T -module is
primary iff it has endpoint 0 iff it has dual endpoint 0. The
primary T -module is thin.
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The action of AD on an irreducible T -module

We now consider the action of AD on an irreducible T -module.

Lemma

Let W denote an irreducible T -module, with endpoint r and
diameter d. Then

0 6= ADE
∗
r W ⊆

r+d∑
i=D−r

E ∗i W .
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The Caughman bound

Corollary

Let W denote an irreducible T -module, with endpoint r and
diameter d. Then the following hold.

(i) [Caughman 99] 2r − D + d ≥ 0.

(ii) Assume that equality holds in (i). Then W is thin and
ADE

∗
r W = E ∗D−rW.
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The action of A∗D on an irreducible T -module

Next, we consider the action of A∗D on an irreducible T -module.

Lemma

Let W denote an irreducible T -module, with dual endpoint t and
diameter d. Then

0 6= A∗DEtW ⊆
t+d∑

i=D−t
EiW .
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The dual Caughman bound

Corollary

Let W denote an irreducible T -module, with dual endpoint t and
diameter d. Then the following hold.

(i) [Caughman 99] 2t − D + d ≥ 0.

(ii) Assume that equality holds in (i). Then W is thin and
A∗DEtW = ED−tW.
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An inequality

Next, we combine the Caughman bound and the dual Caughman
bound into one inequality.

Theorem

Let W denote an irreducible T -module, with endpoint r , dual
endpoint t, and diameter d. Then

r + t − D + d ≥ 0.

Moreover, equality holds iff both t = r and d = D − 2r . In this
case, W is thin and ADE

∗
r W = E ∗D−rW and A∗DErW = ED−rW.

To prove the theorem, note that

r + t − D + d =
2r − D + d

2
+

2t − D + d

2
.
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The displacement

Motivated by the previous inequality, we make a definition.

Definition (Ter 2005)

Let W denote an irreducible T -module. By the displacement of
W , we mean the integer

r + t − D + d ,

where r (resp. t) (resp. d) denotes the endpoint (resp. dual
endpoint) (resp. diameter) of W .

Example

The primary T -module has displacement 0.
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The definition of the nucleus

We are now ready to define the nucleus.

Definition (Ter 24)

By the nucleus of Γ with respect to x , we mean the span of the
irreducible T -modules that have displacement 0.

In the next two slides, we emphasize a few points about the
nucleus.

Paul Terwilliger The nucleus of a Q-polynomial distance-regular graph



Describing the nucleus, cont.

Lemma

Consider the nucleus of Γ with respect to x.

(i) The nucleus is a T -module.

(ii) The orthogonal complement of the nucleus is spanned by the
irreducible T -modules that have displacement at least one.
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Describing the nucleus, cont.

Lemma

Let W denote an irreducible T -submodule of the nucleus, with
endpoint r , dual endpoint t, and diameter d. Then:

(i) 0 ≤ r ≤ D/2;

(ii) t = r ;

(iii) d = D − 2r ;

(iv) W is thin;

(v) ADE
∗
r W = E ∗D−rW;

(vi) A∗DErW = ED−rW.
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Isomorphism of T -modules

We recall the notion of isomorphism for T -modules.

Let W and W ′ denote T -modules.

By a T -module isomorphism from W to W ′, we mean a
C-linear bijection σ : W →W ′ such that σB = Bσ on W for all
B ∈ T .

The T -modules W and W ′ are called isomorphic whenever there
exists a T -module isomorphism from W to W ′.
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Isomorphism of T -modules, cont.

Lemma (Ter 2024)

Let W ,W ′ denote irreducible T -submodules of the nucleus. Then
the following are equivalent:

(i) the endpoints of W ,W ′ are the same;

(ii) the T-modules W ,W ′ are isomorphic.
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The nucleus from another point of view

So far, we used the concept of displacement to define a T -module
called the nucleus.

