An infinite-dimensional \Box_q -module obtained from the q-shuffle algebra for affine \mathfrak{sl}_2

Sarah Post Paul Terwilliger

Overview

We will first recall the notion of a tridiagonal pair.

We will give three examples of a tridiagonal pair, using representations of the **Onsager algebra**, the **positive part of** $U_q(\widehat{\mathfrak{sl}}_2)$, and the *q*-**Onsager algebra**.

Motivated by these algebras we will bring in an algebra \square_q .

We will introduce an infinite-dimensional \Box_q -module, said to be **NIL**.

We will describe the NIL \square_q -module from sixteen points of view.

In this description we will use the **free algebra** \mathbb{V} on two generators, as well as a *q*-shuffle algebra structure on \mathbb{V} .

Tridiagonal pairs

The concept of a **tridiagonal pair** was introduced in 1999 by Tatsuro Ito, Kenichiro Tanabe, and Paul Terwilliger.

This concept is defined as follows.

Let \mathbb{F} denote a field.

Let V denote a vector space over \mathbb{F} with finite positive dimension.

Consider two \mathbb{F} -linear maps $A:V\to V$ and $A^*:V\to V$.

The definition of a tridiagonal pair

The above pair A, A^* is called a **tridiagonal pair** whenever:

- (i) each of A, A^* is diagonalizable;
- (ii) there exists an ordering $\{V_i\}_{i=0}^d$ of the eigenspaces of A such that

$$A^*V_i \subseteq V_{i-1} + V_i + V_{i+1} \quad (0 \le i \le d),$$

where $V_{-1} = 0$ and $V_{d+1} = 0$;

(iii) there exists an ordering $\{V_i^*\}_{i=0}^{\delta}$ of the eigenspaces of A^* such that

$$AV_i^* \subseteq V_{i-1}^* + V_i^* + V_{i+1}^* \quad (0 \le i \le \delta),$$

where $V_{-1}^* = 0$ and $V_{\delta+1}^* = 0$;

(iv) there does not exist a subspace $W \subseteq V$ such that $AW \subseteq W$, $A^*W \subseteq W$, $W \neq 0$, $W \neq V$.

Definition of a tridiagonal pair, cont.

Referring to the above definition, it turns out that $d=\delta$.

This common value is called the **diameter** of the pair.

The eigenvalues of a tridiagonal pair

Refer to the above tridiagonal pair A, A^* .

For $0 \le i \le d$, let θ_i (resp. θ_i^*) denote the eigenvalue of A (resp. A^*) for the eigenspace V_i (resp. V_i^*).

The sequence $\{\theta_i\}_{i=0}^d$ (resp. $\{\theta_i^*\}_{i=0}^d$) is an ordering of the eigenvalues of A (resp. A^*).

This ordering is called standard.

Three examples of a tridiagonal pair

We now give some examples of a tridiagonal pair.

Our examples come from representation theory.

We will consider some representations of the following three algebras:

- The Onsager algebra \mathcal{O} ;
- The positive part U_q^+ of $U_q(\widehat{\mathfrak{sl}}_2)$;
- The q-Onsager algebra \mathcal{O}_q .

The Onsager algebra \mathcal{O}

The **Onsager algebra** \mathcal{O} is the Lie algebra over \mathbb{C} defined by generators A, A^* and relations

$$[A, [A, [A, A^*]]] = 4[A, A^*],$$

 $[A^*, [A^*, [A^*, A]]] = 4[A^*, A].$

The above equations are called the **Dolan/Grady relations**.

The Onsager algebra \mathcal{O} , cont.

Let V denote a finite-dimensional irreducible \mathcal{O} -module.

Then the \mathcal{O} -generators A, A^* act on V as a tridiagonal pair.

For this tridiagonal pair the eigenvalues of A and A^* look as follows in standard order:

$$d-2i$$
 $(0 \le i \le d).$

The positive part U_q^+

From now on, fix a nonzero $q \in \mathbb{F}$ that is not a root of unity.

Define

$$[n]_q = \frac{q^n - q^{-n}}{q - q^{-1}}$$
 $n = 0, 1, 2, ...$

The positive part U_a^+

Let U_q^+ denote the associative \mathbb{F} -algebra defined by generators A,A^* and relations

$$A^{3}A^{*} - [3]_{q}A^{2}A^{*}A + [3]_{q}AA^{*}A^{2} - A^{*}A^{3} = 0,$$

$$A^{*3}A - [3]_q A^{*2}AA^* + [3]_q A^*AA^{*2} - AA^{*3} = 0.$$

The above equations are called the q-Serre relations.

