# The nucleus of a *Q*-polynomial distance-regular graph

Paul Terwilliger

University of Wisconsin-Madison

Paul Terwilliger The nucleus of a *Q*-polynomial distance-regular graph

< ロ > < 同 > < 三 > < 三 >

In this talk, we consider a Q-polynomial distance-regular graph  $\Gamma$ .

For a vertex x of  $\Gamma$  the corresponding subconstituent algebra T = T(x) is generated by the adjacency matrix A and the dual adjacency matrix  $A^* = A^*(x)$  with respect to x.

We introduce a *T*-module  $\mathcal{N} = \mathcal{N}(x)$  called the **nucleus** of  $\Gamma$  with respect to *x*.

We will show that the irreducible  ${\mathcal T}\mbox{-submodules}$  of  ${\mathcal N}$  have a property called thin.

Under the assumption that  $\Gamma$  is a nonbipartite dual polar graph, we give an explicit basis for  $\mathcal{N}$  and the action of  $A, A^*$  on this basis.

Some of our main results are applications of the theory of tridiagonal pairs.

We now turn our attention to this theory.

Let  $\mathbb{F}$  denote a field.

Let V denote a nonzero vector space over  $\mathbb{F}$  with finite dimension. Let the  $\mathbb{F}$ -algebra  $\operatorname{End}(V)$  consist of the  $\mathbb{F}$ -linear maps from V to V.

Consider an ordered pair  $A, A^*$  of maps in End(V).

# The definition of a tridiagonal pair

The above pair  $A, A^*$  is called a **tridiagonal pair** whenever:

- (i) each of  $A, A^*$  is diagonalizable;
- (ii) there exists an ordering  $\{V_i\}_{i=0}^d$  of the eigenspaces of A such that

$$A^*V_i \subseteq V_{i-1} + V_i + V_{i+1} \quad (0 \le i \le d),$$

where  $V_{-1} = 0$  and  $V_{d+1} = 0$ ;

(iii) there exists an ordering  $\{V_i^*\}_{i=0}^{\delta}$  of the eigenspaces of  $A^*$  such that

$$AV_i^* \subseteq V_{i-1}^* + V_i^* + V_{i+1}^* \quad (0 \le i \le \delta),$$

where  $V_{-1}^*=0$  and  $V_{\delta+1}^*=0$ ;

(iv) there does not exist a subspace  $W \subseteq V$  such that  $AW \subseteq W$ ,  $A^*W \subseteq W$ ,  $W \neq 0$ ,  $W \neq V$ .

イロト イボト イヨト

Referring to the above definition, it turns out that  $d = \delta$ ; we call this common value the **diameter** of the tridiagonal pair.

The tridiagonal pairs were introduced in 2001 by Ito, Tanabe, and Terwilliger.

We mention a special type of tridiagonal pair.

Referring to the tridiagonal pair  $A, A^*$  on V, the following are equivalent:

(i) dim  $V_i = 1$  for  $0 \le i \le d$ ;

(ii) dim  $V_i^* = 1$  for  $0 \le i \le d$ .

We call  $A, A^*$  a **Leonard pair** whenever (i), (ii) hold.

イロン 不良 とくほど 不良 とう

We are going to characterize the Leonard pairs among all the tridiagonal pairs.

We will use the following notation.

For  $B \in \text{End}(V)$  let  $\langle B \rangle$  denote the subalgebra of End(V) generated by B.

#### Theorem (Nomura+Ter, 2007)

Referring to the tridiagonal pair  $A, A^*$  on V, the following are equivalent:

(i) there exists a nonzero  $v \in V_0^*$  and nonzero  $S \in \langle A \rangle$  such that  $Sv \in V_d^*$ ;

(ii)  $A, A^*$  is a Leonard pair.

Assume that (i), (ii) hold. Then  $SV_0^* = V_d^*$ .

We will use the above theorem shortly.

We now turn our attention to graph theory.

For the rest of this talk, we take  $\mathbb{F} = \mathbb{C}$ .

From now on,  $\Gamma$  denotes a Q-polynomial distance-regular graph, with vertex set X, path-length distance function  $\partial$ , and diameter  $D \ge 1$ .

For  $x \in X$  and  $0 \le i \le D$  the set  $\Gamma_i(x)$  consists of the vertices  $y \in X$  at distance  $\partial(x, y) = i$ .

We call  $\Gamma_i(x)$  the *i*th subconstituent of  $\Gamma$  with respect to *x*.

イロト イボト イヨト

Let  $Mat_X(\mathbb{C})$  denote the  $\mathbb{C}$ -algebra consisting of the matrices that have rows and columns indexed by X and all entries in  $\mathbb{C}$ .