Next, we describe the nucleus from another point of view.
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An intersection

Lemma (Ter 2005)

For 0 ≤ i , j ≤ D such that i + j < D,

(E ∗0V + E ∗1V + · · ·+ E ∗i V ) ∩ (E0V + E1V + · · ·+ EjV ) = 0.
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The subspaces Ni

Definition

For 0 ≤ i ≤ D define a subspace Ni = Ni (x) by

Ni = (E ∗0V + E ∗1V + · · ·+ E ∗i V ) ∩ (E0V + E1V + · · ·+ ED−iV ).
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The subspaces Ni , cont.

Lemma (Ter 2005)

The sum
∑D

i=0Ni is direct.
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Action of A,A∗ on the Ni

Lemma

The A,A∗ act on {Ni}Di=0 as follows.

(A− θD−i I )Ni ⊆ Ni+1 (0 ≤ i ≤ D − 1);

(A− θ0I )ND = 0;

(A∗ − θ∗i I )Ni ⊆ Ni−1 (1 ≤ i ≤ D);

(A∗ − θ∗0I )N0 = 0.
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The subpace N

Definition

Define a subspace N = N(x) by

N =
D∑
i=0

Ni .
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The nucleus, revisited

Theorem (Ter 2024)

The following are the same:

(i) the subspace N = N(x);

(ii) the nucleus of Γ with respect to x.
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Comments on the nucleus

We clarify a few points about the nucleus.

Lemma

The following sums are orthogonal and direct:

N =
D∑
i=0

EiN, N =
D∑
i=0

E ∗i N.

Paul Terwilliger The nucleus of a Q-polynomial distance-regular graph



Some multiplicities

Definition

For 0 ≤ r ≤ D/2, let multr denote the multiplicity with which
the irreducible T -module with endpoint r appears in the
nucleus N = N(x).

Note that multr is a nonnegative integer.

We remark that mult0 = 1.
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A result about dimensions

Theorem (Ter 2024)

For 0 ≤ i ≤ D/2, the following subspaces have dimension∑i
r=0 multr :

EiN, ED−iN, E ∗i N,

E ∗D−iN, Ni , ND−i .
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The nucleus for some elementary examples

Next, we consider some examples.

In the next few slides, we describe the nucleus N = N(x) under the
assumption that Γ belongs to some elementary families of
examples.

Later we will consider a more substantial family of examples.
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The nucleus: Example 1

Example

Assume that Γ is a D-cube. It is shown by [Junie Go 2001] that
each irreducible T -module has displacement 0. Therefore, the
nucleus of Γ with respect to x is equal to the standard module
V .

The D-cube is a bipartite antipodal 2-cover.
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The nucleus: Example 2

Example

Assume that Γ is a bipartite antipodal 2-cover (this property is
often called 2-homogeneous). It is shown by [Curtin 2001] that
each irreducible T -module has displacement 0. Therefore, the
nucleus of Γ with respect to x is equal to the standard module
V .
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The nucleus: Example 3

Example

Assume that Γ is the Odd graph OD+1. It is shown by [Ter
1992] that for each irreducible T -module W the endpoint r and
diameter d satisfy r + d = D. Consequently, W has
displacement 0 if and only if W is primary. Therefore, the
nucleus of Γ with respect to x is equal to the primary T -module.
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The nucleus: Example 4

Example

Assume that Γ is a Hamming graph H(D,N) with N ≥ 3. By
construction, the vertex set X of Γ has cardinality ND . It was
shown by [Mamart 2017] that Ni has dimension

(D
i

)
for

0 ≤ i ≤ D. Consequently, the nucleus of Γ with respect to x has
dimension 2D .
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The dual polar graphs

For the rest of this talk, we consider a family of Q-polynomial
distance-regular graphs called the dual polar graphs.

These graphs are defined on the next three slides.
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The dual polar graphs

Example

Let U denote a finite vector space with one of the following
nondegenerate forms:

name dim(U) field form e

BD(pn) 2D + 1 GF (pn) quadratic 0
CD(pn) 2D GF (pn) symplectic 0
DD(pn) 2D GF (pn) quadratic −1

(Witt index D)
2DD+1(pn) 2D + 2 GF (pn) quadratic 1

(Witt index D)
2A2D(pn) 2D + 1 GF (p2n) Hermitean 1/2

2A2D−1(pn) 2D GF (p2n) Hermitean −1/2
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The dual polar graphs, cont.

