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Overview

In this talk, we describe a relationship between the Lie algebra
sl4(C) and the hypercube graphs.

Using the N-cube H(N, 2) we will construct three sl4(C)-modules
PN , Fix(G ), T .

We will show that these sl4(C)-modules are isomorphic, and we
will describe them from various points of view. We start with T .

This is joint work with William J. Martin from WPI.
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Preliminaries

Throughout the talk, every vector space and tensor product that
we encounter is understood to be over C.

Every algebra without the Lie prefix that we encounter, is
understood to be associative and have a multiplicative identity.

Recall the natural numbers N = {0, 1, 2, . . .}.
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The diameter of a graph

Let Γ = (X ,R) denote a finite, undirected, connected graph, with
vertex set X and adjacency relation R.

Let ∂ denote the path-length distance function for Γ, and recall the
diameter

D = max{∂(x , y)|x , y ∈ X}.
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The subconstituents of a graph

For x ∈ X and 0 ≤ i ≤ D define the set

Γi (x) = {y ∈ X |∂(x , y) = i}.

We call Γi (x) the ith subconstituent of Γ with respect to x .
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Distance-regular graphs

The graph Γ is called distance-regular whenever for all
0 ≤ h, i , j ≤ D and x , y ∈ X with ∂(x , y) = h, the number

phi ,j = |Γi (x) ∩ Γj(y)|

is independent of x and y .

The phi ,j are called the intersection numbers of Γ.
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The intersection numbers

Assume that Γ is distance-regular with D ≥ 1.

By construction phi ,j = phj ,i for 0 ≤ h, i , j ≤ D.

By the triangle inequality, the following hold for 0 ≤ h, i , j ≤ D:

(i) phi ,j = 0 if one of h, i , j is greater than the sum of the other
two;

(ii) phi ,j 6= 0 if one of h, i , j is equal to the sum of the other two.
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The intersection numbers, cont.

We abbreviate

ci = pi1,i−1 (1 ≤ i ≤ D), ai = pi1,i (0 ≤ i ≤ D),

bi = pi1,i+1 (0 ≤ i ≤ D − 1).

For notational convenience, define c0 = 0 and bD = 0.
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The valencies

For 0 ≤ i ≤ D abbreviate

ki = p0i ,i

For x ∈ X ,

ki = |Γi (x)|.

We have

ki =
b0b1 · · · bi−1
c1c2 · · · ci

.

We call ki the ith valency of Γ.
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The hypercube H(N , 2)

Until further notice, we fix an integer N ≥ 1.

We define a graph H(N, 2) as follows. The vertex set X consists of
the N-tuples of elements taken from the set {1,−1}.

So |X | = 2N .

Vertices x , y ∈ X are adjacent whenever they differ in exactly one
coordinate.

The graph H(N, 2) is called the N-cube or a hypercube or a
binary Hamming graph.
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The hypercube H(N , 2) is distance-regular

The graph H(N, 2) is distance-regular, with diameter D = N and
intersection numbers

ci = i , ai = 0, bi = N − i

for 0 ≤ i ≤ N.

The valencies of H(N, 2) are

ki =

(
N

i

)
(0 ≤ i ≤ N).
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The standard module

Let MatX (C) denote the algebra consisting of the matrices with
rows and columns indexed by X and all entries in C.

Let V = CX denote the vector space consisting of the column
vectors with coordinates indexed by X and all entries in C.

The algebra MatX (C) acts on V by left multiplication.

We call V the standard module for H(N, 2).
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A Hermitian form

For x ∈ X define a vector x̂ ∈ V that has x-coordinate 1 and all
other coordinates 0.

The vectors {x̂ |x ∈ X} form a basis for V .

We endow V with a Hermitian form 〈 , 〉 with respect to which the
basis {x̂ |x ∈ X} is orthonormal.
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The subconstituent algebra of H(N , 2)

Next, we recall the subconstituent algebra of H(N, 2).

