The Lie algebra $\mathfrak{sl}_4(\mathbb{C})$ and the hypercubes

Paul Terwilliger

University of Wisconsin-Madison

Overview

In this talk, we describe a relationship between the Lie algebra $\mathfrak{sl}_4(\mathbb{C})$ and the hypercube graphs.

Using the N-cube H(N,2) we will construct three $\mathfrak{sl}_4(\mathbb{C})$ -modules P_N , $\operatorname{Fix}(G)$, T.

We will show that these $\mathfrak{sl}_4(\mathbb{C})$ -modules are isomorphic, and we will describe them from various points of view. We start with \mathcal{T} .

This is joint work with William J. Martin from WPI.

Preliminaries

Throughout the talk, every vector space and tensor product that we encounter is understood to be over \mathbb{C} .

Every algebra without the Lie prefix that we encounter, is understood to be associative and have a multiplicative identity.

Recall the natural numbers $\mathbb{N} = \{0, 1, 2, \ldots\}$.

The diameter of a graph

Let $\Gamma = (X, \mathbb{R})$ denote a finite, undirected, connected graph, with vertex set X and adjacency relation \mathbb{R} .

Let ∂ denote the path-length distance function for Γ , and recall the **diameter**

$$D = \max\{\partial(x, y)|x, y \in X\}.$$

The subconstituents of a graph

For $x \in X$ and $0 \le i \le D$ define the set

$$\Gamma_i(x) = \{ y \in X | \partial(x, y) = i \}.$$

We call $\Gamma_i(x)$ the *i*th subconstituent of Γ with respect to x.

Distance-regular graphs

The graph Γ is called **distance-regular** whenever for all $0 \le h, i, j \le D$ and $x, y \in X$ with $\partial(x, y) = h$, the number

$$p_{i,j}^h = |\Gamma_i(x) \cap \Gamma_j(y)|$$

is independent of x and y.

The $p_{i,j}^h$ are called the **intersection numbers** of Γ .

The intersection numbers

Assume that Γ is distance-regular with $D \geq 1$.

By construction $p_{i,j}^h = p_{i,j}^h$ for $0 \le h, i, j \le D$.

By the **triangle inequality**, the following hold for $0 \le h, i, j \le D$:

- (i) $p_{i,j}^h = 0$ if one of h, i, j is greater than the sum of the other two;
- (ii) $p_{i,j}^h \neq 0$ if one of h, i, j is equal to the sum of the other two.

The intersection numbers, cont.

We abbreviate

$$c_i = p_{1,i-1}^i \ (1 \le i \le D), \qquad a_i = p_{1,i}^i \ (0 \le i \le D),$$
 $b_i = p_{1,i+1}^i \ (0 \le i \le D-1).$

For notational convenience, define $c_0 = 0$ and $b_D = 0$.

The valencies

For $0 \le i \le D$ abbreviate

$$k_i = p_{i,i}^0$$

For $x \in X$,

$$k_i = |\Gamma_i(x)|.$$

We have

$$k_i = \frac{b_0 b_1 \cdots b_{i-1}}{c_1 c_2 \cdots c_i}.$$

We call k_i the *i*th valency of Γ .

The hypercube H(N, 2)

Until further notice, we fix an integer $N \ge 1$.

We define a graph H(N,2) as follows. The vertex set X consists of the N-tuples of elements taken from the set $\{1,-1\}$.

So
$$|X| = 2^N$$
.

Vertices $x, y \in X$ are adjacent whenever they differ in exactly one coordinate.

The graph H(N,2) is called the *N*-cube or a hypercube or a binary Hamming graph.

The hypercube H(N, 2) is distance-regular

The graph H(N,2) is distance-regular, with diameter D=N and intersection numbers

$$c_i = i,$$
 $a_i = 0,$ $b_i = N - i$

for $0 \le i \le N$.

The valencies of H(N, 2) are

$$k_i = \binom{N}{i}$$
 $(0 \le i \le N).$

The standard module

Let $\operatorname{Mat}_X(\mathbb{C})$ denote the algebra consisting of the matrices with rows and columns indexed by X and all entries in \mathbb{C} .

Let $V = \mathbb{C}^X$ denote the vector space consisting of the column vectors with coordinates indexed by X and all entries in \mathbb{C} .

The algebra $\operatorname{Mat}_X(\mathbb{C})$ acts on V by left multiplication.

We call V the **standard module** for H(N, 2).

A Hermitian form

For $x \in X$ define a vector $\hat{x} \in V$ that has x-coordinate 1 and all other coordinates 0.

The vectors $\{\hat{x}|x\in X\}$ form a basis for V.

We endow V with a Hermitian form $\langle \, , \, \rangle$ with respect to which the basis $\{\hat{x}|x\in X\}$ is orthonormal.

The subconstituent algebra of H(N, 2)

Next, we recall the **subconstituent algebra** of H(N,2).

Define a matrix $A \in \operatorname{Mat}_X(\mathbb{C})$ with (x, y)-entry

$$A_{x,y} = \begin{cases} 1, & \text{if } \partial(x,y) = 1; \\ 0, & \text{if } \partial(x,y) \neq 1 \end{cases} (x, y \in X).$$

We call A the **adjacency matrix** of H(N, 2).

The adjacency matrix of H(N, 2)

The matrix A is real and symmetric, so A is diagonalizable.