We call U_q^+ the **positive part of** $U_q(\widehat{\mathfrak{sl}}_2)$.

The positive part U_a^+ , cont.

Let V denote a finite-dimensional irreducible U_q^+ -module on which the U_q^+ -generators A, A^* are not nilpotent.

Then A, A^* act on V as a tridiagonal pair.

For this tridiagonal pair the eigenvalues of A and A^* look as follows in standard order:

A:
$$aq^{d-2i}$$
 $(0 \le i \le d),$
A*: bq^{d-2i} $(0 \le i \le d).$

The scalars a, b depend on the U_a^+ -module V.

The q-Onsager algebra \mathcal{O}_q

Let \mathcal{O}_q denote the associative \mathbb{F} -algebra defined by generators A, A^* and relations

$$A^{3}A^{*} - [3]_{q}A^{2}A^{*}A + [3]_{q}AA^{*}A^{2} - A^{*}A^{3}$$
$$= (q^{2} - q^{-2})^{2}(A^{*}A - AA^{*}),$$

$$A^{*3}A - [3]_q A^{*2}AA^* + [3]_q A^*AA^{*2} - AA^{*3}$$
$$= (q^2 - q^{-2})^2 (AA^* - A^*A).$$

The above equations are called the q-Dolan/Grady relations.

We call \mathcal{O}_q the q-Onsager algebra.

A bit of history

The q-Dolan/Grady relations first appeared in Algebraic Combinatorics, in the study of Q-polynomial distance-regular graphs (Terwilliger 1993).

The q-Onsager algebra was formally introduced by Terwilliger in 2003.

Starting around 2005, Pascal Baseilhac applied the q-Onsager algebra to Integrable Systems.

The q-Onsager algebra \mathcal{O}_q , cont.

Let V denote a finite-dimensional irreducible \mathcal{O}_q -module on which the \mathcal{O}_q -generators A, A^* are diagonalizable.

Then A, A^* act on V as a tridiagonal pair. For this pair the eigenvalues of A and A^* look as follows in standard order:

A:
$$aq^{d-2i} + a^{-1}q^{2i-d}$$
 $(0 \le i \le d),$
A*: $bq^{d-2i} + b^{-1}q^{2i-d}$ $(0 \le i \le d).$

The scalars a, b depend on the \mathcal{O}_q -module V.

Comparing U_q^+ and \mathcal{O}_q

Consider how the algebras U_q^+ and \mathcal{O}_q are related.

These algebras have at least a superficial resemblance, since for the q-Serre relations and q-Dolan/Grady relations their left-hand sides match.

We now consider how U_q^+ and \mathcal{O}_q are related at an algebraic level.

To do this, we bring in another algebra \square_q .

Let $\mathbb{Z}_4 = \mathbb{Z}/4\mathbb{Z}$ denote the cyclic group of order 4.

The algebra \square_q

Definition

Let \square_q denote the associative \mathbb{F} -algebra with generators $\{x_i\}_{i\in\mathbb{Z}_4}$ and relations

$$\frac{qx_ix_{i+1} - q^{-1}x_{i+1}x_i}{q - q^{-1}} = 1,$$

$$x_i^3x_{i+2} - [3]_qx_i^2x_{i+2}x_i + [3]_qx_ix_{i+2}x_i^2 - x_{i+2}x_i^3 = 0.$$

The algebra \square_a has \mathbb{Z}_4 symmetry

The algebra \square_q has the following \mathbb{Z}_4 symmetry.

There exists an automorphism ρ of \square_q that sends $x_i \mapsto x_{i+1}$ for $i \in \mathbb{Z}_4$. Moreover $\rho^4 = 1$.

The algebras \square_q and U_q^+

.

The algebra \square_q is related to U_q^+ in the following way.

Definition

Define the subalgebras \square_q^{even} , \square_q^{odd} of \square_q such that

- (i) \square_a^{even} is generated by x_0, x_2 ;
- (ii) \Box_a^{odd} is generated by x_1, x_3 .

The algebras \square_q and U_q^+ , cont.

$\mathsf{Theorem}$

The following (i)–(iii) hold:

- (i) there exists an \mathbb{F} -algebra isomorphism $U_q^+ \to \square_q^{\mathrm{even}}$ that sends $A \mapsto x_0$ and $A^* \mapsto x_2$;
- (ii) there exists an \mathbb{F} -algebra isomorphism $U_q^+ \to \Box_q^{\mathrm{odd}}$ that sends $A \mapsto x_1$ and $A^* \mapsto x_3$;
- (iii) the following is an isomorphism of \mathbb{F} -vector spaces:

$$\Box_q^{\text{even}} \otimes \Box_q^{\text{odd}} \quad \to \quad \Box_q$$
$$u \otimes v \quad \mapsto \quad uv$$

The algebra \square_q

We just showed how the vector space \square_q is isomorphic to $U_q^+\otimes U_q^+$.

