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Overview

In this talk, we consider a @-polynomial distance-regular graph I'.

For a vertex x of ' the corresponding subconstituent algebra
T = T(x) is generated by the adjacency matrix A and the dual
adjacency matrix A* = A*(x) with respect to x.

We introduce a T-module N = N(x) called the nucleus of I with
respect to x.

We will show that the irreducible T-submodules of N have a
property called thin.

Under the assumption that I is a nonbipartite dual polar graph, we
give an explicit basis for N and the action of A, A* on this basis.
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Overview, cont.

Some of our main results are applications of the theory of
tridiagonal pairs.

We now turn our attention to this theory.
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Tridiagonal pairs

Let IF denote a field.
Let V denote a nonzero vector space over [ with finite dimension.

Let the F-algebra End(V) consist of the F-linear maps from V to
V.

Consider an ordered pair A, A* of maps in End(V).
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The definition of a tridiagonal pair

The above pair A, A* is called a tridiagonal pair whenever:
(i) each of A, A* is diagonalizable;

(ii) there exists an ordering {V;}%_, of the eigenspaces of A such
that

AV, C Vi1 + Vi+ Vi (0<i<d),

where V_; =0 and V441 =0;

iii) there exists an ordering {V*}_, of the eigenspaces of A*
i Ji=0
such that

AVF C Vg + Vi + Vi (00 <),

where V*; =0 and Vy, , =0;

(iv) there does not exist a subspace W C V such that AW C W,
AAWCW, W#£0, W#V.
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Comments

Referring to the above definition, it turns out that d = J; we call
this common value the diameter of the tridiagonal pair.

The tridiagonal pairs were introduced in 2001 by Ito, Tanabe, and
Terwilliger.
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Leonard pairs

We mention a special type of tridiagonal pair.

Referring to the tridiagonal pair A, A* on V/, the following are
equivalent:

(i) dimV; =1for 0 <i < d;
(ii) dimV* =1for 0 <i<d.
We call A, A* a Leonard pair whenever (i), (ii) hold.
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A characterization of Leonard pairs

We are going to characterize the Leonard pairs among all the
tridiagonal pairs.

We will use the following notation.

For B € End(V) let (B) denote the subalgebra of End(V)
generated by B.
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A characterization of Leonard pairs

Theorem (Nomura+Ter, 2007)

Referring to the tridiagonal pair A, A* on V, the following are
equivalent:

() there exists a nonzero v € V{ and nonzero S € (A) such that
Sve Vj;

(ii) A, A* is a Leonard pair.
Assume that (i), (ii) hold. Then SV§ = V.

We will use the above theorem shortly.
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Distance-regular graphs

We now turn our attention to graph theory.

For the rest of this talk, we take F = C.

From now on, I denotes a Q-polynomial distance-regular graph,
with vertex set X, path-length distance function 0, and diameter

D>1.

For x € X and 0 </ < D the set I'j(x) consists of the vertices
y € X at distance J(x,y) = i.

We call Tj(x) the ith subconstituent of I with respect to x.
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Distance-regular graphs

Let Matx(C) denote the C-algebra consisting of the matrices that
have rows and columns indexed by X and all entries in C.

Let V = CX denote the vector space over C, consisting of the
column vectors that have coordinates indexed by X and all entries
in C.

The algebra Matx(C) acts on V by left multiplication. We call V
the standard module.
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Distance-regular graphs

We endow V with a Hermitean form (, ) such that (u,v) = u'v
for all u,v € V. Here t denotes transpose and — denotes complex
conjugation.

For x € X define a vector X € V that has x-coordinate 1 and all
other coordinates 0.

Observe that the set {X|x € X} is an orthonormal basis for V.
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Distance-regular graphs

We will discuss:
e the intersection numbers pﬁj (0 < h,i,j < D),
e the distance matrices A; (0 < i < D);
e the adjacency matrix A = Ay;
e the primitive idempotents E; (0 < i < D);
e the eigenvalues 6; (0 < i < D);
e the Krein parameters q;’J (0 < h,i,j < D);
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Distance-regular graphs, cont.

We fix x € X.