The eigenvalues of A are

$$\theta_i = N - 2i \qquad (0 \le i \le N).$$

For $0 \le i \le N$ define $E_i \in \operatorname{Mat}_X(\mathbb{C})$ that acts as the identity on the θ_i -eigenspace of A, and as zero on every other eigenspace of A.

The primitive idempotents of H(N, 2)

We call E_i the *i*th **primitive idempotent** for H(N, 2).

By construction,

$$A = \sum_{i=0}^{N} \theta_i E_i.$$

The eigenspace decomposition of H(N, 2)

We have

$$V = \sum_{i=0}^{N} \mathsf{E}_{i} V$$
 (orthogonal direct sum).

The summand $E_i V$ is the θ_i -eigenspace of A.

It is known that

$$\dim \mathsf{E}_i V = \binom{N}{i} \qquad (0 \le i \le N).$$

The dual primitive idempotents of H(N, 2)

Until further notice, we fix a vertex $\varkappa \in X$.

For $0 \le i \le N$ define a diagonal matrix $\mathsf{E}_i^* = \mathsf{E}_i^*(\varkappa)$ in $\mathrm{Mat}_X(\mathbb{C})$ that has (y,y)-entry

$$(\mathsf{E}_i^*)_{y,y} = \begin{cases} 1, & \text{if } \partial(\varkappa, y) = i; \\ 0, & \text{if } \partial(\varkappa, y) \neq i \end{cases} (y \in X).$$

We call E_i^* the *i*th **dual primitive idempotent** of H(N,2) with respect to \varkappa .

The dual primitive idempotents, cont.

We have

$$V = \sum_{i=0}^{N} \mathsf{E}_{i}^{*} V$$
 (orthogonal direct sum).

Moreover for $0 \le i \le N$,

$$\mathsf{E}_i^* V = \mathrm{Span}\{\hat{y}|y \in \Gamma_i(\varkappa)\}.$$

The dual adjacency matrix of H(N, 2)

We define a diagonal matrix $A^* = A^*(\varkappa)$ in $\operatorname{Mat}_X(\mathbb{C})$ by

$$\mathsf{A}^* = \sum_{i=0}^N \theta_i^* \mathsf{E}_i^*,$$

where

$$\theta_i^* = N - 2i \qquad (0 \le i \le N).$$

We call A* the **dual adjacency matrix** of H(N,2) with respect to \varkappa .

The subconstituent algebra T

Definition (Ter 1992)

Let $T=T(\varkappa)$ denote the subalgebra of $\mathrm{Mat}_X(\mathbb{C})$ generated by A, A*.

We call T the **subconstituent algebra** of H(N,2) with respect to \varkappa .

Some relations in T

Lemma (Junie Go 2002)

The following relations hold in T:

$$[A, [A, A^*]] = 4A^*,$$

 $[A^*, [A^*, A]] = 4A,$

where [R, S] = RS - SR.

The algebra T and $\mathfrak{sl}_2(\mathbb{C})$

The Lie algebra $\mathfrak{sl}_2(\mathbb{C})$ has a presentation by generators A, A^* and relations

$$[A, [A, A^*]] = 4A^*,$$

 $[A^*, [A^*, A]] = 4A.$

Corollary (Junie Go 2002)

There exists an algebra homomorphism $U(\mathfrak{sl}_2(\mathbb{C})) \to T$ that sends

$$A \mapsto A$$
, $A^* \mapsto A^*$.

The irreducible *T*-modules

Next, we consider the representation theory of T.

By a T-module, we mean a subspace $W \subseteq V$ such that $TW \subseteq W$.

The algebra T is generated by real symmetric matrices A, A^* .

Therefore T is closed under the conjugate-transpose map.

The irreducible *T*-modules, cont.

Consequently, for a T-module W the orthogonal complement W^{\perp} is a T-module.

It follows that each T-module is an orthogonal direct sum of irreducible T-modules.

In particular, the standard module V is an orthogonal direct sum of irreducible T-modules.

Describing the irreducible *T*-modules

We now describe the irreducible *T*-modules.

Lemma (Junie Go 2002)

Let W denote an irreducible T-module. Then

$$\dim E_i^* W \leq 1, \qquad \dim E_i W \leq 1$$

for 0 < i < N.

The endpoint, dual endpoint, and diameter

Let W denote an irreducible T-module.

By the **endpoint** of W we mean

$$\min\{i|0\leq i\leq N, E_i^*W\neq 0\}.$$

By the **dual endpoint** of W we mean

$$\min\{i|0\leq i\leq N, E_iW\neq 0\}.$$

By the **diameter** of W we mean

$$\dim W - 1$$
.

Describing an irreducible *T*-module

Lemma (Junie Go 2002)

Let W denote an irreducible T-module, with endpoint r, dual endpoint t, and diameter d. Then

- (i) $0 \le r \le N/2$;
- (ii) t = r;
- (iii) d = N 2r.

The action of A, A^* on an irreducible T-module

Lemma (Junie Go 2002)

Referring to the previous lemma, W has a basis on which A, A* act as follows:

$$A^*$$
: diag $(d, d - 2, ..., -d)$.

The isomorphism class of an irreducible T-module

Lemma (Junie Go 2002)

For H(N,2) an irreducible T-module is determined up to isomorphism by its endpoint.

The multiplicity of an irreducible T-module

Definition

For an integer $0 \le r \le N/2$, let mult_r denote the multiplicity with which the irreducible T-module with endpoint r appears in the standard module V.

The multiplicity of an irreducible T-module, cont.