We now describe how \square_q is related to the q-Onsager algebra \mathcal{O}_q .

The algebras \square_q and \mathcal{O}_q

Theorem

Pick nonzero $a, b \in \mathbb{F}$. Then there exists a unique \mathbb{F} -algebra homomorphism $\natural : \mathcal{O}_q \to \square_q$ that sends

$$A \mapsto ax_0 + a^{-1}x_1$$

$$B\mapsto bx_2+b^{-1}x_3.$$

The homomorphism \(\pi\) is injective.

The algebra \square_q

Motivated by the previous theorem, we wish to better understand the algebra \Box_q .
So we consider the \square_q -modules.
The finite-dimensional irreducible $\Box_q\text{-modules}$ were classified up to isomorphism by Yang Yang 2017.
Our topic here is a certain infinite-dimensional \square_q -module, said to be NIL.

The NIL \square_q -modules

Definition

Let V denote a \square_q -module. A vector $\xi \in V$ is called NIL whenever $x_1 \xi = 0$ and $x_3 \xi = 0$ and $\xi \neq 0$.

Definition

A \square_q -module V is called NIL whenever V is generated by a NIL vector.

The NIL \square_{q} -module **U**

Theorem

Up to isomorphism, there exists a unique NIL \square_q -module, which we denote by \mathbf{U} .

The \square_q -module **U** is irreducible and infinite-dimensional.

The NIL \square_{q} -module **U**

Recall the natural numbers $\mathbb{N} = \{0, 1, 2, \ldots\}$.

Theorem

The \square_q -module $\mathbf U$ has a unique sequence of subspaces $\{\mathbf U_n\}_{n\in\mathbb N}$ such that

- (i) $U_0 \neq 0$;
- (ii) the sum $\mathbf{U} = \sum_{n \in \mathbb{N}} \mathbf{U}_n$ is direct;
- (iii) for $n \in \mathbb{N}$,

$$x_0 \mathbf{U}_n \subseteq \mathbf{U}_{n+1}, \qquad x_1 \mathbf{U}_n \subseteq \mathbf{U}_{n-1}, x_2 \mathbf{U}_n \subseteq \mathbf{U}_{n+1}, \qquad x_3 \mathbf{U}_n \subseteq \mathbf{U}_{n-1},$$

where
$$\mathbf{U}_{-1} = 0$$
.

Theorem

The sequence $\{\mathbf{U}_n\}_{n\in\mathbb{N}}$ is described as follows.

The subspace \mathbf{U}_0 has dimension 1.

The nonzero vectors in \mathbf{U}_0 are precisely the NIL vectors in \mathbf{U}_0 , and each of these vectors generates **U**.

Let ξ denote a NIL vector in **U**. Then for $n \in \mathbb{N}$, the subspace \mathbf{U}_n is spanned by the vectors

$$u_1u_2\cdots u_n\xi$$
,

$$u_i \in \{x_0, x_2\}, \qquad 1 \le i \le n.$$

$$1 \le i \le n$$
.

The NIL \square_{q} -module **U**, cont.

Shortly we will describe the \square_q -module **U** in more detail.

To prepare, we comment on free algebras and q-shuffle algebras.

The free algebra \mathbb{V}

From now on, \mathbb{V} denotes the free associative \mathbb{F} -algebra on two generators A,B.

For $n \in \mathbb{N}$, a word of length n in \mathbb{V} is a product $v_1v_2 \cdots v_n$ such that $v_i \in \{A, B\}$ for $1 \le i \le n$.

The **standard basis** for V consists of the words.

A bilinear form on V

There exists a symmetric bilinear form (,) : $\mathbb{V} \times \mathbb{V} \to \mathbb{F}$ with respect to which the standard basis is orthonormal.

Recall that the algebra $\operatorname{End}(\mathbb V)$ consists of the $\mathbb F$ -linear maps from $\mathbb V$ to $\mathbb V.$

For $X \in \operatorname{End}(\mathbb{V})$ there exists a unique $X^* \in \operatorname{End}(\mathbb{V})$ such that $(Xu, v) = (u, X^*v)$ for all $u, v \in \mathbb{V}$.