We will discuss:
e the dual distance matrices A7 = A%¥(x) (0 < i < D);
e the dual adjacency matrix A* = A7;
e the dual primitive idempotents E = E(x) (0 < i < D);
e the dual eigenvalues ¢ (0 < i < D);

e the subconstituent algebra T = T(x) generated by A, A*.
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Triple product relations

We recall the triple product relations.

Lemma (Ter 1992)

For0< h,i,j < D:

EfARE] =0 if and only if p;’J =0;
EiALEj =0 if and only if qf; =0.
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The triple product relations, cont.

Among the triple product relations, we emphasize the cases h = 1
and h=D.
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The triple product relations for h =1

Here is the case h = 1.

Lemma

For0<i,j <D:

if i — j| > 1;
ifli — j| = 1;
if i — j| > 1;
if i — j| = 1.
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The triple product relations for h = D

Here is the case h = D.

Lemma

For0<i,j <D:

0, ifi+j < D;
#0, ifi+j=D;
0, if i +j < D;
#0, ifi+j=D.

EfApES = {

EiADE; = {
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The matrices Ap and Aj, are invertible

We mention a fact for later use.

Lemma (Mamart 2018)

The matrices Ap and A}, are invertible.
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T-modules

For convenience, we adopt the following convention.

By a T-module, we mean a T-submodule of the standard module
V.
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Irreducible T-modules

Definition

A T-module W is said to be irreducible whenever W # 0 and
W does not contain a T-module besides 0 and W.

Lemma (Ter 92)

Every T-module is an orthogonal direct sum of irreducible
T-modules. In particular, the standard T-module V is an
orthogonal direct sum of irreducible T-modules.
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The thin condition

Let W denote an irreducible T-module. It is known that the
following are equivalent:

(i) dim EEW <1 (0 <i < D);
(ii) dim E*W <1 (0 < i < D).
We say that W is thin whenever (i), (ii) hold.
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Irreducible T-modules and tridiagonal pairs

We now explain how irreducible T-modules are related to
tridiagonal pairs.

Lemma (Ter 92)

Let W denote an irreducible T-module. Then A, A* act on W as a

tridiagonal pair. This tridiagonal pair is a Leonard pair if only if W
is thin.
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Endpoint, dual endpoint, and diameter

Let W denote an irreducible T-module. By the endpoint of W we
mean

min{i|0 < i < D, EfW # 0}.
By the dual endpoint of W/, we mean

min{i|0 < i < D, E;W # 0}.
By the diameter of W, we mean

[{il0<i<D, EFW #0}| - 1.
By [Pascasio 2003] the diameter of W is equal to

[{il0<i<D, EW#0} —1.

Paul Terwilliger The nucleus of a Q-polynomial distance-regular graph



The primary T-module

Example (Ter 92)

There exists a unique irreducible T-module that has diameter
D; this T-module is called primary. An irreducible T-module is
primary iff it has endpoint 0 iff it has dual endpoint 0. The
primary T-module is thin.
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The action of Ap on an irreducible T-module

We now consider the action of Ap on an irreducible T-module.

Lemma

Let W denote an irreducible T-module, with endpoint r and
diameter d. Then

r+d
0£ApEFW C > EW.
i=D—r
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The Caughman bound

Corollary

Let W denote an irreducible T-module, with endpoint r and
diameter d. Then the following hold.

(i) [Caughman 99] 2r — D +d > 0.

(ii) Assume that equality holds in (i). Then W is thin and
ApE*W = Ejy_ W.
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The action of A}, on an irreducible T-module

Next, we consider the action of A}, on an irreducible T-module.

Lemma

Let W denote an irreducible T-module, with dual endpoint t and
diameter d. Then

t+d
0+# ALEW C Z EW.
i=D—t
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The dual Caughman bound

Corollary

Let W denote an irreducible T-module, with dual endpoint t and
diameter d. Then the following hold.

(i) [Caughman 99] 2t — D+ d > 0.

(ii) Assume that equality holds in (i). Then W is thin and
ASEW = Ep_ W.
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An inequality

Next, we combine the Caughman bound and the dual Caughman
bound into one inequality.