Define a matrix A ∈ MatX (C) with (x , y)-entry

Ax ,y =

{
1, if ∂(x , y) = 1;

0, if ∂(x , y) 6= 1
(x , y ∈ X ).

We call A the adjacency matrix of H(N, 2).
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The adjacency matrix of H(N , 2)

The matrix A is real and symmetric, so A is diagonalizable.

The eigenvalues of A are

θi = N − 2i (0 ≤ i ≤ N).

For 0 ≤ i ≤ N define Ei ∈ MatX (C) that acts as the identity on
the θi -eigenspace of A, and as zero on every other eigenspace of A.
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The primitive idempotents of H(N , 2)

We call Ei the ith primitive idempotent for H(N, 2).

By construction,

A =
N∑
i=0

θiEi .
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The eigenspace decomposition of H(N , 2)

We have

V =
N∑
i=0

EiV (orthogonal direct sum).

The summand EiV is the θi -eigenspace of A.

It is known that

dim EiV =

(
N

i

)
(0 ≤ i ≤ N).
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The dual primitive idempotents of H(N , 2)

Until further notice, we fix a vertex κ ∈ X .

For 0 ≤ i ≤ N define a diagonal matrix E∗i = E∗i (κ) in MatX (C)
that has (y , y)-entry

(E∗i )y ,y =

{
1, if ∂(κ, y) = i ;

0, if ∂(κ, y) 6= i
(y ∈ X ).

We call E∗i the ith dual primitive idempotent of H(N, 2) with
respect to κ.
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The dual primitive idempotents, cont.

We have

V =
N∑
i=0

E∗i V (orthogonal direct sum).

Moreover for 0 ≤ i ≤ N,

E∗i V = Span{ŷ |y ∈ Γi (κ)}.
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The dual adjacency matrix of H(N , 2)

We define a diagonal matrix A∗ = A∗(κ) in MatX (C) by

A∗ =
N∑
i=0

θ∗i E∗i ,

where

θ∗i = N − 2i (0 ≤ i ≤ N).

We call A∗ the dual adjacency matrix of H(N, 2) with respect to
κ.
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The subconstituent algebra T

Definition (Ter 1992)

Let T = T (κ) denote the subalgebra of MatX (C) generated by
A,A∗.

We call T the subconstituent algebra of H(N, 2) with respect to
κ.
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Some relations in T

Lemma (Junie Go 2002)

The following relations hold in T :

[A, [A,A∗]] = 4A∗,

[A∗, [A∗,A]] = 4A,

where [R,S ] = RS − SR.
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The algebra T and sl2(C)

The Lie algebra sl2(C) has a presentation by generators A,A∗ and
relations

[A, [A,A∗]] = 4A∗,

[A∗, [A∗,A]] = 4A.

Corollary (Junie Go 2002)

There exists an algebra homomorphism U(sl2(C))→ T that sends

A 7→ A, A∗ 7→ A∗.
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The irreducible T -modules

Next, we consider the representation theory of T .

By a T -module, we mean a subspace W ⊆ V such that
TW ⊆W .

The algebra T is generated by real symmetric matrices A,A∗.

Therefore T is closed under the conjugate-transpose map.
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The irreducible T -modules, cont.

Consequently, for a T -module W the orthogonal complement W⊥

is a T -module.

It follows that each T -module is an orthogonal direct sum of
irreducible T -modules.

In particular, the standard module V is an orthogonal direct sum
of irreducible T -modules.
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Describing the irreducible T -modules

We now describe the irreducible T -modules.

Lemma (Junie Go 2002)

Let W denote an irreducible T -module. Then

dimE ∗i W ≤ 1, dimEiW ≤ 1

for 0 ≤ i ≤ N.
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The endpoint, dual endpoint, and diameter

Let W denote an irreducible T -module.

By the endpoint of W we mean

min{i |0 ≤ i ≤ N,E ∗i W 6= 0}.

By the dual endpoint of W we mean

min{i |0 ≤ i ≤ N,EiW 6= 0}.