The element X^* is called the **adjoint of** X with respect to (,).

The automorphism K of \mathbb{V}

We define an invertible $K \in \operatorname{End}(\mathbb{V})$ as follows.

Definition

The map K is the automorphism of the free algebra \mathbb{V} that sends $A \mapsto q^2 A$ and $B \mapsto q^{-2} B$.

We have $K^* = K$.

The automorphism K of \mathbb{V} , cont.

The map K acts on the standard basis for \mathbb{V} in the following way.

For a word
$$v=v_1v_2\cdots v_n$$
 in \mathbb{V} ,
$$\mathcal{K}(v)=vq^{\langle v_1,A\rangle+\langle v_2,A\rangle+\cdots+\langle v_n,A\rangle},$$

$$\mathcal{K}^{-1}(v)=vq^{\langle v_1,B\rangle+\langle v_2,B\rangle+\cdots+\langle v_n,B\rangle}$$

where

$$\begin{array}{c|ccc} \langle \,, \, \rangle & A & B \\ \hline A & 2 & -2 \\ B & -2 & 2 \end{array}$$

Left and right multiplication in $\mathbb V$

Definition

We define four maps in $\operatorname{End}(\mathbb{V})$, denoted

$$A_L$$
, B_L , A_R , B_R .

For $v \in \mathbb{V}$,

$$A_L(v) = Av$$
, $B_L(v) = Bv$, $A_R(v) = vA$, $B_R(v) = vB$.

Some adjoints

We now consider

$$A_L^*, \qquad B_L^*, \qquad A_R^*, \qquad B_R^*.$$

Lemma

For a word $v = v_1 v_2 \cdots v_n$ in \mathbb{V} ,

$$A_L^*(v) = v_2 \cdots v_n \delta_{v_1,A},$$

$$A_R^*(v) = v_1 \cdots v_{n-1} \delta_{v_n,A},$$

$$B_L^*(v) = v_2 \cdots v_n \delta_{v_1,B},$$

$$B_R^*(v) = v_1 \cdots v_{n-1} \delta_{v_n,B}.$$

The q-shuffle algebra \mathbb{V}

We have been discussing the free algebra V.

There is another algebra structure on \mathbb{V} , called the *q*-shuffle algebra. This is due to M. Rosso 1995.

The *q*-shuffle product will be denoted by \star .

For $X \in \{A, B\}$ and a word $v = v_1 v_2 \cdots v_n$ in \mathbb{V} ,

$$X \star v = \sum_{i=0}^{n} v_{1} \cdots v_{i} X v_{i+1} \cdots v_{n} q^{\langle v_{1}, X \rangle + \langle v_{2}, X \rangle + \cdots + \langle v_{i}, X \rangle},$$

$$v \star X = \sum_{i=0}^{n} v_{1} \cdots v_{i} X v_{i+1} \cdots v_{n} q^{\langle v_{n}, X \rangle + \langle v_{n-1}, X \rangle + \cdots + \langle v_{i+1}, X \rangle}.$$

The map K is an automorphism of the q-shuffle algebra \mathbb{V} .

The q-shuffle algebra \mathbb{V} , cont.

Definition

We define four maps in $\operatorname{End}(\mathbb{V})$, denoted

$$A_{\ell}, \qquad B_{\ell}, \qquad A_{r}, \qquad B_{r}.$$

For $v \in \mathbb{V}$,

$$A_{\ell}(v) = A \star v, \quad B_{\ell}(v) = B \star v, \quad A_{r}(v) = v \star A, \quad B_{r}(v) = v \star B.$$

Some more adjoints

We now consider

$$A_{\ell}^*, \qquad B_{\ell}^*, \qquad A_{r}^*, \qquad B_{r}^*.$$

Lemma

For a word $v = v_1 v_2 \cdots v_n$ in \mathbb{V} ,

$$A_{\ell}^{*}(v) = \sum_{i=0}^{n} v_{1} \cdots v_{i-1} v_{i+1} \cdots v_{n} \delta_{v_{i},A} q^{\langle v_{1},A \rangle + \langle v_{2},A \rangle + \cdots + \langle v_{i-1},A \rangle},$$

$$B_{\ell}^*(v) = \sum_{i=0}^n v_1 \cdots v_{i-1} v_{i+1} \cdots v_n \delta_{v_i,B} q^{\langle v_1,B \rangle + \langle v_2,B \rangle + \cdots + \langle v_{i-1},B \rangle},$$

$$A_r^*(v) = \sum_{i=0}^n v_1 \cdots v_{i-1} v_{i+1} \cdots v_n \delta_{v_i,A} q^{\langle v_n,A \rangle + \langle v_{n-1},A \rangle + \cdots + \langle v_{i+1},A \rangle},$$

$$B_r^*(v) = \sum_{i=1}^n v_1 \cdots v_{i-1} v_{i+1} \cdots v_n \delta_{v_i,B} q^{\langle v_n,B \rangle + \langle v_{n-1},B \rangle + \cdots + \langle v_{i+1},B \rangle}.$$