Let  $V = \mathbb{C}^X$  denote the vector space over  $\mathbb{C}$ , consisting of the column vectors that have coordinates indexed by X and all entries in  $\mathbb{C}$ .

The algebra  $Mat_X(\mathbb{C})$  acts on V by left multiplication. We call V the **standard module**.

- 日本 - 日本 - 日本 - 日本 -

We endow V with a Hermitean form  $\langle , \rangle$  such that  $\langle u, v \rangle = u^t \overline{v}$  for all  $u, v \in V$ . Here t denotes transpose and – denotes complex conjugation.

For  $x \in X$  define a vector  $\hat{x} \in V$  that has x-coordinate 1 and all other coordinates 0.

Observe that the set  $\{\hat{x} | x \in X\}$  is an orthonormal basis for V.

We will discuss:

- the intersection numbers  $p_{i,j}^h$   $(0 \le h, i, j \le D)$ ;
- the distance matrices  $A_i$  ( $0 \le i \le D$ );
- the adjacency matrix  $A = A_1$ ;
- the primitive idempotents  $E_i$  ( $0 \le i \le D$ );
- the eigenvalues  $\theta_i$  ( $0 \le i \le D$ );
- the Krein parameters  $q_{i,j}^h$   $(0 \le h, i, j \le D)$ ;

イロト 不得 トイヨト イヨト

We fix  $x \in X$ .

We will discuss:

- the dual distance matrices A<sup>\*</sup><sub>i</sub> = A<sup>\*</sup><sub>i</sub>(x) (0 ≤ i ≤ D);
- the dual adjacency matrix  $A^* = A_1^*$ ;
- the dual primitive idempotents  $E_i^* = E_i^*(x)$   $(0 \le i \le D)$ ;
- the dual eigenvalues  $\theta_i^*$  ( $0 \le i \le D$ );
- the subconstituent algebra T = T(x) generated by  $A, A^*$ .

イロト 不得 トイヨト イヨト

We recall the triple product relations.

Lemma (Ter 1992) For  $0 \le h, i, j \le D$ :  $E_i^* A_h E_j^* = 0$  if and only if  $p_{i,j}^h = 0$ ;  $E_i A_h^* E_j = 0$  if and only if  $q_{i,j}^h = 0$ .

Among the triple product relations, we emphasize the cases h = 1and h = D.

## The triple product relations for h = 1

Here is the case h = 1.

#### Lemma

For  $0 \leq i, j \leq D$ :

$$E_i^* A E_j^* = \begin{cases} 0, & \text{if } |i - j| > 1; \\ \neq 0, & \text{if } |i - j| = 1; \end{cases}$$
$$E_i A^* E_j = \begin{cases} 0, & \text{if } |i - j| > 1; \\ \neq 0, & \text{if } |i - j| = 1. \end{cases}$$

Paul Terwilliger The nucleus of a *Q*-polynomial distance-regular graph

## The triple product relations for h = D

Here is the case h = D.

#### Lemma

For  $0 \leq i, j \leq D$ :

$$E_{i}^{*}A_{D}E_{j}^{*} = \begin{cases} 0, & \text{if } i+j < D; \\ \neq 0, & \text{if } i+j = D; \end{cases}$$
$$E_{i}A_{D}^{*}E_{j} = \begin{cases} 0, & \text{if } i+j < D; \\ \neq 0, & \text{if } i+j = D. \end{cases}$$

Paul Terwilliger The nucleus of a *Q*-polynomial distance-regular graph

We mention a fact for later use.

Lemma (Mamart 2018)

The matrices  $A_D$  and  $A_D^*$  are invertible.

イロン イロン イヨン イヨン

For convenience, we adopt the following convention.

By a *T*-module, we mean a *T*-submodule of the standard module V.

#### Definition

A *T*-module *W* is said to be **irreducible** whenever  $W \neq 0$  and *W* does not contain a *T*-module besides 0 and *W*.

#### Lemma (Ter 92)

Every T-module is an orthogonal direct sum of irreducible T-modules. In particular, the standard T-module V is an orthogonal direct sum of irreducible T-modules.

・ロト ・四ト ・ヨト ・ヨト

#### Definition

Let W denote an irreducible  $T\operatorname{-module}.$  It is known that the following are equivalent:

- (i) dim  $E_i W \le 1$  ( $0 \le i \le D$ );
- (ii) dim  $E_i^* W \le 1$  ( $0 \le i \le D$ ).

We say that W is **thin** whenever (i), (ii) hold.

ヘロト ヘヨト ヘヨト ヘヨト

We now explain how irreducible T-modules are related to tridiagonal pairs.