By the diameter of W we mean

dimW − 1.
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Describing an irreducible T -module

Lemma (Junie Go 2002)

Let W denote an irreducible T -module, with endpoint r , dual
endpoint t, and diameter d. Then

(i) 0 ≤ r ≤ N/2;

(ii) t = r ;

(iii) d = N − 2r .
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The action of A,A∗ on an irreducible T -module

Lemma (Junie Go 2002)

Referring to the previous lemma, W has a basis on which A, A∗

act as follows:

A :



0 d 0
1 0 d − 1

2 · ·
· · ·

· · 1
0 d 0

 ,

A∗ : diag(d , d − 2, . . . ,−d).
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The isomorphism class of an irreducible T -module

Lemma (Junie Go 2002)

For H(N, 2) an irreducible T -module is determined up to
isomorphism by its endpoint.
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The multiplicity of an irreducible T -module

Definition

For an integer 0 ≤ r ≤ N/2, let multr denote the multiplicity
with which the irreducible T -module with endpoint r appears
in the standard module V .
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The multiplicity of an irreducible T -module, cont.

Lemma (Junie Go 2002)

For H(N, 2) we have

mult0 = 1,

multr =

(
N

r

)
−
(

N

r − 1

)
(1 ≤ r ≤ N/2).
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The Wedderburn decomposition of T

Next, we describe the Wedderburn decomposition of T .

Lemma (Junie Go 2002)

There exists an algebra isomorphism

T → MatN+1(C)⊕MatN−1(C)⊕MatN−3(C)⊕ · · ·

Moreover,

dimT =

bN/2c∑
`=0

(N − 2`+ 1)2 =

(
N + 3

3

)
.
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Two bases for T

Next, we give two bases for the vector space T .

Definition

For 0 ≤ i ≤ N define a matrix Ai ∈ MatX (C) with (x , y)-entry

(Ai )x ,y =

{
1, if ∂(x , y) = i ;

0, if ∂(x , y) 6= i
(x , y ∈ X ).

We call Ai the ith distance matrix of H(N, 2).

Note that A1 = A.
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Two bases for T , cont.

Definition

For 0 ≤ i ≤ N define a diagonal matrix A∗i ∈ MatX (C) with
(y , y)-entry

(A∗i )y ,y = 2N(Ei )κ,y (y ∈ X ).

We call A∗i the ith dual distance matrix of H(N, 2) with respect
to κ.

Note that A∗1 = A∗.
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Two bases for T , cont.

Definition

Let the set P′′N consist of the 3-tuples of integers (h, i , j) such
that

0 ≤ h, i , j ≤ N, h + i + j is even, h + i + j ≤ 2N,

h ≤ i + j , i ≤ j + h, j ≤ h + i .

For 0 ≤ h, i , j ≤ N we have (h, i , j) ∈ P′′N iff phi ,j 6= 0.
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Two bases for T , cont.

Theorem (Junie Go 2002)

The vector space T has a basis

E∗i AhE∗j (h, i , j) ∈ P′′N

and a basis

EiA
∗
hEj (h, i , j) ∈ P′′N .
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Turning T into an sl4(C)-module

We are now ready to turn T into an sl4(C)-module.

We will work with a nonstandard presentation of sl4(C).

This presentation is described on the next two slides.
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A presentation of sl4(C)

Definition

We define a Lie algebra L by generators Ai ,A
∗
i (i ∈ {1, 2, 3})

and the following relations.

(i) For distinct i , j ∈ {1, 2, 3},

[Ai ,Aj ] = 0, [A∗i ,A
∗
j ] = 0.

(ii) For i ∈ {1, 2, 3}, [Ai ,A
∗
i ] = 0.

(iii) For distinct i , j ∈ {1, 2, 3},

[Ai , [Ai ,A
∗
j ]] = 4A∗j , [A∗j , [A

∗
j ,Ai ]] = 4Ai .