Lemma (Junie Go 2002)

For H(N,2) we have

$$\mathrm{mult}_0 = 1,$$
 $\mathrm{mult}_r = \binom{N}{r} - \binom{N}{r-1} \qquad (1 \le r \le N/2).$

The Wedderburn decomposition of *T*

Next, we describe the Wedderburn decomposition of T.

Lemma (Junie Go 2002)

There exists an algebra isomorphism

$$\mathcal{T} \to \operatorname{Mat}_{N+1}(\mathbb{C}) \oplus \operatorname{Mat}_{N-1}(\mathbb{C}) \oplus \operatorname{Mat}_{N-3}(\mathbb{C}) \oplus \cdots$$

Moreover,

$$\dim \mathcal{T} = \sum_{\ell=0}^{\lfloor N/2 \rfloor} (N-2\ell+1)^2 = \binom{N+3}{3}.$$

Two bases for T

Next, we give two bases for the vector space T.

Definition

For $0 \le i \le N$ define a matrix $A_i \in \operatorname{Mat}_X(\mathbb{C})$ with (x, y)-entry

$$(A_i)_{x,y} = \begin{cases} 1, & \text{if } \partial(x,y) = i; \\ 0, & \text{if } \partial(x,y) \neq i \end{cases} (x,y \in X).$$

We call A_i the *i*th distance matrix of H(N, 2).

Note that $A_1 = A$.

Two bases for T, cont.

Definition

For $0 \le i \le N$ define a diagonal matrix $\mathsf{A}_i^* \in \mathrm{Mat}_X(\mathbb{C})$ with (y,y)-entry

$$(\mathsf{A}_i^*)_{y,y} = 2^{\mathsf{N}}(\mathsf{E}_i)_{\varkappa,y} \qquad (y \in X).$$

We call A_i^* the *i*th dual distance matrix of H(N,2) with respect to \varkappa .

Note that $A_1^* = A^*$.

Two bases for T, cont.

Definition

Let the set \mathcal{P}''_N consist of the 3-tuples of integers (h, i, j) such that

$$\begin{split} 0 &\leq h, i, j \leq N, & h+i+j \text{ is even}, & h+i+j \leq 2N, \\ h &\leq i+j, & i \leq j+h, & j \leq h+i. \end{split}$$

For $0 \le h, i, j \le N$ we have $(h, i, j) \in \mathcal{P}''_{N}$ iff $p^{h}_{i,j} \ne 0$.

Two bases for T, cont.

Theorem (Junie Go 2002)

The vector space T has a basis

$$\mathsf{E}_i^* \mathsf{A}_h \mathsf{E}_j^*$$
 $(h, i, j) \in \mathcal{P}_N''$

and a basis

$$\mathsf{E}_i \mathsf{A}_h^* \mathsf{E}_i \qquad (h, i, j) \in \mathcal{P}_N''$$

Turning T into an $\mathfrak{sl}_4(\mathbb{C})$ -module

We are now ready to turn T into an $\mathfrak{sl}_4(\mathbb{C})$ -module.

We will work with a nonstandard presentation of $\mathfrak{sl}_4(\mathbb{C})$.

This presentation is described on the next two slides.

A presentation of $\mathfrak{sl}_4(\mathbb{C})$

Definition

We define a Lie algebra \mathbb{L} by generators A_i, A_i^* $(i \in \{1, 2, 3\})$ and the following relations.

(i) For distinct $i, j \in \{1, 2, 3\}$,

$$[A_i, A_j] = 0,$$
 $[A_i^*, A_j^*] = 0.$

- (ii) For $i \in \{1, 2, 3\}$, $[A_i, A_i^*] = 0$.
- (iii) For distinct $i, j \in \{1, 2, 3\}$,

$$[A_i, [A_i, A_j^*]] = 4A_j^*,$$
 $[A_j^*, [A_j^*, A_i]] = 4A_i.$

(iv) For mutually distinct $h, i, j \in \{1, 2, 3\}$,

$$[A_h, [A_i^*, A_j]] = [A_h^*, [A_i, A_j^*]] = [A_j, [A_i^*, A_h]] = [A_j^*, [A_i, A_h^*]].$$

A presentation of $\mathfrak{sl}_4(\mathbb{C})$, cont.

Lemma

There exists a Lie algebra isomorphism $\sharp: \mathbb{L} \to \mathfrak{sl}_4(\mathbb{C})$ that sends

$$egin{aligned} A_1 &\mapsto egin{pmatrix} 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{pmatrix}, & A_1^* &\mapsto \mathrm{diag}(1,1,-1,-1), \ A_2 &\mapsto egin{pmatrix} 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 \end{pmatrix}, & A_2^* &\mapsto \mathrm{diag}(1,-1,1,-1), \ A_3 &\mapsto egin{pmatrix} 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 0 \ \end{pmatrix}, & A_3^* &\mapsto \mathrm{diag}(1,-1,-1,1). \end{aligned}$$

Comments about $\mathfrak{sl}_4(\mathbb{C})$

From now on, we identify the Lie algebras $\mathbb L$ and $\mathfrak{sl}_4(\mathbb C)$ via the isomorphism \sharp from the previous lemma.

Let the symmetric group S_3 consist of the permutations of $\{1,2,3\}$.

We just gave a presentation of $\mathfrak{sl}_4(\mathbb{C})$ by generators and relations.

This presentation has a natural S_3 -symmetry.

