Tridiagonal pairs of q-Racah type, the Bockting operator ψ , and L-operators for $U_q(L(\mathfrak{sl}_2))$

Paul Terwilliger

University of Wisconsin-Madison

Paul Terwilliger Tridiagonal pairs of q[-Racah type, the Bockting operator](#page-26-0) ψ , and L-operators ψ

イロメ イ部メ イヨメ イヨメー

 \equiv

 298

Tridiagonal pairs are used to describe the irreducible modules for the subconstituent algebra of a Q-polynomial distance-regular graph.

Associated with any tridiagonal pair is a certain operator ψ due to Sarah Bockting-Conrad.

In this talk, we describe ψ for a tridiagonal pair of q-Racah type, in terms of a certain L-operator for the quantum loop algebra $U_q(L(\mathfrak{sl}_2)).$

Our main result is that ψ is a scalar multiple of the ratio of two components of the L-operator.

KID KARA KE KIER I E YOKO

Let $\mathbb F$ denote a field.

Fix a nonzero $q \in \mathbb{F}$ that is not a root of 1.

Define

$$
[n]_q = \frac{q^n - q^{-n}}{q - q^{-1}} \qquad n \in \mathbb{Z}.
$$

All tensor products are meant to be over \mathbb{F} .

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ │ 등

 QQ

Definition

Let $U_q = U_q(L(\mathfrak{sl}_2))$ denote the F-algebra with generators $E_i, F_i, K_i^{\pm 1}$ $i_i^{\pm 1}$ ($i \in \{0, 1\}$) and relations

 $K_i K_i^{-1} = 1,$ K $i^{-1}K_i = 1,$ $K_0K_1 = 1,$ $K_1K_0 = 1,$ $K_i E_i = q^2 E_i K_i,$ $K_i F_i = q^{-2} F_i K_i,$ $K_i E_j = q^{-2} E_j K_i,$ $K_i F_j = q^2 F_j K_i,$ $i \neq j,$ $E_i F_j - F_j E_i = \delta_{i,j} \frac{K_i - K_i^{-1}}{s - s - 1}$ i $\frac{q}{q-q^{-1}},$ $E_i^3 E_j - [3]_q E_i^2 E_j E_i + [3]_q E_i E_j E_i^2 - E_j E_i^3 = 0,$ $i \neq j$, $F_i^3 F_j - [3]_q F_i^2 F_j F_i + [3]_q F_i F_j F_i^2 - F_j F_i^3 = 0,$ $i \neq j.$

Paul Terwilliger Tridiagonal pairs of q[-Racah type, the Bockting operator](#page-0-0) ψ , and L-operators ψ , and D-

イロン イ母ン イミン イモンニ き

 U_q becomes a Hopf algebra as follows. The coproduct Δ satisfies

$$
\Delta(K_i) = K_i \otimes K_i, \qquad \Delta(K_i^{-1}) = K_i^{-1} \otimes K_i^{-1}, \n\Delta(E_i) = E_i \otimes 1 + K_i \otimes E_i, \qquad \Delta(F_i) = 1 \otimes F_i + F_i \otimes K_i^{-1}.
$$

The counit ε satisfies

$$
\varepsilon(K_i) = 1
$$
, $\varepsilon(K_i^{-1}) = 1$, $\varepsilon(E_i) = 0$, $\varepsilon(F_i) = 0$.

The antipode S satisfies

$$
S(K_i) = K_i^{-1}
$$
, $S(E_i) = -K_i^{-1}E_i$, $S(F_i) = -F_iK_i$.

メタトメ ミトメ ミト

 \equiv

Consider the composition

$$
\Delta^{\mathrm{op}}: \quad U_q \; \xrightarrow[\Delta]{} \; U_q \otimes U_q \; \xrightarrow[\mathit{r\otimes s\mapsto s\otimes r} \; U_q \otimes U_q.
$$

The map $\Delta^{\rm op}$ is called the **opposite coproduct**.