(iv) For mutually distinct h, i , j ∈ {1, 2, 3},

[Ah, [A
∗
i ,Aj ]] = [A∗h, [Ai ,A

∗
j ]] = [Aj , [A

∗
i ,Ah]] = [A∗j , [Ai ,A

∗
h]].
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A presentation of sl4(C), cont.

Lemma

There exists a Lie algebra isomorphism ] : L→ sl4(C) that sends

A1 7→


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , A∗1 7→ diag(1, 1,−1,−1),

A2 7→


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , A∗2 7→ diag(1,−1, 1,−1),

A3 7→


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , A∗3 7→ diag(1,−1,−1, 1).
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Comments about sl4(C)

From now on, we identify the Lie algebras L and sl4(C) via the
isomorphism ] from the previous lemma.

Let the symmetric group S3 consist of the permutations of
{1, 2, 3}.

We just gave a presentation of sl4(C) by generators and relations.

This presentation has a natural S3-symmetry.
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The maps A(1),A(2),A(3)

We now return our attention to T .

Definition

Define A(1),A(2),A(3) ∈ End(T ) such that for (h, i , j) ∈ P′′N ,

A(1)
(
EiA

∗
hEj

)
= θhEiA

∗
hEj ,

A(2)
(
EiA

∗
hEj

)
= θiEiA

∗
hEj ,

A(3)
(
EiA

∗
hEj

)
= θjEiA

∗
hEj .
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The maps A∗(1),A∗(2),A∗(3)

Definition

Define A∗(1),A∗(2),A∗(3) ∈ End(T ) such that for (h, i , j) ∈ P′′N ,

A∗(1)
(
E∗i AhE∗j

)
= θ∗hE∗i AhE∗j ,

A∗(2)
(
E∗i AhE∗j

)
= θ∗j E∗i AhE∗j ,

A∗(3)
(
E∗i AhE∗j

)
= θ∗i E∗i AhE∗j .
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Turning T into an sl4(C)-module

Theorem (Martin+Ter 2025)

The vector space T becomes an sl4(C)-module on which

Ai = A(i), A∗i = A∗(i) i ∈ {1, 2, 3}.

This sl4(C)-module is irreducible.
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Comments about the sl4(C)-module T

We just turned the vector space T into an sl4(C)-module.

The Lie algebra sl4(C) exhibited S3-symmetry, but T does not.

Our next general goal is to fix this “defect”.

We will display an S3-symmetric sl4(C)-module that is isomorphic
to T .
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The vector space V ⊗ V ⊗ V

Recall the standard module V for H(N, 2).

We define the vector space

V⊗3 = V ⊗ V ⊗ V .

The vector space V⊗3 has a basis

x̂ ⊗ ŷ ⊗ ẑ x , y , z ∈ X .
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The automorphism group of H(N , 2)

Let G denote the automorphism group of H(N, 2).

G is a wreath product of the symmetric groups SN and S2.

The elements of SN permute the vertex coordinates {1, 2, . . . ,N}
and the elements of S2 permute the set {1,−1}.

The G -action on H(N, 2) is distance-transitive.
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The G -module V

The G -action on X induces a G -action on V .

This turns V into a G -module.

Definition

The vector space V⊗3 becomes a G -module as follows.
For g ∈ G and u, v ,w ∈ V ,

g(u ⊗ v ⊗ w) = g(u)⊗ g(v)⊗ g(w).
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The vector space Fix(G )

Definition

Define the subspace

Fix(G ) = {v ∈ V⊗3|g(v) = v ∀g ∈ G}.

We will turn Fix(G ) into an sl4(C)-module.

To this end, we next describe two bases for Fix(G ).
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A basis for Fix(G )

Definition

For 0 ≤ h, i , j ≤ N define a vector

Ph,i ,j =
∑

x̂ ⊗ ŷ ⊗ ẑ ,

where the sum is over the 3-tuples x , y , z of vertices such that

h = ∂(y , z), i = ∂(z , x), j = ∂(x , y).

By construction, Ph,i ,j 6= 0 if and only if (h, i , j) ∈ P′′N .
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A basis for Fix(G ), cont.