The maps $\mathcal{A}^{(1)}, \mathcal{A}^{(2)}, \mathcal{A}^{(3)}$

We now return our attention to T.

Definition

Define $\mathcal{A}^{(1)}, \mathcal{A}^{(2)}, \mathcal{A}^{(3)} \in \text{End}(T)$ such that for $(h, i, j) \in \mathcal{P}''_N$,

$$\mathcal{A}^{(1)}(\mathsf{E}_i\mathsf{A}_h^*\mathsf{E}_j) = \theta_h\mathsf{E}_i\mathsf{A}_h^*\mathsf{E}_j,$$

$$\mathcal{A}^{(2)}(\mathsf{E}_i\mathsf{A}_h^*\mathsf{E}_j) = \theta_i\mathsf{E}_i\mathsf{A}_h^*\mathsf{E}_j,$$

$$\mathcal{A}^{(3)}\big(\mathsf{E}_i\mathsf{A}_h^*\mathsf{E}_j\big)=\theta_j\mathsf{E}_i\mathsf{A}_h^*\mathsf{E}_j.$$

The maps $\mathcal{A}^{*(1)}, \mathcal{A}^{*(2)}, \mathcal{A}^{*(3)}$

Definition

Define $\mathcal{A}^{*(1)}, \mathcal{A}^{*(2)}, \mathcal{A}^{*(3)} \in \text{End}(T)$ such that for $(h, i, j) \in \mathcal{P}''_N$,

$$\mathcal{A}^{*(1)}(\mathsf{E}_i^*\mathsf{A}_h\mathsf{E}_j^*) = \theta_h^*\mathsf{E}_i^*\mathsf{A}_h\mathsf{E}_j^*,$$

$$\mathcal{A}^{*(2)}(\mathsf{E}_i^*\mathsf{A}_h\mathsf{E}_j^*) = \theta_j^*\mathsf{E}_i^*\mathsf{A}_h\mathsf{E}_j^*,$$

$$\mathcal{A}^{*(3)}(\mathsf{E}_i^*\mathsf{A}_h\mathsf{E}_j^*) = \theta_i^*\mathsf{E}_i^*\mathsf{A}_h\mathsf{E}_j^*.$$

Turning T into an $\mathfrak{sl}_4(\mathbb{C})$ -module

Theorem (Martin+Ter 2025)

The vector space T becomes an $\mathfrak{sl}_4(\mathbb{C})$ -module on which

$$A_i = A^{(i)}, \qquad A_i^* = A^{*(i)} \qquad i \in \{1, 2, 3\}.$$

This $\mathfrak{sl}_4(\mathbb{C})$ -module is irreducible.

Comments about the $\mathfrak{sl}_4(\mathbb{C})$ -module T

We just turned the vector space T into an $\mathfrak{sl}_4(\mathbb{C})$ -module.

The Lie algebra $\mathfrak{sl}_4(\mathbb{C})$ exhibited S_3 -symmetry, but T does not.

Our next general goal is to fix this "defect".

We will display an S_3 -symmetric $\mathfrak{sl}_4(\mathbb{C})$ -module that is isomorphic to T.

The vector space $V \otimes V \otimes V$

Recall the standard module V for H(N, 2).

We define the vector space

$$V^{\otimes 3} = V \otimes V \otimes V.$$

The vector space $V^{\otimes 3}$ has a basis

$$\hat{x} \otimes \hat{y} \otimes \hat{z}$$
 $x, y, z \in X$.

$$x, y, z \in X$$
.

The automorphism group of H(N, 2)

Let G denote the automorphism group of H(N, 2).

G is a wreath product of the symmetric groups S_N and S_2 .

The elements of S_N permute the vertex coordinates $\{1, 2, ..., N\}$ and the elements of S_2 permute the set $\{1, -1\}$.

The G-action on H(N,2) is distance-transitive.

The G-module V

The G-action on X induces a G-action on V.

This turns V into a G-module.

Definition

The vector space $V^{\otimes 3}$ becomes a G-module as follows.

For $g \in G$ and $u, v, w \in V$,

$$g(u \otimes v \otimes w) = g(u) \otimes g(v) \otimes g(w).$$

The vector space Fix(G)

Definition

Define the subspace

$$\operatorname{Fix}(G) = \{ v \in V^{\otimes 3} | g(v) = v \ \forall g \in G \}.$$

We will turn Fix(G) into an $\mathfrak{sl}_4(\mathbb{C})$ -module.

To this end, we next describe two bases for Fix(G).

A basis for Fix(G)

Definition

For $0 \le h, i, j \le N$ define a vector

$$P_{h,i,j} = \sum \hat{x} \otimes \hat{y} \otimes \hat{z},$$

where the sum is over the 3-tuples x, y, z of vertices such that

$$h = \partial(y, z),$$
 $i = \partial(z, x),$ $j = \partial(x, y).$

By construction, $P_{h,i,j} \neq 0$ if and only if $(h,i,j) \in \mathcal{P}''_N$.

A basis for Fix(G), cont.

The following lemma is easily checked.

Lemma

The vectors

$$P_{h,i,j}$$
 $(h,i,j) \in \mathcal{P}''_N$

form a basis for Fix(G).

A second basis for Fix(G)

Definition (Cameron, Goethals, Seidel 1978)

For $0 \le h, i, j \le N$ define a vector

$$Q_{h,i,j} = 2^{N} \sum_{x \in X} \mathsf{E}_{h} \hat{x} \otimes \mathsf{E}_{i} \hat{x} \otimes \mathsf{E}_{j} \hat{x}.$$

It turns out that $Q_{h,i,j} \neq 0$ if and only if $(h,i,j) \in \mathcal{P}''_N$.