Theorem

Let W denote an irreducible T-module, with endpoint r, dual
endpoint t, and diameter d. Then

r+t—D+d>0.

Moreover, equality holds iff both t = r and d = D — 2r. In this
case, W is thin and ApE;W = E5_ W and ApE-W = Ep_,W.

v

To prove the theorem, note that

2r—D+d 2t—D+d
-2ty +a

t—D+d=
r+ + 5 5
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The displacement

Motivated by the previous inequality, we make a definition.

Definition (Ter 2005)
Let W denote an irreducible T-module. By the displacement of
W, we mean the integer

r+t—D+d,

where r (resp. t) (resp. d) denotes the endpoint (resp. dual
endpoint) (resp. diameter) of W.

The primary T-module has displacement 0.
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The definition of the nucleus

We are now ready to define the nucleus.

Definition (Ter 24)

By the nucleus of I' with respect to x, we mean the span of the
irreducible T-modules that have displacement 0.

In the next two slides, we emphasize a few points about the
nucleus.
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Describing the nucleus, cont.

Consider the nucleus of ' with respect to x.

(i) The nucleus is a T-module.

(ii) The orthogonal complement of the nucleus is spanned by the
irreducible T-modules that have displacement at least one.
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Describing the nucleus, cont.

Lemma

Let W denote an irreducible T-submodule of the nucleus, with
endpoint r, dual endpoint t, and diameter d. Then:
(i) 0<r<D/2;
(i) t=r;
(iii)) d =D —2r;
(iv) W is thin;
(v) ApE}W = E;_ W,
(vi) ApEEW = Ep_,W.
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Isomorphism of T-modules

We recall the notion of isomorphism for T-modules.

Let W and W’ denote T-modules.

By a T-module isomorphism from W to W’, we mean a
C-linear bijection o : W — W’ such that 0B = Bo on W for all
BeT.

The T-modules W and W’ are called isomorphic whenever there
exists a T-module isomorphism from W to W'.
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Isomorphism of T-modules, cont.

Lemma (Ter 2024)

Let W, W' denote irreducible T-submodules of the nucleus. Then
the following are equivalent:

(i) the endpoints of W, W' are the same;
(ii) the T-modules W, W' are isomorphic.
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The nucleus from another point of view

So far, we used the concept of displacement to define a T-module
called the nucleus.

Next, we describe the nucleus from another point of view.
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An intersection

Lemma (Ter 2005)

For0 < i,j <D such that i+ j < D,

(EEVH+EV+---+EV)N(EEV+EV+---+EV)=0.
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The subspaces N;

Definition
For 0 < i < D define a subspace N; = Nj(x) by

Ni=(BV+EV+ - +EV)N(EV+EV+- - +Ep V).
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The subspaces N;, cont.

Lemma (Ter 2005)

The sum ZP:O N; is direct.
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Action of A, A* on the N;

Lemma

The A, A* act on {N;}P_, as follows.

(A—Op_il)N; CNiyx  (0<i<D—1);
(A—0ol)Np = 0;

(A" — 01N, C N1 (1< i< D):

(A* — 651)No = 0.
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The subpace N

Definition
Define a subspace N = N(x) by
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The nucleus, revisited

Theorem (Ter 2024)

The following are the same:
(i) the subspace N = N(x);

(ii) the nucleus of I with respect to x.

Paul Terwilliger The nucleus of a Q-polynomial distance-regular graph



Comments on the nucleus

We clarify a few points about the nucleus.

The following sums are orthogonal and direct:

D D
N=>Y EN, N:ZOE,*N
i=0 i=
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Some multiplicities

Definition

For 0 < r < D/2, let mult, denote the multiplicity with which
the irreducible T-module with endpoint r appears in the
nucleus N = N(x).

Note that mult, is a nonnegative integer.

We remark that multg = 1.
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A result about dimensions

Theorem (Ter 2024)

FO( 0 < i< D/2, the following subspaces have dimension
Dl

EN, Ep_iN, EN,
Ep_N,  Ni,  Np_;
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The nucleus for some elementary examples

Next, we consider some examples.