Example (continued...)

A subspace of U is called isotropic whenever the form vanishes
completely on that subspace. In each of the above cases, the
dimension of any maximal isotropic subspace is D. The
corresponding dual polar graph Γ has vertex set X consisting of
the maximal isotropic subspaces of U. Vertices y , z ∈ X are
adjacent whenever y ∩ z has dimension D − 1. More generally,
∂(y , z) = D − dim y ∩ z .
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The dual polar graphs, cont.

Example (continued..)

The graph Γ is distance-regular with diameter D and
intersection numbers

ci =
qi − 1

q − 1
, ai = (qe+1 − 1)

qi − 1

q − 1
, bi = qe+1 q

D − qi

q − 1

for 0 ≤ i ≤ D, where q = pn, pn, pn, pn, p2n, p2n. The graph Γ is
a regular near 2D-gon in the sense of BCN.

From now on, we assume that Γ is a dual polar graph that is
nonbipartite (e 6= −1).
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The dual polar graphs are Q-polynomial

Lemma

The graph Γ has a Q-polynomial structure such that

θi = qe+1 q
D − 1

q − 1
− (qi − 1)(qD+e+1−i + 1)

q − 1
(0 ≤ i ≤ D),

θ∗i =
qD+e + q

qe + 1

q−i (qD+e + 1)− qe − 1

q − 1
(0 ≤ i ≤ D).
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The intersection number a1.

Note that qe+1 = a1 + 1.

It is often convenient to write things in terms of a1 instead of e.

Lemma

The intersection numbers of Γ are given by

ci =
qi − 1

q − 1
, ai = a1

qi − 1

q − 1
, bi = (a1 + 1)

qD − qi

q − 1

for 0 ≤ i ≤ D.

Paul Terwilliger The nucleus of a Q-polynomial distance-regular graph



The eigenvalues in terms of a1

Lemma

The eigenvalues of Γ are

θi =
(a1 + 1)qD−i − qi − a1

q − 1
(0 ≤ i ≤ D).
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The q-binomial coefficients

We bring in some notation. For an integer n ≥ 0 define

[n]q =
qn − 1

q − 1
.

We further define

[n]!q = [n]q[n − 1]q · · · [2]q[1]q.

We interpret [0]!q = 1. For 0 ≤ i ≤ n define the q-binomial
coefficient (

n

i

)
q

=
[n]!q

[i ]!q[n − i ]!q
.
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The valencies of Γ

Lemma

The valencies of Γ are

ki = (a1 + 1)iq( i
2)
(
D

i

)
q

(0 ≤ i ≤ D).

In particular,

k = (a1 + 1)
qD − 1

q − 1
, kD = (a1 + 1)Dq(D2).
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The irreducible T -modules

Let W denote an irreducible T -module.

Then W is thin by [Ter 1992].

We now consider the intersection numbers of W .
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The intersection numbers of an irreducible T -module

Lemma (Ter 1992)

Let W denote an irreducible T -module, with endpoint r , dual
endpoint t, and diameter d. The intersection numbers of W are
described as follows. For 0 ≤ i ≤ d,

ci (W ) = qt
qi − 1

q − 1
,

ai (W ) =
(a1 + 1)qD−d−t+i − qt+i − a1

q − 1
,

bi (W ) = (a1 + 1)
qD−t − qD−d−t+i

q − 1
.
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The intersection number ai(W )

Referring to the previous lemma, we are mainly interested in
ai (W ).

In the next slide, we clarify the meaning of ai (W ).
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The intersection number ai(W ), cont.

Lemma (Cerzo 2010)

Let W denote an irreducible T -module, with endpoint r and
diameter d. Then the following holds on W :

E ∗r+iAE
∗
r+i = ai (W )E ∗r+i (0 ≤ i ≤ d).
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The intersection number ai(W ), cont.

Let W denote an irreducible T -module, with endpoint r and
diameter d .