A second basis for Fix(G), cont.

The next result follows from the theory of Cameron, Goethals, Seidel (1978).

Lemma (Cameron, Goethals, Seidel 1978)

The vectors

$$Q_{h,i,j}$$
 $(h,i,j) \in \mathcal{P}''_N$

form a basis for Fix(G).

Six maps on Fix(G)

We just described two bases for the vector space Fix(G).

Next we describe six maps on Fix(G), denoted

$$A^{(i)}, A^{*(i)} \qquad i \in \{1, 2, 3\}.$$

The maps $A^{(1)}, A^{(2)}, A^{(3)}$

Definition

Define $A^{(1)}, A^{(2)}, A^{(3)} \in \operatorname{End}(V^{\otimes 3})$ such that for $x, y, z \in X$,

$$A^{(1)}(\hat{x}\otimes\hat{y}\otimes\hat{z})=A\hat{x}\otimes\hat{y}\otimes\hat{z},$$

$$A^{(2)}(\hat{x}\otimes\hat{y}\otimes\hat{z})=\hat{x}\otimes\mathsf{A}\hat{y}\otimes\hat{z},$$

$$A^{(3)}(\hat{x}\otimes\hat{y}\otimes\hat{z})=\hat{x}\otimes\hat{y}\otimes\mathsf{A}\hat{z}.$$

Fix(G) is invariant under $A^{(1)}, A^{(2)}, A^{(3)}$

Lemma

For $(h, i, j) \in \mathcal{P}''_N$,

$$A^{(1)}(Q_{h,i,j}) = \theta_h Q_{h,i,j},$$
 $A^{(2)}(Q_{h,i,j}) = \theta_i Q_{h,i,j},$ $A^{(3)}(Q_{h,i,j}) = \theta_j Q_{h,i,j}.$

Moreover, Fix(G) is invariant under $A^{(1)}, A^{(2)}, A^{(3)}$.

The maps $A^{*(1)}, A^{*(2)}, A^{*(3)}$

Definition

Define $A^{*(1)}, A^{*(2)}, A^{*(3)} \in \operatorname{End}(V^{\otimes 3})$ such that for $x, y, z \in X$,

$$A^{*(1)}(\hat{x} \otimes \hat{y} \otimes \hat{z}) = \hat{x} \otimes \hat{y} \otimes \hat{z} \, \theta^*_{\partial(y,z)},$$

$$A^{*(2)}(\hat{x}\otimes\hat{y}\otimes\hat{z})=\hat{x}\otimes\hat{y}\otimes\hat{z}\,\theta_{\partial(z,x)}^*,$$

$$A^{*(3)}(\hat{x} \otimes \hat{y} \otimes \hat{z}) = \hat{x} \otimes \hat{y} \otimes \hat{z} \, \theta^*_{\partial(x,y)}.$$

Fix(G) is invariant under $A^{*(1)}, A^{*(2)}, A^{*(3)}$

Lemma

For $(h, i, j) \in \mathcal{P}''_N$,

$$A^{*(1)}(P_{h,i,j}) = \theta_h^* P_{h,i,j}, \qquad A^{*(2)}(P_{h,i,j}) = \theta_i^* P_{h,i,j}, A^{*(3)}(P_{h,i,j}) = \theta_i^* P_{h,i,j}.$$

Moreover, Fix(G) is invariant under $A^{*(1)}, A^{*(2)}, A^{*(3)}$.

Turning Fix(G) into an $\mathfrak{sl}_4(\mathbb{C})$ -module

We are now ready to turn Fix(G) into an $\mathfrak{sl}_4(\mathbb{C})$ -module.

Fix(G) becomes an $\mathfrak{sl}_4(\mathbb{C})$ -module

Theorem (Martin+Ter 2025)

The vector space Fix(G) becomes an $\mathfrak{sl}_4(\mathbb{C})$ -module on which

$$A_i = A^{(i)}, \qquad A_i^* = A^{*(i)} \qquad i \in \{1, 2, 3\}.$$

This $\mathfrak{sl}_4(\mathbb{C})$ -module is irreducible.

An $\mathfrak{sl}_4(\mathbb{C})$ -module isomorphism $Fix(G) \to T$

Theorem (Martin+Ter 2025)

There exists an $\mathfrak{sl}_4(\mathbb{C})$ -module isomorphism

$$Fix(G) \rightarrow T$$

that sends

$$P_{h,i,j} \mapsto 2^{N/2} \mathsf{E}_j^* \mathsf{A}_h \mathsf{E}_i^*,$$

$$Q_{h,i,j} \mapsto 2^{N/2} \mathsf{E}_i \mathsf{A}_h^* \mathsf{E}_j$$

For
$$(h, i, j) \in \mathcal{P}''_N$$
.

Comments about the $\mathfrak{sl}_4(\mathbb{C})$ -modules T and $\mathrm{Fix}(G)$

So far, we turned T and Fix(G) into isomorphic $\mathfrak{sl}_4(\mathbb{C})$ -modules.

By construction, Fix(G) displayed **more symmetry** than T.

Our next general goal, is to display an $\mathfrak{sl}_4(\mathbb{C})$ -module that is isomorphic to T, $\mathrm{Fix}(G)$ and displays **even more symmetry** than these.