In the next few slides, we describe the nucleus N = N(x) under the
assumption that I belongs to some elementary families of
examples.

Later we will consider a more substantial family of examples.
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The nucleus: Example 1

Assume that I is a D-cube. It is shown by [Junie Go 2001] that
each irreducible T-module has displacement 0. Therefore, the

nucleus of I' with respect to x is equal to the standard module
V.

The D-cube is a bipartite antipodal 2-cover.
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The nucleus: Example 2

Assume that I is a bipartite antipodal 2-cover (this property is
often called 2-homogeneous). It is shown by [Curtin 2001] that
each irreducible T-module has displacement 0. Therefore, the

nucleus of I' with respect to x is equal to the standard module
V.
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The nucleus: Example 3

Assume that I is the Odd graph Opy;. It is shown by [Ter
1992] that for each irreducible T-module W the endpoint r and
diameter d satisfy r + d = D. Consequently, W has
displacement 0 if and only if W is primary. Therefore, the
nucleus of ' with respect to x is equal to the primary T-module.
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The nucleus: Example 4

Assume that ' is a Hamming graph H(D, N) with N > 3. By
construction, the vertex set X of I' has cardinality NP. It was
shown by [Mamart 2017] that N; has dimension (IID) for

0 < i < D. Consequently, the nucleus of I' with respect to x has
dimension 2P.
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The dual polar graphs

For the rest of this talk, we consider a family of Q-polynomial
distance-regular graphs called the dual polar graphs.

These graphs are defined on the next three slides.
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The dual polar graphs

Let U denote a finite vector space with one of the following
nondegenerate forms:

name dim(U) field form e
Bp(p") 2D+1 GF(p") quadratic 0
Cp(p") 2D GF(p") symplectic 0
Dp(p™) 2D GF(p") quadratic -1

(Witt index D)
2Dp.1(p™) 2D +2  GF(p") quadratic 1

(Witt index D)
2Ap(p") 2D +1  GF(p") Hermitean 1/2
2Ap-1(p") 2D GF(p*") Hermitean ~— —1/2
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The dual polar graphs, cont.

Example (continued...)

A subspace of U is called isotropic whenever the form vanishes
completely on that subspace. In each of the above cases, the
dimension of any maximal isotropic subspace is D. The
corresponding dual polar graph I' has vertex set X consisting of
the maximal isotropic subspaces of U. Vertices y,z € X are
adjacent whenever y N z has dimension D — 1. More generally,
d(y,z) =D —dimynNz.
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The dual polar graphs, cont.

Example (continued..)

The graph I is distance-regular with diameter D and
intersection numbers

e+l 1)ql —1 bi _ qe+1 qD q

¢ = aj =

: 1 =19 pa— |
for 0 < i < D, where g = p”, p", p", p", p°", p>". The graph T is
a regular near 2D-gon in the sense of BCN.

From now on, we assume that I is a dual polar graph that is
nonbipartite (e # —1).
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The dual polar graphs are Q-polynomial

Lemma

The graph I has a Q-polynomial structure such that

er19° =1 (¢ =1)(g°tet T +1)

0: = <i<D
D+e —i( 4D+e 1)—qg¢—1

g9 "taa (e +1)-q (0<i<D)
gc+1 qg—1
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The intersection number a;.

Note that g¢*! = a; + 1.

It is often convenient to write things in terms of a; instead of e.

Lemma

The intersection numbers of I are given by
g =1 g —1 q° — ¢
Clzﬁa 3i=31q_17 bi=(31+1)ﬁ
for0 <i<D.
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The eigenvalues in terms of a;

The eigenvalues of T are

(a1+1)g° " —q' —a

0; =
qg—1

Paul Terwilliger The nucleus of a Q-polynomial distance-regular graph



The g-binomial coefficients

We bring in some notation. For an integer n > 0 define

q"—1
g—1°

[”]q =
We further define

[nlg = [nlgln — g -~ [2lq[Llq-

We interpret [0], = 1. For 0 < i < n define the g-binomial
coefficient
(n) _ [nlg
i)q [l]!q[n — l]!q
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The valencies of I

The valencies of T are

1

ki = (al+1)"q(£)( _)q (0<i< D).