Lemma (Ter 92)

Let W denote an irreducible T-module. Then  $A, A^*$  act on W as a tridiagonal pair. This tridiagonal pair is a Leonard pair if only if W is thin.

# Endpoint, dual endpoint, and diameter

Let W denote an irreducible T-module. By the **endpoint** of W we mean

$$\min\{i|0\leq i\leq D,\ E_i^*W\neq 0\}.$$

By the **dual endpoint** of W, we mean

 $\min\{i|0\leq i\leq D,\ E_iW\neq 0\}.$ 

By the **diameter** of W, we mean

$$|\{i|0 \le i \le D, E_i^*W \ne 0\}| - 1.$$

By [Pascasio 2003] the diameter of W is equal to

$$|\{i|0 \le i \le D, E_iW \ne 0\}| - 1.$$

#### Example (Ter 92)

There exists a unique irreducible T-module that has diameter D; this T-module is called **primary**. An irreducible T-module is primary iff it has endpoint 0 iff it has dual endpoint 0. The primary T-module is thin.

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

We now consider the action of  $A_D$  on an irreducible *T*-module.

#### Lemma

Let W denote an irreducible T-module, with endpoint r and diameter d. Then

$$0 \neq A_D E_r^* W \subseteq \sum_{i=D-r}^{r+d} E_i^* W.$$

#### Corollary

Let W denote an irreducible T-module, with endpoint r and diameter d. Then the following hold.

(i) [Caughman 99]  $2r - D + d \ge 0$ .

(ii) Assume that equality holds in (i). Then W is thin and  $A_D E_r^* W = E_{D-r}^* W$ .

イロン イヨン イヨン イヨン

Next, we consider the action of  $A_D^*$  on an irreducible *T*-module.

#### Lemma

Let W denote an irreducible T-module, with dual endpoint t and diameter d. Then

$$0 \neq A_D^* E_t W \subseteq \sum_{i=D-t}^{t+d} E_i W.$$

#### Corollary

Let W denote an irreducible T-module, with dual endpoint t and diameter d. Then the following hold.

(i) [Caughman 99] 
$$2t - D + d \ge 0$$
.

(ii) Assume that equality holds in (i). Then W is thin and  $A_D^* E_t W = E_{D-t} W$ .

# An inequality

Next, we combine the Caughman bound and the dual Caughman bound into one inequality.

#### Theorem

Let W denote an irreducible T-module, with endpoint r, dual endpoint t, and diameter d. Then

 $r+t-D+d\geq 0.$ 

Moreover, equality holds iff both t = r and d = D - 2r. In this case, W is thin and  $A_D E_r^* W = E_{D-r}^* W$  and  $A_D^* E_r W = E_{D-r} W$ .

To prove the theorem, note that

$$r+t-D+d = rac{2r-D+d}{2} + rac{2t-D+d}{2}$$

Paul Terwilliger

The nucleus of a Q-polynomial distance-regular graph

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

# The displacement

Motivated by the previous inequality, we make a definition.

#### Definition (Ter 2005)

Let W denote an irreducible T-module. By the **displacement** of W, we mean the integer

$$r+t-D+d$$
,

where r (resp. t) (resp. d) denotes the endpoint (resp. dual endpoint) (resp. diameter) of W.

#### Example

The primary T-module has displacement 0.

< ロ > < 同 > < 三 > < 三 >

We are now ready to define the nucleus.

Definition (Ter 24)

By the **nucleus** of  $\Gamma$  with respect to x, we mean the span of the irreducible T-modules that have displacement 0.

In the next two slides, we emphasize a few points about the nucleus.

#### Lemma

Consider the nucleus of  $\Gamma$  with respect to x.

- (i) The nucleus is a T-module.
- (ii) The orthogonal complement of the nucleus is spanned by the irreducible *T*-modules that have displacement at least one.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

#### Lemma

Let W denote an irreducible T-submodule of the nucleus, with endpoint r, dual endpoint t, and diameter d. Then:

(i) 
$$0 \le r \le D/2;$$
  
(ii)  $t = r;$   
(iii)  $d = D - 2r;$   
(iv) *W* is thin;  
(v)  $A_D E_r^* W = E_{D-r}^* W,$   
(vi)  $A_D^* E_r W = E_{D-r} W.$ 

We recall the notion of isomorphism for T-modules.

Let W and W' denote T-modules.

By a *T*-module isomorphism from *W* to *W'*, we mean a  $\mathbb{C}$ -linear bijection  $\sigma : W \to W'$  such that  $\sigma B = B\sigma$  on *W* for all  $B \in T$ .