The set \mathcal{P}_N

We will need a change of variables.

Definition

For $N \in \mathbb{N}$ let the set \mathcal{P}_N consist of the 4-tuples of natural numbers (r, s, t, u) such that r + s + t + u = N.

Note that

$$|\mathcal{P}_{N}| = \binom{N+3}{3}.$$

A bijection $\mathcal{P}_N \to \mathcal{P}_N''$

Lemma

There exists a bijection $\mathfrak{P}_N \to \mathfrak{P}''_N$ that sends

$$(r, s, t, u) \mapsto (t + u, u + s, s + t).$$

The inverse bijection $\mathfrak{P}''_{N} \to \mathfrak{P}_{N}$ sends

$$(h,i,j)\mapsto \left(\frac{2N-h-i-j}{2},\frac{i+j-h}{2},\frac{j+h-i}{2},\frac{h+i-j}{2}\right).$$

Our generators for $\mathfrak{sl}_4(\mathbb{C})$

Recall our generators for $\mathfrak{sl}_4(\mathbb{C})$:

$$egin{aligned} A_1 &= egin{pmatrix} 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{pmatrix}, \qquad A_1^* &= \mathrm{diag}(1,1,-1,-1), \ A_2 &= egin{pmatrix} 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 \end{pmatrix}, \qquad A_2^* &= \mathrm{diag}(1,-1,1,-1), \ A_3 &= egin{pmatrix} 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 0 \end{pmatrix}, \qquad A_3^* &= \mathrm{diag}(1,-1,-1,1). \end{aligned}$$

An automorphism of $\mathfrak{sl}_4(\mathbb{C})$

Definition

Define $\Upsilon \in \operatorname{Mat}_4(\mathbb{C})$ by

Note that $\Upsilon^2 = I$.

An automorphism of $\mathfrak{sl}_4(\mathbb{C})$, cont.

Lemma

For $i \in \{1, 2, 3\}$ we have

$$A_i \Upsilon = \Upsilon A_i^*$$
,

$$A_i^*\Upsilon = \Upsilon A_i$$
.

Corollary

There exists an automorphism τ of $\mathfrak{sl}_4(\mathbb{C})$ that sends $\varphi \mapsto \Upsilon \varphi \Upsilon^{-1}$ for all $\varphi \in \mathfrak{sl}_4(\mathbb{C})$. This automorphism swaps

$$A_i \leftrightarrow A_i^*$$

$$i \in \{1, 2, 3\}.$$

Some comments about $\mathfrak{sl}_4(\mathbb{C})$

We have some comments.

Lemma

- (i) The elements A_1, A_2, A_3 form a basis for a Cartan subalgebra \mathbb{H} of $\mathfrak{sl}_4(\mathbb{C})$.
- (ii) The elements A_1^*, A_2^*, A_3^* form a basis for a Cartan subalgebra \mathbb{H}^* of $\mathfrak{sl}_4(\mathbb{C})$.
- (iii) The automorphism τ swaps $\mathbb{H} \leftrightarrow \mathbb{H}^*$.
- (iv) The Lie algebra $\mathfrak{sl}_4(\mathbb{C})$ is generated by \mathbb{H}, \mathbb{H}^* .

The polynomial algebra $P = \mathbb{C}[x, y, z, w]$

Let x, y, z, w denote mutually commuting indeterminates, and consider the algebra $\mathbb{C}[x, y, z, w]$ of polynomials in x, y, z, w that have all coefficients in \mathbb{C} .

We abbreviate $P = \mathbb{C}[x, y, z, w]$.

The following is a basis for P:

$$x^r y^s z^t w^u$$
 $r, s, t, u \in \mathbb{N}$.

The homogeneous components of P

Definition

For $N \in \mathbb{N}$ let P_N denote the subspace of P consisting of the homogeneous polynomials that have total degree N.

We call P_N the *N*th homogeneous component of P.

By construction,

$$P = \sum_{N \in \mathbb{N}} P_N \qquad \text{(direct sum)}.$$

A basis for P_N

Lemma

For $N \in \mathbb{N}$ the following is a basis for P_N :

$$x^r y^s z^t w^u$$
 $(r, s, t, u) \in \mathcal{P}_N$.

Moreover, P_N has dimension $\binom{N+3}{3}$.

The homogeneous components P_0 and P_1

Example

- (i) The subspace P_0 has basis 1.
- (ii) The subspace P_1 has basis x, y, z, w.

Turning P into an $\mathfrak{sl}_4(\mathbb{C})$ -module

We are going to turn the polynomial algebra P into an $\mathfrak{sl}_4(\mathbb{C})$ -module, in such a way that P_N is an irreducible $\mathfrak{sl}_4(\mathbb{C})$ -submodule for $N \in \mathbb{N}$.

We will do this in several steps.

In the first step, we turn P_1 into an $\mathfrak{sl}_4(\mathbb{C})$ -module.

Turning P_1 into an $\mathfrak{sl}_4(\mathbb{C})$ -module

Lemma

The vector space P_1 becomes an $\mathfrak{sl}_4(\mathbb{C})$ -module such that:

- (i) A_1 swaps $x \leftrightarrow y$ and $z \leftrightarrow w$;
- (ii) A_2 swaps $x \leftrightarrow z$ and $y \leftrightarrow w$;
- (iii) A_3 swaps $x \leftrightarrow w$ and $y \leftrightarrow z$;
- (iv) A_1^* sends

$$x\mapsto x, \qquad y\mapsto y, \qquad z\mapsto -z, \qquad w\mapsto -w;$$

(v) A_2^* sends

$$x \mapsto x$$
, $y \mapsto -y$, $z \mapsto z$, $w \mapsto -w$;

(vi) A_3^* sends

$$x \mapsto x$$
, $y \mapsto -y$, $z \mapsto -z$, $w \mapsto w$.