The following lemma is easily checked.

Lemma

The vectors

Ph,i ,j (h, i , j) ∈ P′′N

form a basis for Fix(G ).
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A second basis for Fix(G )

Definition (Cameron, Goethals, Seidel 1978)

For 0 ≤ h, i , j ≤ N define a vector

Qh,i ,j = 2N
∑
x∈X

Ehx̂ ⊗ Ei x̂ ⊗ Ej x̂ .

It turns out that Qh,i ,j 6= 0 if and only if (h, i , j) ∈ P′′N .
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A second basis for Fix(G ), cont.

The next result follows from the theory of Cameron, Goethals,
Seidel (1978).

Lemma (Cameron, Goethals, Seidel 1978)

The vectors

Qh,i ,j (h, i , j) ∈ P′′N

form a basis for Fix(G ).
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Six maps on Fix(G )

We just described two bases for the vector space Fix(G ).

Next we describe six maps on Fix(G ), denoted

A(i), A∗(i) i ∈ {1, 2, 3}.
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The maps A(1),A(2),A(3)

Definition

Define A(1),A(2),A(3) ∈ End(V⊗3) such that for x , y , z ∈ X ,

A(1)(x̂ ⊗ ŷ ⊗ ẑ) = Ax̂ ⊗ ŷ ⊗ ẑ ,

A(2)(x̂ ⊗ ŷ ⊗ ẑ) = x̂ ⊗ Aŷ ⊗ ẑ ,

A(3)(x̂ ⊗ ŷ ⊗ ẑ) = x̂ ⊗ ŷ ⊗ Aẑ .
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Fix(G ) is invariant under A(1),A(2),A(3)

Lemma

For (h, i , j) ∈ P′′N ,

A(1)
(
Qh,i ,j

)
= θhQh,i ,j , A(2)

(
Qh,i ,j

)
= θiQh,i ,j ,

A(3)
(
Qh,i ,j

)
= θjQh,i ,j .

Moreover, Fix(G ) is invariant under A(1),A(2),A(3).
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The maps A∗(1),A∗(2),A∗(3)

Definition

Define A∗(1),A∗(2),A∗(3) ∈ End(V⊗3) such that for x , y , z ∈ X ,

A∗(1)(x̂ ⊗ ŷ ⊗ ẑ) = x̂ ⊗ ŷ ⊗ ẑ θ∗∂(y ,z),

A∗(2)(x̂ ⊗ ŷ ⊗ ẑ) = x̂ ⊗ ŷ ⊗ ẑ θ∗∂(z,x),

A∗(3)(x̂ ⊗ ŷ ⊗ ẑ) = x̂ ⊗ ŷ ⊗ ẑ θ∗∂(x ,y).
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Fix(G ) is invariant under A∗(1),A∗(2),A∗(3)

Lemma

For (h, i , j) ∈ P′′N ,

A∗(1)
(
Ph,i ,j

)
= θ∗hPh,i ,j , A∗(2)

(
Ph,i ,j

)
= θ∗i Ph,i ,j ,

A∗(3)
(
Ph,i ,j

)
= θ∗j Ph,i ,j .

Moreover, Fix(G ) is invariant under A∗(1),A∗(2),A∗(3).
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Turning Fix(G ) into an sl4(C)-module

We are now ready to turn Fix(G ) into an sl4(C)-module.
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Fix(G ) becomes an sl4(C)-module

Theorem (Martin+Ter 2025)

The vector space Fix(G ) becomes an sl4(C)-module on which

Ai = A(i), A∗i = A∗(i) i ∈ {1, 2, 3}.

This sl4(C)-module is irreducible.
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An sl4(C)-module isomorphism Fix(G )→ T

Theorem (Martin+Ter 2025)

There exists an sl4(C)-module isomorphism

Fix(G )→ T

that sends

Ph,i ,j 7→ 2N/2E∗j AhE∗i ,

Qh,i ,j 7→ 2N/2EiA
∗
hEj

For (h, i , j) ∈ P′′N .
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Comments about the sl4(C)-modules T and Fix(G )

So far, we turned T and Fix(G ) into isomorphic sl4(C)-modules.

