Tridiagonal pairs of q-Racah type, the Bockting operator ψ , and L-operators for $U_q(L(\mathfrak{sl}_2))$

Paul Terwilliger

University of Wisconsin-Madison

Overview

Tridiagonal pairs are used to describe the irreducible modules for the subconstituent algebra of a Q-polynomial distance-regular graph.

Associated with any tridiagonal pair is a certain operator ψ due to Sarah Bockting-Conrad.

In this talk, we describe ψ for a tridiagonal pair of q-Racah type, in terms of a certain L-operator for the quantum loop algebra $U_q(L(\mathfrak{sl}_2))$.

Our main result is that ψ is a scalar multiple of the ratio of two components of the L-operator.

Notation

Let \mathbb{F} denote a field.

Fix a nonzero $q \in \mathbb{F}$ that is not a root of 1.

Define

$$[n]_q = \frac{q^n - q^{-n}}{q - q^{-1}} \qquad n \in \mathbb{Z}.$$

All tensor products are meant to be over \mathbb{F} .

The quantum group $U_q(L(\mathfrak{sl}_2))$

Definition

Let $U_q = U_q(L(\mathfrak{sl}_2))$ denote the \mathbb{F} -algebra with generators $E_i, F_i, K_i^{\pm 1}$ $(i \in \{0, 1\})$ and relations

$$\begin{split} &K_{i}K_{i}^{-1}=1, & K_{i}^{-1}K_{i}=1, \\ &K_{0}K_{1}=1, & K_{1}K_{0}=1, \\ &K_{i}E_{i}=q^{2}E_{i}K_{i}, & K_{i}F_{i}=q^{-2}F_{i}K_{i}, \\ &K_{i}E_{j}=q^{-2}E_{j}K_{i}, & K_{i}F_{j}=q^{2}F_{j}K_{i}, & i\neq j, \\ &E_{i}F_{j}-F_{j}E_{i}=\delta_{i,j}\frac{K_{i}-K_{i}^{-1}}{q-q^{-1}}, \\ &E_{i}^{3}E_{j}-[3]_{q}E_{i}^{2}E_{j}E_{i}+[3]_{q}E_{i}E_{j}E_{i}^{2}-E_{j}E_{i}^{3}=0, & i\neq j, \\ &F_{i}^{3}F_{j}-[3]_{q}F_{i}^{2}F_{j}F_{i}+[3]_{q}F_{i}F_{j}F_{i}^{2}-F_{j}F_{i}^{3}=0, & i\neq j. \end{split}$$

Hopf algebra structure for U_q

 U_q becomes a Hopf algebra as follows. The coproduct Δ satisfies

$$\begin{split} \Delta(K_i) &= K_i \otimes K_i, \\ \Delta(E_i) &= E_i \otimes 1 + K_i \otimes E_i, \end{split} \qquad \Delta(K_i^{-1}) = K_i^{-1} \otimes K_i^{-1}, \\ \Delta(F_i) &= 1 \otimes F_i + F_i \otimes K_i^{-1}. \end{split}$$

The counit ε satisfies

$$\varepsilon(K_i) = 1,$$
 $\varepsilon(K_i^{-1}) = 1,$ $\varepsilon(E_i) = 0,$ $\varepsilon(F_i) = 0.$

The antipode S satisfies

$$S(K_i) = K_i^{-1}, \qquad S(E_i) = -K_i^{-1}E_i, \qquad S(F_i) = -F_iK_i.$$

The opposite coproduct

Consider the composition

$$\Delta^{\mathrm{op}}: \quad U_q \xrightarrow{\quad \quad } U_q \otimes U_q \xrightarrow{\quad \quad r \otimes s \mapsto s \otimes r \quad} U_q \otimes U_q.$$

The map Δ^{op} is called the **opposite coproduct**.