Extending the $\mathfrak{sl}_4(\mathbb{C})$ -action from P_1 to P

Next, we extend the $\mathfrak{sl}_4(\mathbb{C})$ -action from P_1 to P.

We will do this using the concept of a derivation.

Derivations

Definition

A **derivation** of P is an element $\mathcal{D} \in \operatorname{End}(P)$ such that

$$\mathcal{D}(fg) = \mathcal{D}(f)g + f\mathcal{D}(g) \qquad f, g \in P.$$

Extending the $\mathfrak{sl}_4(\mathbb{C})$ -action from P_1 to P

We mention a well known trick from Lie theory.

Lemma

The $\mathfrak{sl}_4(\mathbb{C})$ -action on P_1 extends uniquely to an $\mathfrak{sl}_4(\mathbb{C})$ -action on P such that each element of $\mathfrak{sl}_4(\mathbb{C})$ acts as a derivation.

We have now turned P into an $\mathfrak{sl}_4(\mathbb{C})$ -module on which each element of $\mathfrak{sl}_4(\mathbb{C})$ acts as a derivation.

The action of $\mathfrak{sl}_4(\mathbb{C})$ on P

Theorem (Martin+Ter 2025)

The $\mathfrak{sl}_4(\mathbb{C})$ -generators A_1, A_2, A_3 and A_1^*, A_2^*, A_3^* act on P as follows. For $r, s, t, u \in \mathbb{N}$,

(i) the vector

$$A_1(x^ry^sz^tw^u)$$

Term	Coefficient
$x^{r-1}y^{s+1}z^tw^u$	r
$x^{r+1}y^{s-1}z^tw^u$	S
$x^r y^s z^{t-1} w^{u+1}$	t
$x^r y^s z^{t+1} w^{u-1}$	и

The action of $\mathfrak{sl}_4(\mathbb{C})$ on P, cont.

Theorem (continued..)

(ii) the vector

$$A_2(x^ry^sz^tw^u)$$

Term	Coefficient
$x^{r-1}y^sz^{t+1}w^u$	r
$x^r y^{s-1} z^t w^{u+1}$	S
$x^{r+1}y^sz^{t-1}w^u$	t
$x^r y^{s+1} z^t w^{u-1}$	и

The action of $\mathfrak{sl}_4(\mathbb{C})$ on P, cont.

Theorem (continued..)

(iii) the vector

$$A_3(x^ry^sz^tw^u)$$

Term	Coefficient
$x^{r-1}y^sz^tw^{u+1}$	r
$x^r y^{s-1} z^{t+1} w^u$	5
$x^r y^{s+1} z^{t-1} w^u$	t
$x^{r+1}y^sz^tw^{u-1}$	и

The action of $\mathfrak{sl}_4(\mathbb{C})$ on P, cont.

Theorem (continued..)

(iv)
$$A_1^*(x^r y^s z^t w^u) = (r + s - t - u)x^r y^s z^t w^u;$$

(v)
$$A_2^*(x^r y^s z^t w^u) = (r - s + t - u)x^r y^s z^t w^u;$$

(vi)
$$A_3^*(x^r y^s z^t w^u) = (r - s - t + u)x^r y^s z^t w^u$$
.

P_N is an irreducible $\mathfrak{sl}_4(\mathbb{C})$ -submodule of P

Corollary

For $N \in \mathbb{N}$ the homogeneous component P_N is an irreducible $\mathfrak{sl}_4(\mathbb{C})$ -submodule of P.

A second basis for P

Our given monomial basis for P diagonalizes \mathbb{H}^* .

Next, we give a basis for P that diagonalizes \mathbb{H} .

The vectors x^*, y^*, z^*, w^* in P_1

Definition

We define some vectors in P_1 :

$$x^* = \frac{x + y + z + w}{2},$$
 $y^* = \frac{x + y - z - w}{2},$ $z^* = \frac{x - y + z - w}{2},$ $w^* = \frac{x - y - z + w}{2}.$

Comments about x^*, y^*, z^*, w^*

Recall the matrix Υ .

Lemma

- (i) the vectors x^*, y^*, z^*, w^* form a basis for P_1 ;
- (ii) Υ is the transition matrix from the basis x, y, z, w to the basis x^*, y^*, z^*, w^* ;
- (iii) Υ is the transition matrix from the basis x^*, y^*, z^*, w^* to the basis x, y, z, w.

How $\mathfrak{sl}_4(\mathbb{C})$ acts on x^*, y^*, z^*, w^*

Lemma

Referring to the $\mathfrak{sl}_4(\mathbb{C})$ -module P_1 ,

(i) A₁ sends

$$x^* \mapsto x^*, \qquad y^* \mapsto y^*, \qquad z^* \mapsto -z^*, \qquad w^* \mapsto -w^*;$$

(ii) A₂ sends

$$x^* \mapsto x^*, \qquad y^* \mapsto -y^*, \qquad z^* \mapsto z^*, \qquad w^* \mapsto -w^*;$$

(iii) A₃ sends

$$x^* \mapsto x^*, \qquad y^* \mapsto -y^*, \qquad z^* \mapsto -z^*, \qquad w^* \mapsto w^*;$$

- (iv) A_1^* swaps $x^* \leftrightarrow y^*$ and $z^* \leftrightarrow w^*$;
- (v) A_2^* swaps $x^* \leftrightarrow z^*$ and $y^* \leftrightarrow w^*$;
- (vi) A_3^* swaps $x^* \leftrightarrow w^*$ and $y^* \leftrightarrow z^*$.