By construction, Fix(G ) displayed more symmetry than T .

Our next general goal, is to display an sl4(C)-module that is
isomorphic to T , Fix(G ) and displays even more symmetry than
these.
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The set PN

We will need a change of variables.

Definition

For N ∈ N let the set PN consist of the 4-tuples of natural
numbers (r , s, t, u) such that r + s + t + u = N.

Note that

|PN | =

(
N + 3

3

)
.
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A bijection PN → P′′N

Lemma

There exists a bijection PN → P′′N that sends

(r , s, t, u) 7→ (t + u, u + s, s + t).

The inverse bijection P′′N → PN sends

(h, i , j) 7→
(

2N − h − i − j

2
,
i + j − h

2
,
j + h − i

2
,
h + i − j

2

)
.
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Our generators for sl4(C)

Recall our generators for sl4(C):

A1 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , A∗1 = diag(1, 1,−1,−1),

A2 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , A∗2 = diag(1,−1, 1,−1),

A3 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , A∗3 = diag(1,−1,−1, 1).
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An automorphism of sl4(C)

Definition

Define Υ ∈ Mat4(C) by

Υ =
1

2


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 .

Note that Υ2 = I .
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An automorphism of sl4(C), cont.

Lemma

For i ∈ {1, 2, 3} we have

AiΥ = ΥA∗i , A∗i Υ = ΥAi .

Corollary

There exists an automorphism τ of sl4(C) that sends ϕ 7→ ΥϕΥ−1

for all ϕ ∈ sl4(C). This automorphism swaps

Ai ↔ A∗i i ∈ {1, 2, 3}.
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Some comments about sl4(C)

We have some comments.

Lemma

(i) The elements A1,A2,A3 form a basis for a Cartan subalgebra
H of sl4(C).

(ii) The elements A∗1,A
∗
2,A
∗
3 form a basis for a Cartan subalgebra

H∗ of sl4(C).

(iii) The automorphism τ swaps H↔ H∗.
(iv) The Lie algebra sl4(C) is generated by H,H∗.
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The polynomial algebra P = C[x , y , z ,w ]

Let x , y , z ,w denote mutually commuting indeterminates, and
consider the algebra C[x , y , z ,w ] of polynomials in x , y , z ,w that
have all coefficients in C.

We abbreviate P = C[x , y , z ,w ].

The following is a basis for P:

x ry sz twu r , s, t, u ∈ N.
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The homogeneous components of P

Definition

For N ∈ N let PN denote the subspace of P consisting of the
homogeneous polynomials that have total degree N.

We call PN the Nth homogeneous component of P.

By construction,

P =
∑
N∈N

PN (direct sum).
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A basis for PN

Lemma

For N ∈ N the following is a basis for PN :

x ry sz twu (r , s, t, u) ∈ PN .

Moreover, PN has dimension
(N+3

3

)
.
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The homogeneous components P0 and P1

Example

(i) The subspace P0 has basis 1.

(ii) The subspace P1 has basis x , y , z ,w .
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Turning P into an sl4(C)-module

We are going to turn the polynomial algebra P into an
sl4(C)-module, in such a way that PN is an irreducible
sl4(C)-submodule for N ∈ N.

We will do this in several steps.

In the first step, we turn P1 into an sl4(C)-module.

Paul Terwilliger The Lie algebra sl4(C) and the hypercubes



Turning P1 into an sl4(C)-module

Lemma

The vector space P1 becomes an sl4(C)-module such that:

(i) A1 swaps x ↔ y and z ↔ w;

(ii) A2 swaps x ↔ z and y ↔ w;

(iii) A3 swaps x ↔ w and y ↔ z;

(iv) A∗1 sends

x 7→ x , y 7→ y , z 7→ −z , w 7→ −w ;

(v) A∗2 sends

x 7→ x , y 7→ −y , z 7→ z , w 7→ −w ;

(vi) A∗3 sends

x 7→ x , y 7→ −y , z 7→ −z , w 7→ w .
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Extending the sl4(C)-action from P1 to P

Next, we extend the sl4(C)-action from P1 to P.