In particular,

D
qg- —1

k= 1
(a1 + )q—l’

D
2

kp = (a1 +1)Pq(2).
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The irreducible T-modules

Let W denote an irreducible T-module.
Then W is thin by [Ter 1992].

We now consider the intersection numbers of W.
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The intersection numbers of an irreducible T-module

Lemma (Ter 1992)

Let W denote an irreducible T-module, with endpoint r, dual
endpoint t, and diameter d. The intersection numbers of W are
described as follows. For 0 < <d,
g -1
(W) = ot
CI( ) q q . 1 9
1)gP—d—t+i _ gt+i _
a,-(W): (‘31+ )q q 31’
qg—1
D—t _  D—d—t+i
B(W) = (a + )25
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The intersection number a;( W)

Referring to the previous lemma, we are mainly interested in
a;(W).

In the next slide, we clarify the meaning of a;(W).
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The intersection number a;( W), cont.

Lemma (Cerzo 2010)

Let W denote an irreducible T-module, with endpoint r and
diameter d. Then the following holds on W :

ErAEL = a(W)Er,;  (0<i<d).
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The intersection number a;( W), cont.

Let W denote an irreducible T-module, with endpoint r and
diameter d.

Our next goal is to compare the intersection number a;( W) with
the intersection number a,;; of I (0 </ < d).
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An inequality involving a;( W)

Lemma

Let W denote an irreducible T-module, with endpoint r and
diameter d. Then for0 < i <d,

aj(W) < apyj.

The scalar a;(W) is an eigenvalue of the subgraph induced on
Ir+i(x). This subgraph is regular with valency a,;;. The result
follows. O

v

Next, we examine a,1; — a;(W) in the above lemma.
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An inequality involving a;( W), cont.

Lemma

Let W denote an irreducible T-module, with endpoint r, dual
endpoint t, and diameter d. Then for 0 < i < d,

) 2t—D+d __ 143 (qr+t—D+d o 1)
A —a(W) = i+D—d—t9 1
r+i /( ) q q— 1
Moreover
q2t—D+d -1 Z 07 qr+t—D+d -1 2 0.
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Irreducible T-modules with displacement 0

Theorem (Ter 2024)

Let W denote an irreducible T-module, with endpoint r, dual
endpoint t, and diameter d. Then the following are equivalent:

(i) there exists an integer i (0 < i < d) such that a,,; = a;(W),
(i1) ar4j = a;i(W) for0 < i <d,;
(iii) W has displacement 0.
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Describing the nucleus

Corollary (Ter 2024)

The following hold for 0 < i < D:

(i) EYN={v e EfV|EFAE}v = ajv};

(ii) EfN has an orthogonal basis consisting of the characteristic
vectors of the connected components of I'j(x).
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An orthogonal basis for the nucleus

Our next goal is to find an orthogonal basis for the nucleus
N = N(x).
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The relation ~

Using the vertex x, we define a binary relation ~ on X as
follows. For y,z € X we declare y ~ z whenever both
(i) 9(x,y) = 9(x, 2);
(ii) y,z are in the same connected component of I';(x), where
i=0(x,y) =0(x,z).

Note that ~ is an equivalence relation.
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The equivalence classes of ~

We now describe the equivalence classes of ~.

For 0 < i < D the set I'j(x) is a disjoint union of ~ equivalence
classes. These equivalence classes are the connected components
of r,'(X).
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An orthogonal basis for the nucleus

Theorem (Ter 2024)

The nucleus N has an orthogonal basis consisting of the
characteristic vectors of the ~ equivalence classes.
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The dimension of the nucleus

The following are the same:
(i) the dimension of N;

(ii) the number of ~ equivalence classes.
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The connected components of the subconstituents

Corollary

For 0 < i < D the following are the same:
(i) the dimension of EfN;
(ii) the number of ~ equivalence classes that are contained in
Fi(x);
(iii) the number of connected components of I';(x).
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The ~ equivalence classes

We have seen that the ~ equivalence classes are just the
connected components of the subconstituents I';(x) (0 < i < D).