The *T*-modules *W* and *W'* are called **isomorphic** whenever there exists a *T*-module isomorphism from *W* to *W'*.

#### Lemma (Ter 2024)

Let W, W' denote irreducible *T*-submodules of the nucleus. Then the following are equivalent:

- (i) the endpoints of W, W' are the same;
- (ii) the T-modules W, W' are isomorphic.
So far, we used the concept of displacement to define a T-module called the nucleus.

Next, we describe the nucleus from another point of view.

イロト イボト イヨト イヨト

Lemma (Ter 2005)

For  $0 \le i, j \le D$  such that i + j < D,

 $(E_0^*V + E_1^*V + \dots + E_i^*V) \cap (E_0V + E_1V + \dots + E_jV) = 0.$ 

Paul Terwilliger The nucleus of a *Q*-polynomial distance-regular graph

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

## Definition

For  $0 \leq i \leq D$  define a subspace  $\mathcal{N}_i = \mathcal{N}_i(x)$  by

$$\mathfrak{N}_i = (E_0^* V + E_1^* V + \dots + E_i^* V) \cap (E_0 V + E_1 V + \dots + E_{D-i} V).$$

ヘロン 人間 とくほどう ほどう

Э

## Lemma (Ter 2005)

The sum  $\sum_{i=0}^{D} \mathcal{N}_i$  is direct.

Paul Terwilliger The nucleus of a *Q*-polynomial distance-regular graph

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

크

## Lemma

The A, A<sup>\*</sup> act on  $\{\mathcal{N}_i\}_{i=0}^D$  as follows.

$$(A - heta_{D-i}I) \mathfrak{N}_i \subseteq \mathfrak{N}_{i+1} \quad (0 \leq i \leq D-1);$$
  
 $(A - heta_0I) \mathfrak{N}_D = 0;$   
 $(A^* - heta_i^*I) \mathfrak{N}_i \subseteq \mathfrak{N}_{i-1} \quad (1 \leq i \leq D);$   
 $(A^* - heta_0^*I) \mathfrak{N}_0 = 0.$ 

・ロ・・ (日・・ 日・・ 日・

臣

## Definition

Define a subspace  $\mathcal{N} = \mathcal{N}(x)$  by

$$\mathcal{N} = \sum_{i=0}^{D} \mathcal{N}_i.$$

Paul Terwilliger The nucleus of a *Q*-polynomial distance-regular graph

イロト イヨト イヨト イヨト

臣

## Theorem (Ter 2024)

The following are the same:

- (i) the subspace  $\mathcal{N} = \mathcal{N}(x)$ ;
- (ii) the nucleus of  $\Gamma$  with respect to x.

イロト イヨト イヨト イヨト

We clarify a few points about the nucleus.

#### Lemma

The following sums are orthogonal and direct:

$$\mathcal{N} = \sum_{i=0}^{D} E_i \mathcal{N}, \qquad \qquad \mathcal{N} = \sum_{i=0}^{D} E_i^* \mathcal{N}.$$

・ロト ・回ト ・ヨト ・ヨト

## Definition

For  $0 \le r \le D/2$ , let mult<sub>r</sub> denote the multiplicity with which the irreducible *T*-module with endpoint *r* appears in the nucleus  $\mathcal{N} = \mathcal{N}(x)$ .

Note that  $\operatorname{mult}_r$  is a nonnegative integer.

We remark that  $mult_0 = 1$ .

イロト イボト イヨト イヨト

## Theorem (Ter 2024)

For  $0 \le i \le D/2$ , the following subspaces have dimension  $\sum_{r=0}^{i} \operatorname{mult}_{r}$ :

$$\begin{aligned} E_i \mathcal{N}, & E_{D-i} \mathcal{N}, & E_i^* \mathcal{N}, \\ E_{D-i}^* \mathcal{N}, & \mathcal{N}_i, & \mathcal{N}_{D-i}. \end{aligned}$$

・ロト ・回ト ・ヨト ・ヨト

Next, we consider some examples.

In the next few slides, we describe the nucleus  $\mathcal{N} = \mathcal{N}(x)$  under the assumption that  $\Gamma$  belongs to some elementary families of examples.

Later we will consider a more substantial family of examples.

Assume that  $\Gamma$  is a *D*-cube. It is shown by [Junie Go 2001] that each irreducible *T*-module has displacement 0. Therefore, the nucleus of  $\Gamma$  with respect to *x* is equal to the standard module *V*.

The *D*-cube is a bipartite antipodal 2-cover.

A (10) × (10) × (10) ×

Assume that  $\Gamma$  is a bipartite antipodal 2-cover (this property is often called 2-homogeneous). It is shown by [Curtin 2001] that each irreducible T-module has displacement 0. Therefore, the nucleus of  $\Gamma$  with respect to x is equal to the standard module V.