Comparing the free algebra and the *q*-shuffle algebra

We now compare the free algebra $\mathbb V$ with the q-shuffle algebra $\mathbb V.$

To do this, we recall the concept of a derivation.

Let $\mathcal A$ denote an associative $\mathbb F$ -algebra, and let φ , ϕ denote automorphisms of $\mathcal A$.

By a (φ, ϕ) -derivation of \mathcal{A} we mean an \mathbb{F} -linear map $\delta : \mathcal{A} \to \mathcal{A}$ such that for all $u, v \in \mathcal{A}$,

$$\delta(uv) = \varphi(u)\delta(v) + \delta(u)\phi(v).$$

Comparing the free algebra and the *q*-shuffle algebra

The following two lemmas are due to M. Rosso and J. Green 1995.

Lemma

For the free algebra V,

- (i) A_{ℓ}^* is a (K, I)-derivation;
- (ii) B_{ℓ}^* is a (K^{-1}, I) -derivation;
- (iii) A_r^* is a (I, K)-derivation;
- (iv) B_r^* is a (I, K^{-1}) -derivation.

Comparing the free algebra and the q-shuffle algebra

Lemma

For the q-shuffle algebra V,

- (i) A_I^* is a (K, I)-derivation;
- (ii) B_I^* is a (K^{-1}, I) -derivation;
- (iii) A_R^* is a (I, K)-derivation;
- (iv) B_R^* is a (I, K^{-1}) -derivation.

Some relations

We will need some relations satisfied by K, K^{-1} and

$$A_I^*$$
, B_I^* , A_R^* , B_R^* , A_ℓ , B_ℓ , A_r , B_r .

We acknowledge that these relations are already known to the experts, such as Kashiwara 1991, Rosso 1995, Green 1995.

Some relations

Theorem

We have

$$KA_L^* = q^{-2}A_L^*K,$$
 $KB_L^* = q^2B_L^*K,$ $KA_R^* = q^{-2}A_R^*K,$ $KB_R^* = q^2B_R^*K,$

$$\begin{split} KA_\ell &= q^2 A_\ell K, & KB_\ell &= q^{-2} B_\ell K, \\ KA_r &= q^2 A_r K, & KB_r &= q^{-2} B_r K, \end{split}$$

$$\begin{aligned} A_L^* A_R^* &= A_R^* A_L^*, & B_L^* B_R^* &= B_R^* B_L^*, \\ A_L^* B_R^* &= B_R^* A_L^*, & B_L^* A_R^* &= A_R^* B_L^*, \end{aligned}$$

$$A_{\ell}A_{r} = A_{r}A_{\ell},$$
 $B_{\ell}B_{r} = B_{r}B_{\ell},$ $A_{\ell}B_{r} = B_{r}A_{\ell},$ $B_{\ell}A_{r} = A_{r}B_{\ell},$

Some relations, cont.

Theorem

We have

$$A_{L}^{*}B_{r} = B_{r}A_{L}^{*}, \qquad B_{L}^{*}A_{r} = A_{r}B_{L}^{*}, A_{R}^{*}B_{\ell} = B_{\ell}A_{R}^{*}, \qquad B_{R}^{*}A_{\ell} = A_{\ell}B_{R}^{*},$$

$$\begin{split} A_L^*B_\ell &= q^{-2}B_\ell A_L^*, & B_L^*A_\ell &= q^{-2}A_\ell B_L^*, \\ A_R^*B_r &= q^{-2}B_r A_R^*, & B_R^*A_r &= q^{-2}A_r B_R^*, \end{split}$$

$$A_{L}^{*}A_{\ell} - q^{2}A_{\ell}A_{L}^{*} = I,$$
 $A_{R}^{*}A_{r} - q^{2}A_{r}A_{R}^{*} = I,$ $B_{L}^{*}B_{\ell} - q^{2}B_{\ell}B_{L}^{*} = I,$ $B_{R}^{*}B_{r} - q^{2}B_{r}B_{R}^{*} = I,$

$$A_{L}^{*}A_{r} - A_{r}A_{L}^{*} = K,$$
 $B_{L}^{*}B_{r} - B_{r}B_{L}^{*} = K^{-1},$ $A_{D}^{*}A_{\ell} - A_{\ell}A_{D}^{*} = K.$ $B_{D}^{*}B_{\ell} - B_{\ell}B_{D}^{*} = K^{-1}.$

Sarah Post, Paul Terwilliger

Some relations, cont.

