Leonard pairs and the q -tetrahedron algebra

Tatsuro Ito Hjalmar Rosengren Paul Terwilliger

Tatsuro Ito, Hjalmar Rosengren, Paul Terwilliger [Leonard pairs and the](#page-40-0) q -tetrahedron algebra

 $A \cap \overline{A} \cap A = A \cap A = A$

 Ω

a mills.

- Leonard pairs and the Askey-scheme of orthogonal polynomials
- Leonard pairs of q-Racah type
- The LB-UB form and the compact form
- The q-tetrahedron algebra \mathbb{Z}_q and its evaluation modules
- Each Leonard pair of q-Racah type gives an evaluation module for \boxtimes_q
- Using the evaluation module to interpret the LB-UB and compact forms

イロト イ押ト イチト イチト

We recall the notion of a Leonard pair. To do this, we first recall what it means for a matrix to be **tridiagonal**.

The following matrices are tridiagonal.

Tridiagonal means each nonzero entry lies on either the diagonal, the subdiagonal, or the superdiagonal.

The tridiagonal matrix on the left is **irreducible**. This means each entry on the subdiagonal is nonzero and each entry on the superdiagonal is nonzero.

K ロ メ イ ヨ メ ミ メ ス ヨ メ ニ

へのへ

We now define a Leonard pair. From now on $\mathbb F$ will denote a field.

Definition

Let V denote a vector space over $\mathbb F$ with finite positive dimension. By a **Leonard pair** on V , we mean a pair of linear transformations $A: V \to V$ and $B: V \to V$ which satisfy both conditions below.

- \bullet There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing β is diagonal.
- ² There exists a basis for V with respect to which the matrix representing B is irreducible tridiagonal and the matrix representing A is diagonal.

イロメ イ母メ イヨメ イヨメー

Example of a Leonard pair

For any integer $d > 0$ the pair

$$
A = \begin{pmatrix} 0 & d & 0 & & \mathbf{0} \\ 1 & 0 & d - 1 & & \\ & 2 & \cdot & \cdot & \\ & & \cdot & \cdot & \cdot & \\ \mathbf{0} & & & & d & 0 \end{pmatrix},
$$

$$
B = diag(d, d-2, d-4, \ldots, -d)
$$

is a Leonard pair on the vector space \mathbb{F}^{d+1} , provided the characteristic of $\mathbb F$ is 0 or an odd prime greater than d .

Reason: There exists an invertible matrix P such that $P^{-1}AP=B$ and $P^2 = 2^d I$.

Tatsuro Ito, Hjalmar Rosengren, Paul Terwilliger [Leonard pairs and the](#page-0-0) q -tetrahedron algebra

Leonard pairs and orthogonal polynomials

There is a natural correspondence between the Leonard pairs and a family of orthogonal polynomials consisting of the following types:

```
q-Racah,
q-Hahn,
dual q-Hahn,
q-Krawtchouk,
dual q-Krawtchouk,
quantum q-Krawtchouk,
affine q-Krawtchouk,
Racah,
Hahn,
dual-Hahn,
Krawtchouk,
Bannai/Ito,
orphans (char(F) = 2 only).
This family coincides with the terminating branch of the Askey
                                              (0,1) (0,1) (0,1) (1,1) (1,1) (1,1)scheme of orthogonal polynomials.
```
Tatsuro Ito, Hjalmar Rosengren, Paul Terwilliger [Leonard pairs and the](#page-0-0) q-tetrahedron algebra

 $2Q$

The theory of Leonard pairs is summarized in

P. Terwilliger: An algebraic approach to the Askey scheme of orthogonal polynomials. Orthogonal polynomials and special functions, 255–330, Lecture Notes in Math., 1883, Springer, Berlin, 2006; arXiv:math.QA/0408390.

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$

 $2Q$

When working with a Leonard pair A, B it is natural to represent one of A, B by a tridiagonal matrix and the other by a diagonal matrix.

We call this the **Tridiagonal-diagonal form**.

This form has its merits, but we are going to discuss some other forms.

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$

We now discuss the LB-UB form for a Leonard pair.

Notation: Let X denote a square matrix. We say that X is **lower bidiagonal** (or LB) whenever each nonzero entry of X lies on the diagonal or the subdiagonal.

We say that X is **upper bidiagonal** (or **UB**) whenever the transpose of X is lower bidiagonal.

A Leonard pair A, B is in LB-UB form whenever A is represented by an LB matrix and B is represented by a UB matrix.