・ロン ・回 と ・ ヨン・ ・ ヨン

Assume that  $\Gamma$  is the Odd graph  $O_{D+1}$ . It is shown by [Ter 1992] that for each irreducible *T*-module *W* the endpoint *r* and diameter *d* satisfy r + d = D. Consequently, *W* has displacement 0 if and only if *W* is primary. Therefore, the nucleus of  $\Gamma$  with respect to *x* is equal to the primary *T*-module.

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

Assume that  $\Gamma$  is a Hamming graph H(D, N) with  $N \geq 3$ . By construction, the vertex set X of  $\Gamma$  has cardinality  $N^D$ . It was shown by [Mamart 2017] that  $\mathcal{N}_i$  has dimension  $\binom{D}{i}$  for  $0 \leq i \leq D$ . Consequently, the nucleus of  $\Gamma$  with respect to x has dimension  $2^D$ .

For the rest of this talk, we consider a family of *Q*-polynomial distance-regular graphs called the **dual polar graphs**.

These graphs are defined on the next three slides.

イロト イボト イヨト イヨト

Let  $\boldsymbol{\mathsf{U}}$  denote a finite vector space with one of the following nondegenerate forms:

| name                   | $\dim(\mathbf{U})$ | field        | form                        | е       |
|------------------------|--------------------|--------------|-----------------------------|---------|
| $B_D(p^n)$             | 2D + 1             | $GF(p^n)$    | quadratic                   | 0       |
| $C_D(p^n)$             | 2 <i>D</i>         | $GF(p^n)$    | $\operatorname{symplectic}$ | 0       |
| $D_D(p^n)$             | 2 <i>D</i>         | $GF(p^n)$    | quadratic                   | $^{-1}$ |
|                        |                    |              | (Witt index $D$ )           |         |
| ${}^{2}D_{D+1}(p^{n})$ | 2D + 2             | $GF(p^n)$    | quadratic                   | 1       |
|                        |                    |              | (Witt index $D$ )           |         |
| $^{2}A_{2D}(p^{n})$    | 2D + 1             | $GF(p^{2n})$ | Hermitean                   | 1/2     |
| $^{2}A_{2D-1}(p^{n})$  | 2 <i>D</i>         | $GF(p^{2n})$ | Hermitean                   | -1/2    |

・ロト ・回ト ・ヨト ・ヨト

## Example (continued...)

A subspace of **U** is called **isotropic** whenever the form vanishes completely on that subspace. In each of the above cases, the dimension of any maximal isotropic subspace is D. The corresponding dual polar graph  $\Gamma$  has vertex set X consisting of the maximal isotropic subspaces of **U**. Vertices  $y, z \in X$  are adjacent whenever  $y \cap z$  has dimension D - 1. More generally,  $\partial(y, z) = D - \dim y \cap z$ .

イロト イボト イヨト イヨト

## Example (continued..)

The graph  ${\sf \Gamma}$  is distance-regular with diameter D and intersection numbers

$$c_i = rac{q^i-1}{q-1}, \quad a_i = (q^{e+1}-1)rac{q^i-1}{q-1}, \quad b_i = q^{e+1}rac{q^D-q^i}{q-1}$$

for  $0 \le i \le D$ , where  $q = p^n, p^n, p^n, p^n, p^{2n}, p^{2n}$ . The graph  $\Gamma$  is a regular near 2D-gon in the sense of BCN.

From now on, we assume that  $\Gamma$  is a dual polar graph that is nonbipartite  $(e \neq -1)$ .

A D D A D D A D D A D D A

#### Lemma

The graph  $\Gamma$  has a Q-polynomial structure such that

$$\begin{aligned} \theta_i &= q^{e+1} \frac{q^D - 1}{q - 1} - \frac{(q^i - 1)(q^{D + e + 1 - i} + 1)}{q - 1} & (0 \le i \le D), \\ \theta_i^* &= \frac{q^{D + e} + q}{q^e + 1} \frac{q^{-i}(q^{D + e} + 1) - q^e - 1}{q - 1} & (0 \le i \le D). \end{aligned}$$

イロト イヨト イヨト イヨト

Note that  $q^{e+1} = a_1 + 1$ .

It is often convenient to write things in terms of  $a_1$  instead of e.

#### Lemma

The intersection numbers of  $\Gamma$  are given by

$$c_i = rac{q^i - 1}{q - 1}, \qquad a_i = a_1 rac{q^i - 1}{q - 1}, \qquad b_i = (a_1 + 1) rac{q^D - q^i}{q - 1}$$
for  $0 \le i \le D$ .