Theorem

We have

$$A_{\ell}^{3}B_{\ell} - [3]_{q}A_{\ell}^{2}B_{\ell}A_{\ell} + [3]_{q}A_{\ell}B_{\ell}A_{\ell}^{2} - B_{\ell}A_{\ell}^{3} = 0,$$

$$B_{\ell}^{3}A_{\ell} - [3]_{q}B_{\ell}^{2}A_{\ell}B_{\ell} + [3]_{q}B_{\ell}A_{\ell}B_{\ell}^{2} - A_{\ell}B_{\ell}^{3} = 0,$$

$$A_{r}^{3}B_{r} - [3]_{q}A_{r}^{2}B_{r}A_{r} + [3]_{q}A_{r}B_{r}A_{r}^{2} - B_{r}A_{r}^{3} = 0,$$

$$B_{r}^{3}A_{r} - [3]_{q}B_{r}^{2}A_{r}B_{r} + [3]_{q}B_{r}A_{r}B_{r}^{2} - A_{r}B_{r}^{3} = 0.$$

Some more relations

Applying the adjoint map to the above relations, we obtain the following relations satisfied by K, K^{-1} and

$$A_L$$
, B_L , A_R , B_R , A_ℓ^* , B_ℓ^* , A_r^* , B_r^* .

Some more relations

Theorem

We have

$$KA_L = q^2 A_L K,$$
 $KB_L = q^{-2} B_L K,$ $KA_R = q^2 A_R K,$ $KB_R = q^{-2} B_R K,$

$$\begin{split} KA_{\ell}^* &= q^{-2}A_{\ell}^*K, & KB_{\ell}^* &= q^2B_{\ell}^*K, \\ KA_{r}^* &= q^{-2}A_{r}^*K, & KB_{r}^* &= q^2B_{r}^*K, \end{split}$$

$$A_L A_R = A_R A_L,$$
 $B_L B_R = B_R B_L,$ $A_L B_R = B_R A_L,$ $B_L A_R = A_R B_L,$

$$A_{\ell}^* A_r^* = A_r^* A_{\ell}^*, \qquad B_{\ell}^* B_r^* = B_r^* B_{\ell}^*, A_{\ell}^* B_r^* = B_r^* A_{\ell}^*, \qquad B_{\ell}^* A_r^* = A_r^* B_{\ell}^*,$$

Some more relations, cont.

$\mathsf{Theorem}$

We have

$$A_L B_r^* = B_r^* A_L,$$
 $B_L A_r^* = A_r^* B_L,$ $A_R B_\ell^* = B_\ell^* A_R,$ $B_R A_\ell^* = A_\ell^* B_R,$

$$A_L B_\ell^* = q^2 B_\ell^* A_L,$$
 $B_L A_\ell^* = q^2 A_\ell^* B_L,$ $A_R B_r^* = q^2 B_r^* A_R,$ $B_R A_r^* = q^2 A_r^* B_R,$

$$A_{\ell}^* A_L - q^2 A_L A_{\ell}^* = I,$$
 $A_r^* A_R - q^2 A_R A_r^* = I,$ $B_{\ell}^* B_L - q^2 B_L B_{\ell}^* = I,$ $B_r^* B_R - q^2 B_R B_r^* = I,$

$$A_r^* A_L - A_L A_r^* = K,$$
 $B_r^* B_L - B_L B_r^* = K^{-1},$ $A_\ell^* A_R - A_R A_\ell^* = K.$ $B_\ell^* B_R - B_R B_\ell^* = K^{-1}.$

An infinite-dimensional \square_q -module obtained from the q-shuffl

Some more relations, cont.