Evaluation modules for U_q

There exists a family of finite-dimensional irreducible U_q -modules

$$V(d,t)$$
 $0 \neq d \in \mathbb{N},$ $0 \neq t \in \mathbb{F}$

with this property: $\mathbf{V}(d,t)$ has a basis $\{v_i\}_{i=0}^d$ such that

$$K_{1}v_{i} = q^{d-2i}v_{i} \qquad (0 \le i \le d),$$

$$E_{1}v_{i} = [d-i+1]_{q}v_{i-1} \qquad (1 \le i \le d), \qquad E_{1}v_{0} = 0,$$

$$F_{1}v_{i} = [i+1]_{q}v_{i+1} \qquad (0 \le i \le d-1), \qquad F_{1}v_{d} = 0,$$

$$K_{0}v_{i} = q^{2i-d}v_{i} \qquad (0 \le i \le d),$$

$$E_{0}v_{i} = t[i+1]_{q}v_{i+1} \qquad (0 \le i \le d-1), \qquad E_{0}v_{d} = 0,$$

$$F_{0}v_{i} = t^{-1}[d-i+1]_{q}v_{i-1} \qquad (1 \le i \le d), \qquad F_{0}v_{0} = 0.$$

Evaluation modules, cont.

We call V(d,t) an evaluation module for U_q . We call d the diameter. We call t the evaluation parameter.

Example

For $0 \neq t \in \mathbb{F}$ the U_q -module $\mathbf{V}(1,t)$ is described as follows. With respect to the above basis v_0, v_1 the matrices representing the Chevalley generators are

$$E_1: \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right), \quad F_1: \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right), \quad K_1: \left(\begin{array}{cc} q & 0 \\ 0 & q^{-1} \end{array}\right),$$

$$E_0: \left(\begin{array}{cc} 0 & 0 \\ t & 0 \end{array}\right), \quad F_0: \left(\begin{array}{cc} 0 & t^{-1} \\ 0 & 0 \end{array}\right), \quad K_0: \left(\begin{array}{cc} q^{-1} & 0 \\ 0 & q \end{array}\right).$$

U_q -modules and their tensor products

Lemma

Let U and V denote U_q -modules. Then $U \otimes V$ becomes a U_q -module as follows. For $u \in U$ and $v \in V$,

$$K_{i}(u \otimes v) = K_{i}(u) \otimes K_{i}(v),$$

$$K_{i}^{-1}(u \otimes v) = K_{i}^{-1}(u) \otimes K_{i}^{-1}(v),$$

$$E_{i}(u \otimes v) = E_{i}(u) \otimes v + K_{i}(u) \otimes E_{i}(v),$$

$$F_{i}(u \otimes v) = u \otimes F_{i}(v) + F_{i}(u) \otimes K_{i}^{-1}(v).$$

Finite-dimensional irreducible U_q -modules

Definition

Up to isomorphism, there exists a unique U_q -module of dimension 1 on which each $u \in U_q$ acts as $\varepsilon(u)I$, where ε is the counit. This U_q -module is said to be **trivial**.

Theorem (Chari and Presseley 1991)

Assume that \mathbb{F} is algebraically closed with characteristic zero. Let V denote a nontrivial finite-dimensional irreducible U_q -module on which each eigenvalue of K_1 is an integral power of q. Then V is isomorphic to a tensor product of evaluation U_q -modules.

L-operators for U_q

Definition

Let V denote a U_q -module and $0 \neq t \in \mathbb{F}$. Consider a linear transformation

$$L: V \otimes \mathbf{V}(1,t) \rightarrow V \otimes \mathbf{V}(1,t).$$

We call this map an *L*-operator for *V* with parameter *t* whenever the following diagram commutes for all $u \in U_q$:

$$egin{aligned} V \otimes \mathbf{V}(1,t) & \stackrel{\Delta(u)}{\longrightarrow} & V \otimes \mathbf{V}(1,t) \ \downarrow \downarrow & & \downarrow \iota \ V \otimes \mathbf{V}(1,t) & \stackrel{\Delta^{\mathrm{op}}(u)}{\longrightarrow} & V \otimes \mathbf{V}(1,t) \end{aligned}$$