イロン 不同 とくほど 不同 とう

## Lemma

The eigenvalues of  $\Gamma$  are

$$heta_i = rac{(a_1+1)q^{D-i}-q^i-a_1}{q-1} \qquad (0 \le i \le D).$$

Paul Terwilliger The nucleus of a *Q*-polynomial distance-regular graph

イロン イロン イヨン イヨン

臣

## The q-binomial coefficients

We bring in some notation. For an integer  $n \ge 0$  define

$$[n]_q = \frac{q^n - 1}{q - 1}.$$

We further define

$$[n]_q^! = [n]_q [n-1]_q \cdots [2]_q [1]_q.$$

We interpret  $[0]_q^! = 1$ . For  $0 \le i \le n$  define the *q*-binomial coefficient

$$\binom{n}{i}_{q} = \frac{[n]_{q}^{!}}{[i]_{q}^{!}[n-i]_{q}^{!}}$$

## Lemma

The valencies of  $\Gamma$  are

$$k_i = (a_1+1)^i q^{\binom{i}{2}} \binom{D}{i}_q \qquad (0 \le i \le D).$$

In particular,

$$k = (a_1 + 1) \frac{q^D - 1}{q - 1}, \qquad k_D = (a_1 + 1)^D q^{\binom{D}{2}}.$$

Paul Terwilliger The nucleus of a *Q*-polynomial distance-regular graph

イロト イヨト イヨト イヨト

臣

Let W denote an irreducible T-module.

Then W is thin by [Ter 1992].

We now consider the intersection numbers of W.

イロト イヨト イヨト イヨト

Э

## Lemma (Ter 1992)

Let W denote an irreducible T-module, with endpoint r, dual endpoint t, and diameter d. The intersection numbers of W are described as follows. For  $0 \le i \le d$ ,

$$egin{aligned} c_i(W) &= q^t rac{q^i-1}{q-1}, \ a_i(W) &= rac{(a_1+1)q^{D-d-t+i}-q^{t+i}-a_1}{q-1}, \ b_i(W) &= (a_1+1)rac{q^{D-t}-q^{D-d-t+i}}{q-1}. \end{aligned}$$

向 ト イヨ ト イヨト

Referring to the previous lemma, we are mainly interested in  $a_i(W)$ .

In the next slide, we clarify the meaning of  $a_i(W)$ .

イロト イヨト イヨト イヨト

## Lemma (Cerzo 2010)

Let W denote an irreducible T-module, with endpoint r and diameter d. Then the following holds on W:

$$E_{r+i}^* A E_{r+i}^* = a_i(W) E_{r+i}^*$$
 ( $0 \le i \le d$ ).

イロト イヨト イヨト イヨト

Let W denote an irreducible T-module, with endpoint r and diameter d.

Our next goal is to compare the intersection number  $a_i(W)$  with the intersection number  $a_{r+i}$  of  $\Gamma$  ( $0 \le i \le d$ ).

#### Lemma

Let W denote an irreducible T-module, with endpoint r and diameter d. Then for  $0 \le i \le d$ ,

 $a_i(W) \leq a_{r+i}.$ 

## Proof.

The scalar  $a_i(W)$  is an eigenvalue of the subgraph induced on  $\Gamma_{r+i}(x)$ . This subgraph is regular with valency  $a_{r+i}$ . The result follows.

Next, we examine  $a_{r+i} - a_i(W)$  in the above lemma.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

#### Lemma

Let W denote an irreducible T-module, with endpoint r, dual endpoint t, and diameter d. Then for  $0 \le i \le d$ ,

$$a_{r+i} - a_i(W) = q^{i+D-d-t} rac{q^{2t-D+d}-1 + a_1(q^{r+t-D+d}-1)}{q-1}$$

Moreover

$$q^{2t-D+d}-1\geq 0, \qquad \qquad q^{r+t-D+d}-1\geq 0.$$

イロト イヨト イヨト イヨト

## Theorem (Ter 2024)

Let W denote an irreducible T-module, with endpoint r, dual endpoint t, and diameter d. Then the following are equivalent:

(i) there exists an integer i ( $0 \le i \le d$ ) such that  $a_{r+i} = a_i(W)$ ;

(ii) 
$$a_{r+i} = a_i(W)$$
 for  $0 \le i \le d$ ;

(iii) W has displacement 0.

- 4 回 ト 4 ヨ ト 4 ヨ ト

## Corollary (Ter 2024)

The following hold for  $0 \le i \le D$ :

(i) 
$$E_i^* \mathcal{N} = \{ v \in E_i^* V | E_i^* A E_i^* v = a_i v \};$$

(ii)  $E_i^* \mathcal{N}$  has an orthogonal basis consisting of the characteristic vectors of the connected components of  $\Gamma_i(x)$ .