Theorem

We have

$$(A_{\ell}^{*})^{3}B_{\ell}^{*} - [3]_{q}(A_{\ell}^{*})^{2}B_{\ell}^{*}A_{\ell}^{*} + [3]_{q}A_{\ell}^{*}B_{\ell}^{*}(A_{\ell}^{*})^{2} - B_{\ell}^{*}(A_{\ell}^{*})^{3} = 0,$$

$$(B_{\ell}^{*})^{3}A_{\ell}^{*} - [3]_{q}(B_{\ell}^{*})^{2}A_{\ell}^{*}B_{\ell}^{*} + [3]_{q}B_{\ell}^{*}A_{\ell}^{*}(B_{\ell}^{*})^{2} - A_{\ell}^{*}(B_{\ell}^{*})^{3} = 0,$$

$$(A_{r}^{*})^{3}B_{r}^{*} - [3]_{q}(A_{r}^{*})^{2}B_{r}^{*}A_{r}^{*} + [3]_{q}A_{r}^{*}B_{r}^{*}(A_{r}^{*})^{2} - B_{r}^{*}(A_{r}^{*})^{3} = 0,$$

$$(B_{r}^{*})^{3}A_{r}^{*} - [3]_{q}(B_{r}^{*})^{2}A_{r}^{*}B_{r}^{*} + [3]_{q}B_{r}^{*}A_{r}^{*}(B_{r}^{*})^{2} - A_{\ell}^{*}(B_{r}^{*})^{3} = 0.$$

The 2-sided ideal J of the free algebra \mathbb{V}

Let J denote the 2-sided ideal of the free algebra $\mathbb V$ generated by

$$J^{+} = A^{3}B - [3]_{q}A^{2}BA + [3]_{q}ABA^{2} - BA^{3},$$

$$J^{-} = B^{3}A - [3]_{q}B^{2}AB + [3]_{q}BAB^{2} - AB^{3}.$$

The quotient algebra \mathbb{V}/J is isomorphic to U_q^+ .

The 2-sided ideal J of the free algebra \mathbb{V} , cont.

Lemma

The subspace J is invariant under $K^{\pm 1}$ and

$$A_L$$
, B_L , A_R , B_R , A_ℓ^* , B_ℓ^* , A_r^* , B_r^* .

On the quotient V/J,

$$A_L^3 B_L - [3]_q A_L^2 B_L A_L + [3]_q A_L B_L A_L^2 - B_L A_L^3 = 0,$$

$$B_L^3 A_L - [3]_q B_L^2 A_L B_L + [3]_q B_L A_L B_L^2 - A_L B_L^3 = 0,$$

$$A_R^3 B_R - [3]_q A_R^2 B_R A_R + [3]_q A_R B_R A_R^2 - B_R A_R^3 = 0,$$

$$B_R^3 A_R - [3]_q B_R^2 A_R B_R + [3]_q B_R A_R B_R^2 - A_R B_R^3 = 0.$$

The subalgebra U of the q-shuffle algebra \mathbb{V}

Let U denote the subalgebra of the q-shuffle algebra \mathbb{V} generated by A, B.

The algebra U is isomorphic to U_q^+ (Rosso 1995).

The subalgebra U of the q-shuffle algebra V, cont.

Lemma

The subspace U is invariant under $K^{\pm 1}$ and

$$A_L^*$$
, B_L^* , A_R^* , B_R^* , A_ℓ , B_ℓ , A_r , B_r .

On U,

$$(A_{L}^{*})^{3}B_{L}^{*} - [3]_{q}(A_{L}^{*})^{2}B_{L}^{*}A_{L}^{*} + [3]_{q}A_{L}^{*}B_{L}^{*}(A_{L}^{*})^{2} - B_{L}^{*}(A_{L}^{*})^{3} = 0,$$

$$(B_{L}^{*})^{3}A_{L}^{*} - [3]_{q}(B_{L}^{*})^{2}A_{L}^{*}B_{L}^{*} + [3]_{q}B_{L}^{*}A_{L}^{*}(B_{L}^{*})^{2} - A_{L}^{*}(B_{L}^{*})^{3} = 0,$$

$$(A_{R}^{*})^{3}B_{R}^{*} - [3]_{q}(A_{R}^{*})^{2}B_{R}^{*}A_{R}^{*} + [3]_{q}A_{R}^{*}B_{R}^{*}(A_{R}^{*})^{2} - B_{R}^{*}(A_{R}^{*})^{3} = 0,$$

$$(B_{R}^{*})^{3}A_{R}^{*} - [3]_{q}(B_{R}^{*})^{2}A_{R}^{*}B_{R}^{*} + [3]_{q}B_{R}^{*}A_{R}^{*}(B_{R}^{*})^{2} - A_{R}^{*}(B_{R}^{*})^{3} = 0.$$

The main results

We are now ready to state our main results, which are about the \square_q -module \mathbf{U} .

For notational convenience define $Q = 1 - q^2$.