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$

へのへ

We now give an example of a Leonard pair in LB-UB form.

From now on, fix a nonzero $q \in \mathbb{F}$ that is not a root of unity.

Fix an integer $d \geq 1$.

Pick nonzero scalars a, b, c in $\mathbb F$ such that

(i) Neither of a^2 , b^2 is among q^{2d-2} , q^{2d-4} , ..., q^{2-2d} ;

(ii) None of
$$
abc
$$
, $a^{-1}bc$, $ab^{-1}c$, abc^{-1} is among q^{d-1} , q^{d-3} , ..., q^{1-d} .

Tatsuro Ito, Hjalmar Rosengren, Paul Terwilliger [Leonard pairs and the](#page-0-0) q-tetrahedron algebra

イロト イ押 トイチ トイチャー

Define

$$
\begin{array}{rcl}\n\theta_i & = & aq^{2i-d} + a^{-1}q^{d-2i}, \\
\theta_i^* & = & bq^{2i-d} + b^{-1}q^{d-2i}\n\end{array}
$$

for $0 < i < d$ and

$$
\varphi_i = a^{-1}b^{-1}q^{d+1}(q^i - q^{-i})(q^{i-d-1} - q^{d-i+1})
$$

$$
(q^{-i} - abcq^{i-d-1})(q^{-i} - abc^{-1}q^{i-d-1})
$$

for $1 \leq i \leq d$.

Tatsuro Ito, Hjalmar Rosengren, Paul Terwilliger [Leonard pairs and the](#page-0-0) q -tetrahedron algebra

イロメ イ部メ イヨメ イヨメー

重

 298

Example of LB-UB form, cont.

Define

Tatsuro Ito, Hjalmar Rosengren, Paul Terwilliger [Leonard pairs and the](#page-0-0) q-tetrahedron algebra

K ロ ト K 倒 ト K ミ ト

一 4 (重) 8

 $2Q$

Then the pair A, B is a Leonard pair in LB-UB form.

A Leonard pair from this construction is said to have q -Racah type.

This is the most general type of Leonard pair.

The sequence (a, b, c, d) is called a **Huang data** for the Leonard pair.

イロメ イタメ イチメ イチメー

Any Leonard pair satisfies a pair of quadratic equations called the Askey-Wilson relations.

These relations were introduced around 1991 by Alex Zhedanov, in the context of the Askey-Wilson algebra AW(3).

We will work with a modern version of these relations said to be \mathbb{Z}_3 -symmetric.

イロト イ団 トイ ミト イヨト

Theorem (Hau-wen Huang 2011)

Referring to the above Leonard pair A, B of q-Racah type, there exists an element C such that

The above equations are the \mathbb{Z}_3 -symmetric Askey-Wilson relations.

Tatsuro Ito, Hjalmar Rosengren, Paul Terwilliger [Leonard pairs and the](#page-0-0) q-tetrahedron algebra

イロン イ団ン イミン イミン 一番

Referring to the previous slide, we call C the \mathbb{Z}_3 -symmetric completion of the Leonard pair A, B.

By the **dual** \mathbb{Z}_3 -**symmetric completion** of A, B we mean the $\mathbb Z$ -symmetric completion of the Leonard pair B , A.

イロメ イタメ イチメ イチメー

Theorem

Let C' denote the dual \mathbb{Z}_3 -symmetric completion of the above Leonard pair A, B of q-Racah type. Then

$$
A + \frac{qC'B - q^{-1}BC'}{q^2 - q^{-2}} = \frac{(b+b^{-1})(c+c^{-1}) + (a+a^{-1})(q^{d+1} + q^{-d-1})}{q + q^{-1}}
$$
\n
$$
B + \frac{qAC' - q^{-1}C'A}{q^2 - q^{-2}} = \frac{(c+c^{-1})(a+a^{-1}) + (b+b^{-1})(q^{d+1} + q^{-d-1})}{q + q^{-1}}
$$
\n
$$
C' + \frac{qBA - q^{-1}AB}{q^2 - q^{-2}} = \frac{(a+a^{-1})(b+b^{-1}) + (c+c^{-1})(q^{d+1} + q^{-d-1})}{q + q^{-1}}
$$

Tatsuro Ito, Hjalmar Rosengren, Paul Terwilliger [Leonard pairs and the](#page-0-0) q-tetrahedron algebra

 \overline{A} \overline{B} \rightarrow \overline{A} \overline{B} \rightarrow \overline{A} \overline{B} \rightarrow

へのへ

a mills.