We will do this using the concept of a derivation.
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Derivations

Definition

A derivation of P is an element D ∈ End(P) such that

D(fg) = D(f )g + fD(g) f , g ∈ P.
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Extending the sl4(C)-action from P1 to P

We mention a well known trick from Lie theory.

Lemma

The sl4(C)-action on P1 extends uniquely to an sl4(C)-action on
P such that each element of sl4(C) acts as a derivation.

We have now turned P into an sl4(C)-module on which each
element of sl4(C) acts as a derivation.
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The action of sl4(C) on P

Theorem (Martin+Ter 2025)

The sl4(C)-generators A1,A2,A3 and A∗1,A
∗
2,A
∗
3 act on P as

follows. For r , s, t, u ∈ N,

(i) the vector

A1(x ry sz twu)

is a linear combination with the following terms and
coefficients:

Term Coefficient

x r−1y s+1z twu r
x r+1y s−1z twu s
x ry sz t−1wu+1 t
x ry sz t+1wu−1 u
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The action of sl4(C) on P , cont.

Theorem (continued..)

(ii) the vector

A2(x ry sz twu)

is a linear combination with the following terms and
coefficients:

Term Coefficient

x r−1y sz t+1wu r
x ry s−1z twu+1 s
x r+1y sz t−1wu t
x ry s+1z twu−1 u
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The action of sl4(C) on P , cont.

Theorem (continued..)

(iii) the vector

A3(x ry sz twu)

is a linear combination with the following terms and
coefficients:

Term Coefficient

x r−1y sz twu+1 r
x ry s−1z t+1wu s
x ry s+1z t−1wu t
x r+1y sz twu−1 u
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The action of sl4(C) on P , cont.

Theorem (continued..)

(iv) A∗1(x ry sz twu) = (r + s − t − u)x ry sz twu;

(v) A∗2(x ry sz twu) = (r − s + t − u)x ry sz twu;

(vi) A∗3(x ry sz twu) = (r − s − t + u)x ry sz twu.
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PN is an irreducible sl4(C)-submodule of P

Corollary

For N ∈ N the homogeneous component PN is an irreducible
sl4(C)-submodule of P.
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A second basis for P

Our given monomial basis for P diagonalizes H∗.

Next, we give a basis for P that diagonalizes H.

Paul Terwilliger The Lie algebra sl4(C) and the hypercubes



The vectors x∗, y ∗, z∗,w ∗ in P1

Definition

We define some vectors in P1:

x∗ =
x + y + z + w

2
, y∗ =

x + y − z − w

2
,

z∗ =
x − y + z − w

2
, w∗ =

x − y − z + w

2
.
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Comments about x∗, y ∗, z∗,w ∗

Recall the matrix Υ.

Lemma

(i) the vectors x∗, y∗, z∗,w∗ form a basis for P1;

(ii) Υ is the transition matrix from the basis x , y , z ,w to the basis
x∗, y∗, z∗,w∗;

(iii) Υ is the transition matrix from the basis x∗, y∗, z∗,w∗ to the
basis x , y , z ,w.
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How sl4(C) acts on x∗, y ∗, z∗,w ∗

Lemma

Referring to the sl4(C)-module P1,

(i) A1 sends

x∗ 7→ x∗, y∗ 7→ y∗, z∗ 7→ −z∗, w∗ 7→ −w∗;

(ii) A2 sends

x∗ 7→ x∗, y∗ 7→ −y∗, z∗ 7→ z∗, w∗ 7→ −w∗;

(iii) A3 sends

x∗ 7→ x∗, y∗ 7→ −y∗, z∗ 7→ −z∗, w∗ 7→ w∗;

(iv) A∗1 swaps x∗ ↔ y∗ and z∗ ↔ w∗;

(v) A∗2 swaps x∗ ↔ z∗ and y∗ ↔ w∗;

(vi) A∗3 swaps x∗ ↔ w∗ and y∗ ↔ z∗.
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A second basis for PN

By construction, the following is a basis for P:

x∗ry∗sz∗tw∗u r , s, t, u ∈ N.