Our next goal is to compare the intersection number ai (W ) with
the intersection number ar+i of Γ (0 ≤ i ≤ d).
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An inequality involving ai(W )

Lemma

Let W denote an irreducible T -module, with endpoint r and
diameter d. Then for 0 ≤ i ≤ d,

ai (W ) ≤ ar+i .

Proof.

The scalar ai (W ) is an eigenvalue of the subgraph induced on
Γr+i (x). This subgraph is regular with valency ar+i . The result
follows.

Next, we examine ar+i − ai (W ) in the above lemma.
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An inequality involving ai(W ), cont.

Lemma

Let W denote an irreducible T -module, with endpoint r , dual
endpoint t, and diameter d. Then for 0 ≤ i ≤ d,

ar+i − ai (W ) = qi+D−d−t q
2t−D+d − 1 + a1(qr+t−D+d − 1)

q − 1
.

Moreover

q2t−D+d − 1 ≥ 0, qr+t−D+d − 1 ≥ 0.
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Irreducible T -modules with displacement 0

Theorem (Ter 2024)

Let W denote an irreducible T -module, with endpoint r , dual
endpoint t, and diameter d. Then the following are equivalent:

(i) there exists an integer i (0 ≤ i ≤ d) such that ar+i = ai (W );

(ii) ar+i = ai (W ) for 0 ≤ i ≤ d;

(iii) W has displacement 0.
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Describing the nucleus

Corollary (Ter 2024)

The following hold for 0 ≤ i ≤ D:

(i) E ∗i N = {v ∈ E ∗i V |E ∗i AE ∗i v = aiv};
(ii) E ∗i N has an orthogonal basis consisting of the characteristic

vectors of the connected components of Γi (x).
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An orthogonal basis for the nucleus

Our next goal is to find an orthogonal basis for the nucleus
N = N(x).

Paul Terwilliger The nucleus of a Q-polynomial distance-regular graph



The relation ∼

Definition

Using the vertex x , we define a binary relation ∼ on X as
follows. For y , z ∈ X we declare y ∼ z whenever both

(i) ∂(x , y) = ∂(x , z);

(ii) y , z are in the same connected component of Γi (x), where
i = ∂(x , y) = ∂(x , z).

Note that ∼ is an equivalence relation.
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The equivalence classes of ∼

We now describe the equivalence classes of ∼.

Lemma

For 0 ≤ i ≤ D the set Γi (x) is a disjoint union of ∼ equivalence
classes. These equivalence classes are the connected components
of Γi (x).
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An orthogonal basis for the nucleus

Theorem (Ter 2024)

The nucleus N has an orthogonal basis consisting of the
characteristic vectors of the ∼ equivalence classes.
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The dimension of the nucleus

Corollary

The following are the same:

(i) the dimension of N;

(ii) the number of ∼ equivalence classes.
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The connected components of the subconstituents

Corollary

For 0 ≤ i ≤ D the following are the same:

(i) the dimension of E ∗i N;

(ii) the number of ∼ equivalence classes that are contained in
Γi (x);

(iii) the number of connected components of Γi (x).
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The ∼ equivalence classes

We have seen that the ∼ equivalence classes are just the
connected components of the subconstituents Γi (x) (0 ≤ i ≤ D).

In order to describe these ∼ equivalence classes in more detail, we
bring in a poset called the projective geometry LD(q).
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The projective geometry LD(q)

In what follows, we work with the finite field GF (q) associated
with Γ from the definition of a dual polar graph.
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The projective geometry LD(q)

Definition

Let V denote a vector space over GF (q) that has dimension D.
Let the set P consist of the subspaces of V. Define a partial
order ≤ on P such that for η, ζ ∈ P, η ≤ ζ whenever η ⊆ ζ. The
poset P,≤ is denoted LD(q) and called a projective geometry.
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The projective geometry LD(q)

Recall our fixed vertex x ∈ X .

By the definition of a dual polar graph, the vertex x is a vector
space over GF (q) that has dimension D.