イロト イ団 トイ ミト イヨト

 \equiv

 298

There exists a family of finite-dimensional irreducible U_q -modules

$$
\mathbf{V}(d,t) \qquad \qquad 0 \neq d \in \mathbb{N}, \qquad \qquad 0 \neq t \in \mathbb{F}
$$

with this property: $\mathbf{V}(d,t)$ has a basis $\{v_i\}_{i=0}^d$ such that

$$
K_1v_i = q^{d-2i}v_i \t\t (0 \le i \le d),
$$

\n
$$
E_1v_i = [d-i+1]_qv_{i-1} \t\t (1 \le i \le d), \t\t E_1v_0 = 0,
$$

\n
$$
F_1v_i = [i+1]_qv_{i+1} \t\t (0 \le i \le d-1), \t\t F_1v_d = 0,
$$

\n
$$
K_0v_i = q^{2i-d}v_i \t\t (0 \le i \le d),
$$

\n
$$
E_0v_i = t[i+1]_qv_{i+1} \t\t (0 \le i \le d-1), \t\t E_0v_d = 0,
$$

\n
$$
F_0v_i = t^{-1}[d-i+1]_qv_{i-1} \t\t (1 \le i \le d), \t\t F_0v_0 = 0.
$$

Paul Terwilliger Tridiagonal pairs of q[-Racah type, the Bockting operator](#page-0-0) ψ , and L-operators for Uquares for U

 $(1 - 4)$ $(1 -$

 298

We call $V(d, t)$ an evaluation module for U_a . We call d the diameter. We call t the evaluation parameter.

Example

For $0 \neq t \in \mathbb{F}$ the U_q -module $\mathbf{V}(1, t)$ is described as follows. With respect to the above basis v_0 , v_1 the matrices representing the Chevalley generators are

$$
E_1:\left(\begin{array}{cc}0&1\\0&0\end{array}\right),\quad F_1:\left(\begin{array}{cc}0&0\\1&0\end{array}\right),\quad K_1:\left(\begin{array}{cc}q&0\\0&q^{-1}\end{array}\right),\\ E_0:\left(\begin{array}{cc}0&0\\t&0\end{array}\right),\quad F_0:\left(\begin{array}{cc}0&t^{-1}\\0&0\end{array}\right),\quad K_0:\left(\begin{array}{cc}q^{-1}&0\\0&q\end{array}\right).
$$

 $(1 - 4)$ $(1 -$ Paul Terwilliger Tridiagonal pairs of q[-Racah type, the Bockting operator](#page-0-0) ψ , and L-operators ψ

Lemma

Let U and V denote U_q -modules. Then $U \otimes V$ becomes a U_q -module as follows. For $u \in U$ and $v \in V$,

$$
K_i(u \otimes v) = K_i(u) \otimes K_i(v),
$$

\n
$$
K_i^{-1}(u \otimes v) = K_i^{-1}(u) \otimes K_i^{-1}(v),
$$

\n
$$
E_i(u \otimes v) = E_i(u) \otimes v + K_i(u) \otimes E_i(v),
$$

\n
$$
F_i(u \otimes v) = u \otimes F_i(v) + F_i(u) \otimes K_i^{-1}(v).
$$

Paul Terwilliger Tridiagonal pairs of q[-Racah type, the Bockting operator](#page-0-0) ψ , and L-operators ψ

イロメ イ団メ イモメ イモメー 毛

Definition

Up to isomorphism, there exists a unique U_{α} -module of dimension 1 on which each $u \in U_q$ acts as $\varepsilon(u)I$, where ε is the counit. This U_q -module is said to be trivial.

Theorem (Chari and Presseley 1991)

Assume that F is algebraically closed with characteristic zero. Let V denote a nontrivial finite-dimensional irreducible U_q -module on which each eigenvalue of K_1 is an integral power of q. Then V is isomorphic to a tensor product of evaluation U_q -modules.