Referring to the above Leonard pair A, B of q-Racah type,

$$
C'-C=\frac{AB-BA}{q-q^{-1}}.
$$

Tatsuro Ito, Hjalmar Rosengren, Paul Terwilliger [Leonard pairs and the](#page-0-0) q -tetrahedron algebra

メロメ メタメ メミメ メミメー

重

 $2Q$

Our Leonard pair A, B of q-Racah type looks as follows in the LB-UB form:

Tatsuro Ito, Hjalmar Rosengren, Paul Terwilliger [Leonard pairs and the](#page-0-0) q -tetrahedron algebra

イロト イ団 トイ ミト イヨト

 \equiv

 299

For our Leonard pair A, B of q-Racah type, we now consider the compact form, which Rosengren discovered around 2002. In this form,

K ロ メ イ 団 メ イ ヨ メ イ ヨ メ

In the compact form, after a suitable normalization A and B look as follows.

matrix	$(i, i - 1)$ -entry	(i, i) -entry	$(i - 1, i)$ -entry
A	$c^{-1}(1 - q^{-2i})$	$(a + a^{-1})q^{d-2i}$	$c(1 - q^{2d-2i+2})$
B	$q^{-d-1}(1 - q^{2i})$	$(b + b^{-1})q^{2i-d}$	$q^{d+1}(1 - q^{2i-2d-2})$

イロト イ押 トイモト イモト

 \equiv

 $2Q$

Tatsuro Ito, Hjalmar Rosengren, Paul Terwilliger [Leonard pairs and the](#page-0-0) q -tetrahedron algebra

The compact form, cont.

For $d = 3$ the compact form looks as follows.

The matrix representing A is

$$
\left(\begin{array}{cccc} (a+a^{-1})q^3 & c(1-q^6) & 0 & 0 \\ c^{-1}(1-q^{-2}) & (a+a^{-1})q & c(1-q^4) & 0 \\ 0 & c^{-1}(1-q^{-4}) & (a+a^{-1})q^{-1} & c(1-q^2) \\ 0 & 0 & c^{-1}(1-q^{-6}) & (a+a^{-1})q^{-3} \end{array}\right)
$$

The matrix representing B is

$$
\left(\begin{array}{cccc} (b+b^{-1})q^{-3} & q^{4}(1-q^{-6}) & 0 & 0 \\ q^{-4}(1-q^{2}) & (b+b^{-1})q^{-1} & q^{4}(1-q^{-4}) & 0 \\ 0 & q^{-4}(1-q^{4}) & (b+b^{-1})q & q^{4}(1-q^{-2}) \\ 0 & 0 & q^{-4}(1-q^{6}) & (b+b^{-1})q^{3} \end{array}\right)
$$

Tatsuro Ito, Hjalmar Rosengren, Paul Terwilliger [Leonard pairs and the](#page-0-0) q-tetrahedron algebra

イロト イ押 トイモト イモト

We continue to discuss our Leonard pair A, B of q -Racah type.

Shortly we will bring in the q -tetrahedron algebra \boxtimes_q .

We will show that the pair A,B induces a \boxtimes_q -module structure on the underlying vector space.

Using this \boxtimes_q -module we will "explain" the LB-UB and compact forms.

イロメ イタメ イチメ イチメー

Roughly speaking, \boxtimes_q is made up of 4 copies of the quantum group $U_q(\mathfrak{sl}_2)$ that are glued together in a certain way.

So let us recall $U_q(\mathfrak{sl}_2)$. We will work with the equitable presentation.

イロト イ押 トイチ トイチャー

The algebra $U_q(\mathfrak{sl}_2)$

Definition

Let $U_q(\mathfrak{sl}_2)$ denote the F-algebra with generators $x, y^{\pm 1}, z$ and relations

$$
yy^{-1} = y^{-1}y = 1,
$$

\n
$$
\frac{qxy - q^{-1}yx}{q - q^{-1}} = 1,
$$

\n
$$
\frac{qyz - q^{-1}zy}{q - q^{-1}} = 1,
$$

\n
$$
\frac{qzx - q^{-1}xz}{q - q^{-1}} = 1.
$$

We call $\mathsf{x},\mathsf{y}^{\pm 1},\mathsf{z}$ the **equitable generators** for $\mathsf{U}_q(\mathfrak{sl}_2).$

K ロ メ イ ヨ メ ミ メ ス ヨ メ ニ

We now define the q -tetrahedron algebra \boxtimes_q .