The main results

Theorem

For each row in the tables below, the vector space \mathbb{V}/J becomes a \square_q -module on which the generators $\{x_i\}_{i\in\mathbb{Z}_4}$ act as indicated.

module label	<i>x</i> ₀	x_1	<i>X</i> ₂	<i>X</i> 3
I	A_L	$Q(A_{\ell}^* - B_r^* K)$	B_L	$Q(B_{\ell}^* - A_r^* K^{-1})$
IS	A_R	$Q(A_r^* - B_\ell^* K)$	B_R	$Q(B_r^* - A_\ell^* K^{-1})$
IT	B_L	$Q(B_{\ell}^* - A_r^* K^{-1})$	A_L	$Q(A_{\ell}^* - B_r^* K)$
IST	B_R	$Q(B_r^* - A_\ell^* K^{-1})$	A_R	$Q(A_r^* - B_\ell^* K)$

module label	<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3
II	$Q(A_L - KB_R)$	A_ℓ^*	$Q(B_L - K^{-1}A_R)$	B_{ℓ}^*
IIS	$Q(A_R-KB_L)$	A_r^*	$Q(B_R-K^{-1}A_L)$	B_r^*
IIT	$Q(B_L - K^{-1}A_R)$	B_ℓ^*	$Q(A_L - KB_R)$	A_ℓ^*
IIST	$Q(B_R - K^{-1}A_L)$	B_r^*	$Q(A_R-KB_L)$	A_r^*

Each \square_q -module in the tables is isomorphic to **U**.

The main results, cont.

Theorem

For each row in the tables below, the vector space U becomes a \square_q -module on which the generators $\{x_i\}_{i\in\mathbb{Z}_4}$ act as indicated.

module label	<i>x</i> ₀	x_1	<i>x</i> ₂	<i>x</i> ₃
III	A_{ℓ}	$Q(A_L^* - B_R^*K)$	B_{ℓ}	$Q(B_L^* - A_R^* K^{-1})$
IIIS	A_r	$Q(A_R^* - B_L^*K)$	B_r	$Q(B_R^* - A_L^* K^{-1})$
IIII	B_ℓ	$Q(B_L^* - A_R^* K^{-1})$	\mathcal{A}_ℓ	$Q(A_L^* - B_R^*K)$
IIIST	B_r	$Q(B_R^* - A_L^* K^{-1})$	A_r	$Q(A_R^* - B_L^*K)$

module label	x_0	x_1	<i>x</i> ₂	<i>X</i> ₃
IV	$Q(A_{\ell}-KB_r)$	A_L^*	$Q(B_{\ell}-K^{-1}A_r)$	B_L^*
IVS	$Q(A_r - KB_\ell)$	A_R^*	$Q(B_r-K^{-1}A_\ell)$	B_R^*
IVT	$Q(B_\ell-K^{-1}A_r)$	B_L^*	$Q(A_\ell - KB_r)$	A_L^*
IVST	$Q(B_r - K^{-1}A_\ell)$	$B_R^{\bar{*}}$	$Q(A_r - KB_\ell)$	$A_R^{\bar{*}}$

Each \square_a -module in the tables is isomorphic to **U**.

The main results, cont.

Theorem

For the above \square_q -modules on \mathbb{V}/J , the elements x_1 and x_3 act on the algebra \mathbb{V}/J as a derivation of the following sort:

module label	x_1	<i>X</i> 3
I, II	(K, I)-derivation	(K^{-1}, I) -derivation
IS, IIS	(I, K)-derivation	(I, K^{-1}) -derivation
IT, IIT	(K^{-1}, I) -derivation	(K, I)-derivation
IST, IIST	(I, K^{-1}) -derivation	(I, K)-derivation

The main results, cont.

Theorem

For the above \Box_q -modules on U, the elements x_1 and x_3 act on the algebra U as a derivation of the following sort:

module label	x_1	<i>X</i> 3
III, IV	(K, I)-derivation	(K^{-1}, I) -derivation
IIIS, IVS	(I,K)-derivation	(I, K^{-1}) -derivation
IIIT, IVT	(K^{-1}, I) -derivation	(K, I)-derivation
IIIST, IVST	(I, K^{-1}) -derivation	(I, K)-derivation

Summary

In this talk, we recalled the notion of a tridiagonal pair, and used it to motivate the algebra \Box_q .
We introduced an infinite-dimensional \square_q -module, said to be NIL.
We described the NIL \square_q -module from sixteen points of view.
In this description we made use of the free algebra $\mathbb V$ on two generators A,B as well as a q -shuffle algebra structure on $\mathbb V$.

THANK YOU FOR YOUR ATTENTION!