イロン イ団ン イミン イミン 一番

Definition

Let V denote a U_q -module and $0 \neq t \in \mathbb{F}$. Consider a linear transformation

$$
L: \quad V \otimes \mathbf{V}(1,t) \to V \otimes \mathbf{V}(1,t).
$$

We call this map an L-operator for V with parameter t whenever the following diagram commutes for all $u \in U_q$:

$$
V \otimes \mathbf{V}(1,t) \xrightarrow{\Delta(u)} V \otimes \mathbf{V}(1,t)
$$

\n
$$
V \otimes \mathbf{V}(1,t) \xrightarrow[\Delta^{\mathrm{op}}(u)]{} V \otimes \mathbf{V}(1,t)
$$

Let V denote a U_q -module and $0 \neq t \in \mathbb{F}$. Consider an L-operator with parameter t :

$$
L: V \otimes V(1,t) \to V \otimes V(1,t). \qquad (1)
$$

For $r, s \in \{0, 1\}$ define an \mathbb{F} -linear map $L_{rs} : V \to V$ such that for $v \in V$.

$$
L(v \otimes v_0) = L_{00}(v) \otimes v_0 + L_{10}(v) \otimes v_1,
$$

$$
L(v \otimes v_1) = L_{01}(v) \otimes v_0 + L_{11}(v) \otimes v_1.
$$

We call L_{rs} the (r, s) -component of L.

イロメ イ母メ イヨメ イヨメーヨー

Example

Assume that the U_q -module V is an evaluation module $V(d, \mu)$. Consider an *L*-operator for V with parameter t . Then the matrices that represent the components L_{rs} with respect to the basis $\{v_i\}_{i=0}^d$ are given below (all matrix entries not shown are zero):

イロメ イ部メ イヨメ イヨメー Paul Terwilliger Tridiagonal pairs of q[-Racah type, the Bockting operator](#page-0-0) ψ , and L-operators ψ

Let U and V denote U_a -modules.

Let $0 \neq t \in \mathbb{F}$.

Suppose we are given L-operators for U and V that have parameter t.

Then for the U_{σ} -module $U \otimes V$ we now construct an L-operator with parameter t .

イロン イ母ン イミン イモンニ き

Lemma

For the above U, V, t there exists an L-operator for $U \otimes V$ with parameter t such that for $r, s \in \{0, 1\}$,

 $L_{rs}(u\otimes v) = L_{r0}(u)\otimes L_{0s}(v) + L_{r1}(u)\otimes L_{1s}(v)$ $u\in U, v\in V$

イロメ イ部メ イヨメ イヨメー

We now recall the tridiagonal pairs.

For the rest of this talk, let V denote a vector space over $\mathbb F$ with finite positive dimension.

Consider two linear transformations $A: V \to V$ and $A^*: V \to V$.

イロン イ母ン イミン イモンニ き

The definition of a tridiagonal pair

The above pair A, A^* is called a **tridiagonal pair** whenever:

- (i) each of A, A^* is diagonalizable;
- (ii) there exists an ordering $\{V_i\}_{i=0}^d$ of the eigenspaces of A such that

$$
A^*V_i\subseteq V_{i-1}+V_i+V_{i+1}\quad (0\leq i\leq d),
$$

where $V_{-1} = 0$ and $V_{d+1} = 0$;

(iii) there exists an ordering $\{V_i^*\}_{i=0}^{\delta}$ of the eigenspaces of A^* such that

$$
AV_i^* \subseteq V_{i-1}^* + V_i^* + V_{i+1}^* \quad (0 \le i \le \delta),
$$

where $V_{-1}^* = 0$ and $V_{\delta+1}^* = 0$;

(iv) there does not exist a subspace $W \subseteq V$ such that $AW \subseteq W$, $A^*W \subseteq W$, $W \neq 0$, $W \neq V$.

イロ トライ 同 トライチ トラキュー エー

Assume that A, A^* is a tridiagonal pair on V.

Referring to the above definition, it turns out that $d = \delta$; we call this common value the **diameter** of the pair.

For $0 \leq i \leq d$ let θ_i (resp. θ_i^*) denote the eigenvalue of A (resp. A^*) for the eigenspace V_i (resp. V_i^*).

KO KARA KE KE KE BA KA

The eigenvalues of A and A^* , cont.

It is known that the expressions

$$
\frac{\theta_{i-2}-\theta_{i+1}}{\theta_{i-1}-\theta_i} \qquad \qquad \frac{\theta_{i-2}^*-\theta_{i+1}^*}{\theta_{i-1}^*-\theta_{i}^*}
$$

are equal and independent of i for $2 \le i \le d - 1$.

For this constraint the "most general" solution is

$$
\theta_i = aq^{2i-d} + a^{-1}q^{d-2i},
$$

$$
\theta_i^* = bq^{2i-d} + b^{-1}q^{d-2i}
$$

for $0 \leq i \leq d$.