For notational convenience, we always take the V = x .
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The projective geometry LD(q)

Definition

For η, ζ ∈ P, we say that ζ covers η whenever η ⊆ ζ and
dim ζ − dim η = 1. We say that η, ζ are adjacent whenever one
of η, ζ covers the other one. The set P together with the
adjacency relation, forms an undirected graph. For η ∈ P, let
the set P(η) consist of the elements in P that are adjacent to η.
For 0 ≤ i ≤ D, let the set Pi consist of the elements in P that
have dimension D − i . Note that P0 = {x}. For notational
convenience, define P−1 = ∅ and PD+1 = ∅.

In the next slide, we describe some basic combinatorial features of
P.
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Some features of LD(q)

Lemma

For 0 ≤ i ≤ D, each vertex in Pi is adjacent to exactly [i ]q vertices
in Pi−1 and exactly [D − i ]q vertices in Pi+1.

Lemma

We have

|Pi | =

(
D

i

)
q

(0 ≤ i ≤ D).
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Using LD(q) to describe N

We have been discussing the set P.

Earlier we found an orthogonal basis for the nucleus N.

Our next goal, is to display a bijection from P to this basis.
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Using LD(q) to describe the relation ∼

The result below follows from the work of Chih-wen Weng
concerning weak geodetically closed subgraphs (1998).

Lemma

For y , z ∈ X the following are equivalent:

(i) y ∼ z;

(ii) x ∩ y = x ∩ z.
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Using LD(q) to describe the relation ∼

Recall the standard module V of Γ.

Definition

For η ∈ P we define a vector ηN ∈ V as follows:

ηN =
∑
y∈X

x∩y=η

ŷ .

By construction, the above vector ηN is the characteristic vector of
a ∼ equivalence class.
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A bijection

Theorem (Ter 2024)

We give a bijection from P to our basis for N. The bijection
sends η → ηN for all η ∈ P.

Over the next three slides, we give some consequences of the
bijection.
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The dimension of E ∗i N

Lemma

The following hold for 0 ≤ i ≤ D.

(i) The number of connected components in Γi (x) is equal to(D
i

)
q
;

(ii) dimE ∗i N =
(D
i

)
q
.
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The dimension of the nucleus N

Corollary

We have

dimN =
D∑
i=0

(
D

i

)
q

.
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The multiplicty numbers, revisited

Recall the multiplicity numbers multr . Recall that mult0 = 1.

Corollary

We have

multr =

(
D

r

)
q

−
(

D

r − 1

)
q

(1 ≤ r ≤ D/2).

Paul Terwilliger The nucleus of a Q-polynomial distance-regular graph



The action of A,A∗ on the nucleus

We now bring in the adjacency matrix A of Γ, and the dual
adjacency matrix A∗ = A∗(x) of Γ with respect to x .

Theorem (Ter 2024)

We give the action of A,A∗ on the basis {ηN|η ∈ P} for N. For
0 ≤ i ≤ D and η ∈ Pi we have

AηN = a1
qi − 1

q − 1
ηN +

∑
ζ∈P(η)∩Pi+1

ζN + (a1 + 1)qi−1
∑

ζ∈P(η)∩Pi−1

ζN;

A∗ηN = θ∗i η
N.
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The action of A,A∗ on the nucleus

The previous theorem shows that the action of A on N becomes a
weighted adjacency map for LD(q).

We would like to acknowledge that a similar weighted adjacency
map for LD(q) showed up earlier in the work of Bernard, Crampé,
and Vinet [2022] concerning the dual polar graph with symplectic
type and q a prime.
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Summary

In this talk, we considered a Q-polynomial distance-regular graph Γ
with diameter D ≥ 1.

For a vertex x of Γ we considered the subconstituent algebra
T = T (x) generated by A and A∗ = A∗(x).

We introduced a T -module N = N(x) called the nucleus of Γ with
respect to x .

We showed that the irreducible T -submodules of N are thin.

Under the assumption that Γ is a nonbipartite dual polar graph, we
gave an explicit basis for N and the action of A,A∗ on this basis.

THANK YOU FOR YOUR ATTENTION!
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