Let $\mathbb{Z}_4 = \mathbb{Z}/4\mathbb{Z}$ denote the cyclic group of order 4.

Tatsuro Ito, Hjalmar Rosengren, Paul Terwilliger [Leonard pairs and the](#page-0-0) q-tetrahedron algebra

イロメ イ部メ イヨメ イヨメー

The definition of \mathbb{Z}_q

Definition

Let \mathbb{Z}_q denote the F-algebra defined by generators

$$
\{x_{ij} \mid i,j \in \mathbb{Z}_4, \ j-i=1 \text{ or } j-i=2\}
$$

and the following relations:

- (i) For $i, j \in \mathbb{Z}_4$ such that $j i = 2$, $x_{ii}x_{ii} = 1$.
- (ii) For $i, j, k \in \mathbb{Z}_4$ such that $(j i, k j)$ is one of $(1, 1), (1, 2),$ $(2, 1),$

$$
\frac{qx_{ij}x_{jk}-q^{-1}x_{jk}x_{ij}}{q-q^{-1}}=1.
$$

(iii) For $i, j, k, \ell \in \mathbb{Z}_4$ such that $j - i = k - j = \ell - k = 1$,

$$
x_{ij}^3x_{k\ell}-[3]_qx_{ij}^2x_{k\ell}x_{ij}+[3]_qx_{ij}x_{k\ell}x_{ij}^2-x_{k\ell}x_{ij}^3=0.
$$

Tatsuro Ito, Hjalmar Rosengren, Paul Terwilliger [Leonard pairs and the](#page-0-0) q-tetrahedron algebra

イロン イ母ン イヨン イヨン

 000

We mention some basic properties of \mathbb{Z}_q .

There exists an automorphism ρ of \boxtimes_q that sends each generator x_{ii} to $x_{i+1,i+1}$.

Moreover $\rho^4=1$.

Thus the algebra \boxtimes_q has \mathbb{Z}_4 -symmetry.

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$

 $2Q$

For $i \in \mathbb{Z}_4$ there exists an injective \mathbb{F} -algebra homomorphism $\kappa_i: \mathit{U_q}(\mathfrak{sl}_2) \rightarrow \boxtimes_{\mathit{q}}$ that sends

$$
x \mapsto x_{i+2,i+3}, \qquad y \mapsto x_{i+3,i+1},
$$

$$
y^{-1} \mapsto x_{i+1,i+3}, \qquad z \mapsto x_{i+1,i+2}.
$$

Thus \mathbb{Z}_q is generated by 4 copies of $U_q(\mathfrak{sl}_2)$.

イロメ イ部メ イヨメ イヨメー

Let V denote a finite-dimensional irreducible \boxtimes_q -module.

It turns out that each generator x_{ii} is diagonalizable on V.

Moreover, there exists an integer $d \geq 0$ and $\varepsilon \in \{1, -1\}$ such that for each x_{ii} the set of distinct eigenvalues on V is $\{\varepsilon q^{d-2n}|0\leq n\leq d\}.$

We call d the **diameter** of V .

We call ε the type of V.

K ロ メ イ ヨ メ ミ メ ス ヨ メ ニ

There is a class of finite-dimensional irreducible \boxtimes_{q} -modules called evaluation modules. For these modules

- (i) the dimension is at least 2;
- (ii) the type is 1;
- (iii) For each generator x_{ii} all eigenspaces have dimension 1.

イロメ イ部メ イヨメ イヨメー

The evaluation modules for \mathbb{Z}_q are classified, and roughly described as follows.

Let V denote an evaluation module for \mathbb{Z}_q .

Up to isomorphism, V is determined by its diameter d and a nonzero parameter $t\in\mathbb{F}$ that is not among $\mathcal{q}^{d-1}, \mathcal{q}^{d-3}, \ldots, \mathcal{q}^{1-d}.$

We denote this module by $V_d(t)$.

イロメ イ母 トイチ トイチャー

The classification of evaluation modules, cont.