イロト イヨト イヨト イヨト

# Our next goal is to find an orthogonal basis for the nucleus $\mathcal{N} = \mathcal{N}(x)$ .

・ロト ・回 ト ・ヨト ・ヨト

## Definition

Using the vertex x, we define a binary relation  $\sim$  on X as follows. For  $y,z\in X$  we declare  $y\sim z$  whenever both

(i) 
$$\partial(x,y) = \partial(x,z);$$

(ii) y, z are in the same connected component of  $\Gamma_i(x)$ , where  $i = \partial(x, y) = \partial(x, z)$ .

Note that  $\sim$  is an equivalence relation.

・ロト ・四ト ・ヨト ・ヨト

We now describe the equivalence classes of  $\sim$ .

#### Lemma

For  $0 \le i \le D$  the set  $\Gamma_i(x)$  is a disjoint union of  $\sim$  equivalence classes. These equivalence classes are the connected components of  $\Gamma_i(x)$ .

イロト イヨト イヨト イヨト
## Theorem (Ter 2024)

The nucleus  $\mathbb{N}$  has an orthogonal basis consisting of the characteristic vectors of the  $\sim$  equivalence classes.

・ 同 ト ・ ヨ ト ・ ヨ ト

### Corollary

The following are the same:

- (i) the dimension of  $\mathcal{N}$ ;
- (ii) the number of  $\sim$  equivalence classes.

イロト イヨト イヨト イヨト

## Corollary

For  $0 \le i \le D$  the following are the same:

- (i) the dimension of  $E_i^* \mathcal{N}$ ;
- (ii) the number of  $\sim$  equivalence classes that are contained in  $\Gamma_i(x)$ ;

(iii) the number of connected components of  $\Gamma_i(x)$ .

(4回) (4 回) (4 回)

We have seen that the  $\sim$  equivalence classes are just the connected components of the subconstituents  $\Gamma_i(x)$   $(0 \le i \le D)$ .

In order to describe these  $\sim$  equivalence classes in more detail, we bring in a poset called the projective geometry  $L_D(q)$ .

In what follows, we work with the finite field GF(q) associated with  $\Gamma$  from the definition of a dual polar graph.

イロト イボト イヨト イヨト

### Definition

Let  $\mathbf{V}$  denote a vector space over GF(q) that has dimension D. Let the set  $\mathcal{P}$  consist of the subspaces of  $\mathbf{V}$ . Define a partial order  $\leq$  on  $\mathcal{P}$  such that for  $\eta, \zeta \in \mathcal{P}, \eta \leq \zeta$  whenever  $\eta \subseteq \zeta$ . The poset  $\mathcal{P}, \leq$  is denoted  $L_D(q)$  and called a **projective geometry**.

A D D A D D A D D A D D A

Recall our fixed vertex  $x \in X$ .

By the definition of a dual polar graph, the vertex x is a vector space over GF(q) that has dimension D.

For notational convenience, we always take the  $\mathbf{V} = x$ .

イロト イボト イヨト イヨト

## Definition

For  $\eta, \zeta \in \mathcal{P}$ , we say that  $\zeta$  **covers**  $\eta$  whenever  $\eta \subseteq \zeta$  and dim  $\zeta$  - dim  $\eta = 1$ . We say that  $\eta, \zeta$  are **adjacent** whenever one of  $\eta, \zeta$  covers the other one. The set  $\mathcal{P}$  together with the adjacency relation, forms an undirected graph. For  $\eta \in \mathcal{P}$ , let the set  $\mathcal{P}(\eta)$  consist of the elements in  $\mathcal{P}$  that are adjacent to  $\eta$ . For  $0 \leq i \leq D$ , let the set  $\mathcal{P}_i$  consist of the elements in  $\mathcal{P}$  that have dimension D - i. Note that  $\mathcal{P}_0 = \{x\}$ . For notational convenience, define  $\mathcal{P}_{-1} = \emptyset$  and  $\mathcal{P}_{D+1} = \emptyset$ .

In the next slide, we describe some basic combinatorial features of  $\ensuremath{\mathcal{P}}.$ 

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

#### Lemma

For  $0 \le i \le D$ , each vertex in  $\mathcal{P}_i$  is adjacent to exactly  $[i]_q$  vertices in  $\mathcal{P}_{i-1}$  and exactly  $[D-i]_q$  vertices in  $\mathcal{P}_{i+1}$ .