In this case A, A^* is said to have q -Racah type.

KIT A KIT A THAT A THAT A COOK

For the rest of this talk, assume that the tridiagonal pair A, A^* has q-Racah type.

We now recall the split decomposition. For $0 \le i \le d$ define

$$
U_i = (V_0^* + V_1^* + \cdots + V_i^*) \cap (V_0 + V_1 + \cdots + V_{d-i}).
$$

For notational convenience define $U_{-1} = 0$ and $U_{d+1} = 0$.

It is known that the sum $V=\sum_{i=0}^d U_i$ is direct.

KID KARA KE KIER I E YOKO

It is also known that both

$$
(A - \theta_{d-i}I)U_i \subseteq U_{i+1},
$$

$$
(A^* - \theta_i^*I)U_i \subseteq U_{i-1}
$$

for $0 < i < d$.

イロト イ部 トイヨ トイヨト

 \equiv

 299

Define a linear transformation $K: V \to V$ such that for $0 \le i \le d$, U_i is an eigenspace of K with eigenvalue q^{d-2i} . Thus

$$
(K - q^{d-2i}I)U_i = 0 \qquad (0 \leq i \leq d),
$$

where $I: V \rightarrow V$ is the identity map.

Note that K is invertible.

By construction, for $0 \leq i \leq d$ the following holds on U_i :

$$
aK + a^{-1}K^{-1} = \theta_{d-i}I,
$$

$$
b^{-1}K + bK^{-1} = \theta_i^*I.
$$

KO KARA KE KE KE BA KA

The raising and lowering operators

Define linear transformations $\mathcal{R}: V \to V$ and $\mathcal{L}: V \to V$ such that

$$
A = aK + a^{-1}K^{-1} + R,
$$

$$
A^* = b^{-1}K + bK^{-1} + L.
$$

By construction

$$
\mathcal{R}U_i\subseteq U_{i+1},\qquad \mathcal{L}U_i\subseteq U_{i-1}
$$

for $0 \leq i \leq d$.

We call $\mathcal R$ (resp. $\mathcal L$) the raising operator (resp. lowering operator) for A , A^* and the split decomposition.

KO KARA KE KE KE BA KA

We now recall the Bockting operator ψ .

Theorem (Sarah Bockting-Conrad 2013)

With the above notation, there exists a unique linear transformation $\psi : V \to V$ such that both

$$
\psi U_i \subseteq U_{i-1} \qquad (0 \leq i \leq d),
$$

$$
\psi \mathcal{R} - \mathcal{R} \psi = (q - q^{-1})(K - K^{-1}).
$$

イロト イ押 トイモト イモト

We have been discussing the tridiagonal pair A, A^* on V .

We now turn V into a U_q -module.

Theorem (Ito/Terwilliger 2010)

There exists a U_q -module structure on V such that on V,

$$
K = K_0,
$$

\n
$$
\mathcal{R} = aq(q - q^{-1})K_0F_0 - a^{-1}(q - q^{-1})E_1,
$$

\n
$$
\mathcal{L} = bq(q - q^{-1})K_1F_1 - b^{-1}(q - q^{-1})E_0.
$$

Paul Terwilliger Tridiagonal pairs of q[-Racah type, the Bockting operator](#page-0-0) ψ , and L-operators ψ , and D-operators for Uq.

イロン イ母ン イミン イモンニ き

We now present our main result.

Theorem (Terwilliger 2016)

For the above U_q -module V, consider the corresponding L-operator with parameter $t = a^2$. Then on V the Bockting operator ψ satisfies

$$
\psi = -a(L_{00})^{-1}L_{01},
$$

provided that L_{00} is invertible.

イロメ イ部メ イヨメ イヨメー

In this talk, we described the L-operators associated with the finite-dimensional irreducible U_q -modules.

We then recalled the Bockting operator ψ and the U_q -module structure associated with a tridiagonal pair of q -Racah type.

We then described how ψ acts on this U_{q} -module as a scalar multiple of the ratio of two components of an L-operator.

Thank you for your attention!

THE END

イロメ イ母メ イヨメ イヨメーヨー