Lemma

For N ∈ N the following is a basis for PN :

x∗ry∗sz∗tw∗u (r , s, t, u) ∈ PN .
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The action of sl4(C) on P , revisited

Theorem (Martin+Ter 2025)

The sl4(C)-generators A1,A2,A3 and A∗1,A
∗
2,A
∗
3 act on P as

follows. For r , s, t, u ∈ N,

(i) A1(x∗ry∗sz∗tw∗u) = (r + s − t − u)x∗ry∗sz∗tw∗u;

(ii) A2(x∗ry∗sz∗tw∗u) = (r − s + t − u)x∗ry∗sz∗tw∗u;

(iii) A3(x∗ry∗sz∗tw∗u) = (r − s − t + u)x∗ry∗sz∗tw∗u;
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The action of sl4(C) on P , revisited

Theorem (continued..)

(iv) the vector

A∗1(x∗ry∗sz∗tw∗u)

is a linear combination with the following terms and
coefficients:

Term Coefficient

x∗r−1y∗s+1z∗tw∗u r
x∗r+1y∗s−1z∗tw∗u s
x∗ry∗sz∗t−1w∗u+1 t
x∗ry∗sz∗t+1w∗u−1 u

Paul Terwilliger The Lie algebra sl4(C) and the hypercubes



The action of sl4(C) on P , revisited

Theorem (continued..)

(v) the vector

A∗2(x∗ry∗sz∗tw∗u)

is a linear combination with the following terms and
coefficients:

Term Coefficient

x∗r−1y∗sz∗t+1w∗u r
x∗ry∗s−1z∗tw∗u+1 s
x∗r+1y∗sz∗t−1w∗u t
x∗ry∗s+1z∗tw∗u−1 u
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The action of sl4(C) on P , revisited

Theorem (continued..)

(vi) the vector

A∗3(x∗ry∗sz∗tw∗u)

is a linear combination with the following terms and
coefficients:

Term Coefficient

x∗r−1y∗sz∗tw∗u+1 r
x∗ry∗s−1z∗t+1w∗u s
x∗ry∗s+1z∗t−1w∗u t
x∗r+1y∗sz∗tw∗u−1 u
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An automorphism of P

Lemma

There exists an automorphism σ of the algebra P that swaps

x ↔ x∗, y ↔ y∗, z ↔ z∗, w ↔ w∗.

Moreover, for ϕ ∈ sl4(C) the following holds on P:

τ(ϕ) = σϕσ−1.
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An isomorphism of sl4(C)-modules PN → Fix(G )

For N ∈ N we have described the irreducible sl4(C)-module PN .

On the next slide, we display an isomorphism of sl4(C)-modules
PN → Fix(G ).
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An isomorphism of sl4(C)-modules PN → Fix(G )

Theorem (Martin+Ter 2025)

There exists an sl4(C)-module isomorphism ‡ : PN → Fix(G ) that
does the following. For (r , s, t, u) ∈ PN , ‡ sends

x ry sz twu

r !s!t!u!
7→ (N!2N)−1/2Ph,i ,j ,

x∗ry∗sz∗tw∗u

r !s!t!u!
7→ (N!2N)−1/2Qh,i ,j ,

where

h = t + u, i = u + s, j = s + t.
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Summary

In this talk, we described a relationship between the Lie algebra
sl4(C) and the hypercube graphs.

Using the N-cube H(N, 2) we constructed three sl4(C)-modules
PN , Fix(G ), T .

We showed that these sl4(C)-modules are isomorphic, and we
described them from various points of view.

THANK YOU FOR YOUR ATTENTION!
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