The components of an *L*-operator

Let V denote a U_q -module and $0 \neq t \in \mathbb{F}$. Consider an L-operator with parameter t:

$$L: V \otimes \mathbf{V}(1,t) \to V \otimes \mathbf{V}(1,t). \tag{1}$$

For $r, s \in \{0, 1\}$ define an \mathbb{F} -linear map $L_{rs}: V \to V$ such that for $v \in V$,

$$L(v \otimes v_0) = L_{00}(v) \otimes v_0 + L_{10}(v) \otimes v_1,$$

$$L(v \otimes v_1) = L_{01}(v) \otimes v_0 + L_{11}(v) \otimes v_1.$$

We call L_{rs} the (r, s)-component of L.

L-operators for evaluation modules

Example

Assume that the U_q -module V is an evaluation module $\mathbf{V}(d,\mu)$. Consider an L-operator for V with parameter t. Then the matrices that represent the components L_{rs} with respect to the basis $\{v_i\}_{i=0}^d$ are given below (all matrix entries not shown are zero):

(operator	(i, i-1)-entry	(i, i)-entry	(i-1,i)-entry
	L ₀₀	0	$\frac{q^{1-i}-\mu^{-1}tq^{i-d}}{a-a^{-1}}\xi$	0
	L ₀₁	$[i]_q q^{1-i} \xi$	0	0
	L ₁₀	0	0	$[d-i+1]_q q^{i-d} \mu^{-1} t \xi$
	L ₁₁	0	$\frac{q^{i-d+1} - \mu^{-1}tq^{-i}}{q - q^{-1}} \xi$	0
	Have C = IF			

Here $\xi \in \mathbb{F}$.

How to construct an *L*-operator

Let U and V denote U_q -modules.

Let $0 \neq t \in \mathbb{F}$.

Suppose we are given L-operators for U and V that have parameter t.

Then for the U_q -module $U\otimes V$ we now construct an L-operator with parameter t.

How to construct an L-operator, cont.

Lemma

For the above U, V, t there exists an L-operator for $U \otimes V$ with parameter t such that for $r, s \in \{0, 1\}$,

$$L_{rs}(u \otimes v) = L_{r0}(u) \otimes L_{0s}(v) + L_{r1}(u) \otimes L_{1s}(v)$$
 $u \in U, v \in V.$

Tridiagonal pairs

We now recall the tridiagonal pairs.

For the rest of this talk, let V denote a vector space over \mathbb{F} with finite positive dimension.

Consider two linear transformations $A: V \to V$ and $A^*: V \to V$.

The definition of a tridiagonal pair

The above pair A, A^* is called a **tridiagonal pair** whenever:

- (i) each of A, A^* is diagonalizable;
- (ii) there exists an ordering $\{V_i\}_{i=0}^d$ of the eigenspaces of A such that

$$A^*V_i \subseteq V_{i-1} + V_i + V_{i+1} \quad (0 \le i \le d),$$

where $V_{-1} = 0$ and $V_{d+1} = 0$;

(iii) there exists an ordering $\{V_i^*\}_{i=0}^{\delta}$ of the eigenspaces of A^* such that

$$AV_i^* \subseteq V_{i-1}^* + V_i^* + V_{i+1}^* \quad (0 \le i \le \delta),$$

where $V_{-1}^* = 0$ and $V_{\delta+1}^* = 0$;

(iv) there does not exist a subspace $W \subseteq V$ such that $AW \subseteq W$, $A^*W \subseteq W$, $W \neq 0$, $W \neq V$.

The eigenvalues of A and A^*

Assume that A, A^* is a tridiagonal pair on V.

Referring to the above definition, it turns out that $d = \delta$; we call this common value the **diameter** of the pair.

For $0 \le i \le d$ let θ_i (resp. θ_i^*) denote the eigenvalue of A (resp. A^*) for the eigenspace V_i (resp. V_i^*).

The eigenvalues of A and A^* , cont.