A second basis for P_N

By construction, the following is a basis for P:

$$x^{*r}y^{*s}z^{*t}w^{*u}$$

$$r, s, t, u \in \mathbb{N}$$
.

Lemma

For $N \in \mathbb{N}$ the following is a basis for P_N :

$$x^{*r}y^{*s}z^{*t}w^{*u}$$

$$(r, s, t, u) \in \mathcal{P}_N$$
.

Theorem (Martin+Ter 2025)

The $\mathfrak{sl}_4(\mathbb{C})$ -generators A_1, A_2, A_3 and A_1^*, A_2^*, A_3^* act on P as follows. For $r, s, t, u \in \mathbb{N}$,

(i)
$$A_1(x^{*r}y^{*s}z^{*t}w^{*u}) = (r+s-t-u)x^{*r}y^{*s}z^{*t}w^{*u};$$

(ii)
$$A_2(x^{*r}y^{*s}z^{*t}w^{*u}) = (r-s+t-u)x^{*r}y^{*s}z^{*t}w^{*u};$$

(iii)
$$A_3(x^{*r}y^{*s}z^{*t}w^{*u}) = (r-s-t+u)x^{*r}y^{*s}z^{*t}w^{*u};$$

Theorem (continued..)

(iv) the vector

$$A_1^*(x^{*r}y^{*s}z^{*t}w^{*u})$$

Term	Coefficient
$x^{*r-1}y^{*s+1}z^{*t}w^{*u}$	r
$x^{*r+1}y^{*s-1}z^{*t}w^{*u}$	s
$x^{*r}y^{*s}z^{*t-1}w^{*u+1}$	t
$x^{*r}y^{*s}z^{*t+1}w^{*u-1}$	и

Theorem (continued..)

(v) the vector

$$A_2^*(x^{*r}y^{*s}z^{*t}w^{*u})$$

Term	Coefficient
$x^{*r-1}y^{*s}z^{*t+1}w^{*u}$	r
$x^{*r}y^{*s-1}z^{*t}w^{*u+1}$	s
$x^{*r+1}y^{*s}z^{*t-1}w^{*u}$	t
$x^{*r}y^{*s+1}z^{*t}w^{*u-1}$	и

Theorem (continued..)

(vi) the vector

$$A_3^*(x^{*r}y^{*s}z^{*t}w^{*u})$$

Term	Coefficient
$x^{*r-1}y^{*s}z^{*t}w^{*u+1}$	r
$x^{*r}y^{*s-1}z^{*t+1}w^{*u}$	S
$x^{*r}y^{*s+1}z^{*t-1}w^{*u}$	t
$x^{*r+1}y^{*s}z^{*t}w^{*u-1}$	и

An automorphism of P

Lemma

There exists an automorphism σ of the algebra P that swaps

$$x \leftrightarrow x^*, \quad y \leftrightarrow y^*, \quad z \leftrightarrow z^*, \quad w \leftrightarrow w^*.$$

Moreover, for $\varphi \in \mathfrak{sl}_4(\mathbb{C})$ the following holds on P:

$$\tau(\varphi) = \sigma \varphi \sigma^{-1}.$$

An isomorphism of $\mathfrak{sl}_4(\mathbb{C})$ -modules $P_N \to Fix(G)$

For $N \in \mathbb{N}$ we have described the irreducible $\mathfrak{sl}_4(\mathbb{C})$ -module P_N .

On the next slide, we display an isomorphism of $\mathfrak{sl}_4(\mathbb{C})$ -modules $P_N \to Fix(G)$.

An isomorphism of $\mathfrak{sl}_4(\mathbb{C})$ -modules $P_N \to Fix(G)$

Theorem (Martin+Ter 2025)

There exists an $\mathfrak{sl}_4(\mathbb{C})$ -module isomorphism $\ddagger: P_N \to Fix(G)$ that does the following. For $(r, s, t, u) \in \mathcal{P}_N$, \ddagger sends

$$\begin{split} \frac{x^r y^s z^t w^u}{r! s! t! u!} &\mapsto \big(N! 2^N \big)^{-1/2} P_{h,i,j}, \\ \frac{x^{*r} y^{*s} z^{*t} w^{*u}}{r! s! t! u!} &\mapsto \big(N! 2^N \big)^{-1/2} Q_{h,i,j}, \end{split}$$

where

$$h = t + u$$
, $i = u + s$, $j = s + t$.

Summary

In this talk, we described a relationship between the Lie algebra $\mathfrak{sl}_4(\mathbb{C})$ and the hypercube graphs.

Using the *N*-cube H(N,2) we constructed three $\mathfrak{sl}_4(\mathbb{C})$ -modules P_N , $\operatorname{Fix}(G)$, T.

We showed that these $\mathfrak{sl}_4(\mathbb{C})$ -modules are isomorphic, and we described them from various points of view.

THANK YOU FOR YOUR ATTENTION!