We illustrate with $d = 1$. With respect to an appropriate basis for $V_1(t)$ the generators x_{ii} look as follows:

$$
x_{01} = \begin{pmatrix} q & 0 \ t^{-1}(q - q^{-1}) & q^{-1} \end{pmatrix}, \t x_{12} = \begin{pmatrix} q^{-1} & 0 \ q^{-1} - q & q \end{pmatrix},
$$

\n
$$
x_{23} = \begin{pmatrix} q^{-1} & q - q^{-1} \ 0 & q \end{pmatrix}, \t x_{30} = \begin{pmatrix} q & t(q^{-1} - q) \ 0 & q^{-1} \end{pmatrix},
$$

\n
$$
x_{02} = \begin{pmatrix} \frac{tq - q^{-1}}{t - 1} & \frac{t(q^{-1} - q)}{t - 1} \\ \frac{q - q^{-1}}{t - 1} & \frac{tq^{-1} - q}{t - 1} \end{pmatrix}, \t x_{13} = \begin{pmatrix} q^{-1} & 0 \ 0 & q \end{pmatrix},
$$

\n
$$
x_{20} = \begin{pmatrix} \frac{tq^{-1} - q}{t - 1} & \frac{t(q - q^{-1})}{t - 1} \\ \frac{q^{-1} - q}{t - 1} & \frac{tq - q^{-1}}{t - 1} \end{pmatrix}, \t x_{31} = \begin{pmatrix} q & 0 \\ 0 & q^{-1} \end{pmatrix}.
$$

Tatsuro Ito, Hjalmar Rosengren, Paul Terwilliger [Leonard pairs and the](#page-0-0) q -tetrahedron algebra

メタトメ ミトメ ミト

We now state our main theorem.

Theorem

Let A, B denote a Leonard pair over $\mathbb F$ of q-Racah type, with Huang data (a, b, c, d) . Define $t = abc^{-1}$. Then

• The underlying vector space V supports a unique t-evaluation module for \boxtimes_q such that on V,

$$
A = ax_{01} + a^{-1}x_{12}, \qquad B = bx_{23} + b^{-1}x_{30}.
$$

Tatsuro Ito, Hjalmar Rosengren, Paul Terwilliger [Leonard pairs and the](#page-0-0) q-tetrahedron algebra

へのへ

Theorem

Cont..

• Let C denote the \mathbb{Z}_3 -symmetric completion of A, B. Then on V ,

$$
C = cx_{30} + c^{-1}x_{01} + ab^{-1}\frac{x_{30},x_{01}}{q - q^{-1}}.
$$

• Let C' denote the dual \mathbb{Z}_3 -symmetric completion of A, B. Then on V .

$$
C' = cx_{12} + c^{-1}x_{23} + ba^{-1}\frac{[x_{12}, x_{23}]}{q - q^{-1}}.
$$

Tatsuro Ito, Hjalmar Rosengren, Paul Terwilliger [Leonard pairs and the](#page-0-0) q-tetrahedron algebra

 $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$

 $2Q$

Theorem

Cont..

- Assume that A, B is in LB-UB form. Then the matrices representing x_{13} , x_{31} are diagonal.
- Assume that A, B is in compact form. Then the matrices representing x_{02} , x_{20} are diagonal.

Tatsuro Ito, Hjalmar Rosengren, Paul Terwilliger [Leonard pairs and the](#page-0-0) q-tetrahedron algebra

イロメ イ母メ イヨメ イヨメー

In the main theorem we used the \boxtimes_q -module structure to interpret the LB-UB and compact forms.

The \boxtimes_q -module structure gives four additional forms, which we now describe.

Referring to the main theorem, with respect to an appropriate x_{01} -eigenbasis for V,

イロメ イタメ イチメ イチメー

With respect to an appropriate x_{12} -eigenbasis for V,

イロト イ団 トイ ミト イヨト

 Ω

后

Tatsuro Ito, Hjalmar Rosengren, Paul Terwilliger [Leonard pairs and the](#page-0-0) q -tetrahedron algebra

With respect to an appropriate x_{23} -eigenbasis for V,

Tatsuro Ito, Hjalmar Rosengren, Paul Terwilliger [Leonard pairs and the](#page-0-0) q -tetrahedron algebra

イロト イ団 トイ ミト イヨト

 Ω

重

With respect to an appropriate x_{30} -eigenbasis for V,

イロト イ団 トイ ミト イヨト

 Ω

重

Tatsuro Ito, Hjalmar Rosengren, Paul Terwilliger [Leonard pairs and the](#page-0-0) q -tetrahedron algebra

This talk was about the Leonard pairs of q -Racah type.

These Leonard pairs can be put in LB-UB form or compact form.

We discussed the q -tetrahedron algebra \boxtimes_q and its evaluation modules.

We showed that each Leonard pair of q -Racah type gives an evaluation module for \mathbb{Z}_q .

Using this evaluation module we interpreted the LB-UB and compact forms. We also found four additional forms.

Thank you for your attention!

THE END

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$