It is known that the expressions

$$\frac{\theta_{i-2} - \theta_{i+1}}{\theta_{i-1} - \theta_i} \qquad \frac{\theta_{i-2}^* - \theta_{i+1}^*}{\theta_{i-1}^* - \theta_i^*}$$

are equal and independent of *i* for $2 \le i \le d - 1$.

For this constraint the "most general" solution is

$$\theta_i = aq^{2i-d} + a^{-1}q^{d-2i},$$

 $\theta_i^* = bq^{2i-d} + b^{-1}q^{d-2i}$

for $0 \le i \le d$.

In this case A, A^* is said to have q-Racah type.

The split decomposition

For the rest of this talk, assume that the tridiagonal pair A, A^* has q-Racah type.

We now recall the split decomposition. For $0 \le i \le d$ define

$$U_i = (V_0^* + V_1^* + \dots + V_i^*) \cap (V_0 + V_1 + \dots + V_{d-i}).$$

For notational convenience define $U_{-1} = 0$ and $U_{d+1} = 0$.

It is known that the sum $V = \sum_{i=0}^{d} U_i$ is direct.

The split decomposition, cont.

It is also known that both

$$(A - \theta_{d-i}I)U_i \subseteq U_{i+1},$$

$$(A^* - \theta_i^*I)U_i \subseteq U_{i-1}$$

for $0 \le i \le d$.

The operator K

Define a linear transformation $K: V \to V$ such that for $0 \le i \le d$, U_i is an eigenspace of K with eigenvalue q^{d-2i} . Thus

$$(K - q^{d-2i}I)U_i = 0 \qquad (0 \le i \le d),$$

where $I: V \rightarrow V$ is the identity map.

Note that K is invertible.

By construction, for $0 \le i \le d$ the following holds on U_i :

$$aK + a^{-1}K^{-1} = \theta_{d-i}I,$$

 $b^{-1}K + bK^{-1} = \theta_i^*I.$

The raising and lowering operators

Define linear transformations $\mathcal{R}:V o V$ and $\mathcal{L}:V o V$ such that

$$A = aK + a^{-1}K^{-1} + \mathcal{R},$$

 $A^* = b^{-1}K + bK^{-1} + \mathcal{L}.$

By construction

$$\mathcal{R}U_i \subseteq U_{i+1}, \qquad \mathcal{L}U_i \subseteq U_{i-1}$$

for $0 \le i \le d$.

We call \mathcal{R} (resp. \mathcal{L}) the **raising operator** (resp. **lowering operator**) for A, A^* and the split decomposition.

The Bockting operator ψ

We now recall the Bockting operator ψ .

Theorem (Sarah Bockting-Conrad 2013)

With the above notation, there exists a unique linear transformation $\psi: V \to V$ such that both

$$\psi U_i \subseteq U_{i-1} \qquad (0 \le i \le d),$$

$$\psi \mathcal{R} - \mathcal{R} \psi = (q - q^{-1})(K - K^{-1}).$$

An action of U_a on V

We have been discussing the tridiagonal pair A, A^* on V.

We now turn V into a U_q -module.

Theorem (Ito/Terwilliger 2010)

There exists a U_q -module structure on V such that on V,

$$K = K_0,$$

$$\mathcal{R} = aq(q - q^{-1})K_0F_0 - a^{-1}(q - q^{-1})E_1,$$

$$\mathcal{L} = bq(q - q^{-1})K_1F_1 - b^{-1}(q - q^{-1})E_0.$$

The main result

We now present our main result.

Theorem (Terwilliger 2016)

For the above U_q -module V, consider the corresponding L-operator with parameter $t=a^2$. Then on V the Bockting operator ψ satisfies

$$\psi = -a(L_{00})^{-1}L_{01},$$

provided that L_{00} is invertible.

Summary

In this talk, we described the L-operators associated with the finite-dimensional irreducible U_a -modules.

We then recalled the Bockting operator ψ and the U_q -module structure associated with a tridiagonal pair of q-Racah type.

We then described how ψ acts on this U_q -module as a scalar multiple of the ratio of two components of an L-operator.

Thank you for your attention!

THE END