In order to describe these ~ equivalence classes in more detail, we
bring in a poset called the projective geometry Lp(q).
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The projective geometry Lp(q)

In what follows, we work with the finite field GF(q) associated
with [ from the definition of a dual polar graph.
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The projective geometry Lp(q)

Definition

Let V denote a vector space over GF(q) that has dimension D.
Let the set P consist of the subspaces of V. Define a partial
order < on P such that for n,{ € P, n < ¢ whenever n C (. The
poset P, < is denoted Lp(q) and called a projective geometry.
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The projective geometry Lp(q)

Recall our fixed vertex x € X.

By the definition of a dual polar graph, the vertex x is a vector
space over GF(q) that has dimension D.

For notational convenience, we always take the V = x.
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The projective geometry Lp(q)

Definition

For n, ¢ € P, we say that ( covers 1 whenever n C ¢ and

dim ¢ — dimn = 1. We say that 7, { are adjacent whenever one
of n, ¢ covers the other one. The set P together with the
adjacency relation, forms an undirected graph. For n € P, let
the set P(n) consist of the elements in P that are adjacent to 7.
For 0 < i < D, let the set P; consist of the elements in P that
have dimension D — i. Note that Po = {x}. For notational
convenience, define P_; = () and Ppy1 = 0.

In the next slide, we describe some basic combinatorial features of
P.
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Some features of Lp(q)

For 0 < i < D, each vertex in P; is adjacent to exactly [i]q vertices
in Pi_1 and exactly [D — i]q vertices in Pjy1.

We have
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Using Lp(q) to describe N

We have been discussing the set P.
Earlier we found an orthogonal basis for the nucleus N.

Our next goal, is to display a bijection from P to this basis.
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Using Lp(q) to describe the relation ~

The result below follows from the work of Chih-wen Weng
concerning weak geodetically closed subgraphs (1998).

For y,z € X the following are equivalent:
(i) y~2z
(ii) xNy =xnNz.
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Using Lp(q) to describe the relation ~

Recall the standard module V of I,

Definition

For 17 € P we define a vector ¥ € V as follows:

By construction, the above vector 1N is the characteristic vector of
a ~ equivalence class.
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A bijection

Theorem (Ter 2024)

We give a bijection from P to our basis for N. The bijection
sends n — ™ for all n € P.

Over the next three slides, we give some consequences of the
bijection.
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The dimension of E/N

The following hold for 0 < i < D.

(i) The number of connected components in I';(x) is equal to
(7)gs
1/q’

(i) dim EXN = (7).

1
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The dimension of the nucleus N

We have
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The multiplicty numbers, revisited

Recall the multiplicity numbers mult,. Recall that multy = 1.
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The action of A, A* on the nucleus

We now bring in the adjacency matrix A of ', and the dual
adjacency matrix A* = A*(x) of I' with respect to x.

Theorem (Ter 2024)

We give the action of A, A* on the basis {n™|n € P} for N. For
0<i<D andne P; we have

N__.9-1x N i1 N,
An —alq_ln + Z ¢+ (a1 + 1) Z ¢
CEP(MNPiy1 CEP(NMNPi—1

A*nN = 9}"773\[.
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The action of A, A* on the nucleus

The previous theorem shows that the action of A on N becomes a
weighted adjacency map for Lp(q).

We would like to acknowledge that a similar weighted adjacency
map for Lp(q) showed up earlier in the work of Bernard, Crampé,
and Vinet [2022] concerning the dual polar graph with symplectic
type and g a prime.
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Summary

In this talk, we considered a Q-polynomial distance-regular graph I’
with diameter D > 1.

For a vertex x of [ we considered the subconstituent algebra
T = T(x) generated by A and A* = A*(x).

We introduced a T-module N = N(x) called the nucleus of I' with
respect to x.

We showed that the irreducible T-submodules of N are thin.

Under the assumption that I is a nonbipartite dual polar graph, we
gave an explicit basis for N and the action of A, A* on this basis.

THANK YOU FOR YOUR ATTENTION!
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