#### Lemma

We have

$$|\mathcal{P}_i| = \binom{D}{i}_q \qquad (0 \le i \le D).$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

We have been discussing the set  $\mathcal{P}$ .

Earlier we found an orthogonal basis for the nucleus  $\mathcal{N}$ .

Our next goal, is to display a bijection from  $\mathcal P$  to this basis.

The result below follows from the work of Chih-wen Weng concerning weak geodetically closed subgraphs (1998).



・ロト ・四ト ・ヨト ・ヨト

# Using $L_D(q)$ to describe the relation $\sim$

Recall the standard module V of  $\Gamma$ .

## Definition

For  $\eta \in \mathcal{P}$  we define a vector  $\eta^{\mathcal{N}} \in V$  as follows:

$$\eta^{\mathcal{N}} = \sum_{\substack{\mathbf{y} \in \mathbf{X} \\ \mathbf{x} \cap \mathbf{y} = \eta}} \hat{\mathbf{y}}.$$

By construction, the above vector  $\eta^{\aleph}$  is the characteristic vector of a  $\sim$  equivalence class.

## Theorem (Ter 2024)

We give a bijection from  $\mathcal{P}$  to our basis for  $\mathcal{N}$ . The bijection sends  $\eta \to \eta^{\mathcal{N}}$  for all  $\eta \in \mathcal{P}$ .

Over the next three slides, we give some consequences of the bijection.

イロン イロン イヨン イヨン

#### Lemma

The following hold for  $0 \le i \le D$ .

(i) The number of connected components in  $\Gamma_i(x)$  is equal to  $\binom{D}{i}_q$ ;

(ii) dim 
$$E_i^* \mathcal{N} = {D \choose i}_q$$
.

イロト イヨト イヨト イヨト

# The dimension of the nucleus $\ensuremath{\mathbb{N}}$

# Corollary

We have

$$\dim \mathbb{N} = \sum_{i=0}^{D} \binom{D}{i}_{q}.$$

Paul Terwilliger The nucleus of a *Q*-polynomial distance-regular graph

イロト イヨト イヨト イヨト

臣

## Recall the multiplicity numbers $\operatorname{mult}_r$ . Recall that $\operatorname{mult}_0 = 1$ .

Corollary  
We have  
$$\operatorname{mult}_{r} = \binom{D}{r}_{q} - \binom{D}{r-1}_{q} \qquad (1 \le r \le D/2).$$

We now bring in the adjacency matrix A of  $\Gamma$ , and the dual adjacency matrix  $A^* = A^*(x)$  of  $\Gamma$  with respect to x.

#### Theorem (Ter 2024)

We give the action of A, A<sup>\*</sup> on the basis  $\{\eta^{\mathbb{N}} | \eta \in \mathcal{P}\}\$  for  $\mathbb{N}$ . For  $0 \leq i \leq D$  and  $\eta \in \mathcal{P}_i$  we have

$$\begin{split} & A\eta^{\mathcal{N}} = a_1 \frac{q^i - 1}{q - 1} \eta^{\mathcal{N}} + \sum_{\zeta \in \mathcal{P}(\eta) \cap \mathcal{P}_{i+1}} \zeta^{\mathcal{N}} + (a_1 + 1)q^{i-1} \sum_{\zeta \in \mathcal{P}(\eta) \cap \mathcal{P}_{i-1}} \zeta^{\mathcal{N}}; \\ & A^* \eta^{\mathcal{N}} = \theta_i^* \eta^{\mathcal{N}}. \end{split}$$

イロト イボト イヨト イヨト

The previous theorem shows that the action of A on  $\mathbb{N}$  becomes a **weighted adjacency map** for  $L_D(q)$ .

We would like to acknowledge that a similar weighted adjacency map for  $L_D(q)$  showed up earlier in the work of Bernard, Crampé, and Vinet [2022] concerning the dual polar graph with symplectic type and q a prime.

イロト イヨト イヨト

In this talk, we considered a Q-polynomial distance-regular graph  $\Gamma$  with diameter  $D\geq 1.$ 

For a vertex x of  $\Gamma$  we considered the subconstituent algebra T = T(x) generated by A and  $A^* = A^*(x)$ .

We introduced a *T*-module  $\mathcal{N} = \mathcal{N}(x)$  called the **nucleus** of  $\Gamma$  with respect to *x*.

We showed that the irreducible T-submodules of  $\mathcal N$  are thin.

Under the assumption that  $\Gamma$  is a nonbipartite dual polar graph, we gave an explicit basis for  $\mathcal{N}$  and the action of  $A, A^*$  on this basis.

# THANK YOU FOR YOUR ATTENTION!

イロト 不得 トイラト イラト 二日