The alternating central extension for the positive part of $U_q(\widehat{\mathfrak{sl}}_2)$

Paul Terwilliger

[The alternating central extension for the positive part of](#page-55-0) \mathcal{V}_q (s

Paul Terwilliger

The positive part U_q^+ of $U_q(\mathfrak{sl}_2)$ has a presentation with two generators A, B that satisfy the cubic q -Serre relations.

Recently we introduced a type of element in U_q^+ , said to be alternating.

Each alternating element commutes with exactly one of

A, B,
$$
qAB - q^{-1}BA
$$
, $qBA - q^{-1}AB$.

This gives four types of alternating elements; the elements of each type mutually commute.

We use these alternating elements to obtain a PBW basis for a certain central extension of U_q^+ .

Recall the natural numbers $\mathbb{N} = \{0, 1, 2, \ldots\}$ and integers $\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}.$

Fix a field F.

Each vector space discussed is over \mathbb{F} .

Each tensor product discussed is over \mathbb{F} .

Each algebra discussed is associative, over $\mathbb F$, and has a 1.

Let A denote an algebra.

We will be discussing a type of basis for A , called a Poincaré-Birkhoff-Witt (or PBW) basis.

This consists of a subset $\Omega \subseteq A$ and a linear order \lt on Ω , such that the following is a linear basis for the vector space \mathcal{A} :

$$
a_1 a_2 \cdots a_n \qquad n \in \mathbb{N}, \qquad a_1, a_2, \ldots, a_n \in \Omega,
$$

$$
a_1 \le a_2 \le \cdots \le a_n.
$$

Fix a nonzero $q \in \mathbb{F}$ that is not a root of unity.

Recall the notation

$$
[n]_q = \frac{q^n - q^{-n}}{q - q^{-1}} \qquad n \in \mathbb{Z}.
$$

For elements X, Y in any algebra, define their **commutator** and q-commutator by

$$
[X, Y] = XY - YX, \qquad [X, Y]_q = qXY - q^{-1}YX.
$$

Note that

$$
[X,[X,[X,Y]_q]_{q^{-1}}] = X^3Y - [3]_qX^2YX + [3]_qXYX^2 - YX^3.
$$

Definition

Define the algebra U_q^+ by generators A, B and relations

$$
[A, [A, [A, B]_q]_{q^{-1}}] = 0,
$$

$$
[B, [B, [B, A]_q]_{q^{-1}}] = 0.
$$

[The alternating central extension for the positive part of](#page-0-0) \hat{U}_q (s

We call U_q^+ the **positive part of** $U_q(\widehat{\mathfrak{sl}}_2)$.

The above relations are called the q -Serre relations.

Why we care about U_q^+ q

We briefly explain why $\, U^+_q \,$ is of interest.

Let $\,V$ denote a finite-dimensional irreducible $\,U^+_q$ -module on which A, B are diagonalizable. Then:

• the eigenvalues of A and B on V have the form

A:
$$
\{aq^{d-2i}\}_{i=0}^d
$$
 $0 \neq a \in \mathbb{F}$,
B: $\{bq^{d-2i}\}_{i=0}^d$ $0 \neq b \in \mathbb{F}$.

• For $0 \le i \le d$ let V_i (resp. V_i^*) denote the eigenspace of A (resp. B) for the eigenvalue aq^{d-2i} (resp. bq^{d-2i}). Then

$$
BV_i \subseteq V_{i-1} + V_i + V_{i+1},
$$

$$
AV_i^* \subseteq V_{i-1}^* + V_i^* + V_{i+1}^*,
$$

where $V_{-1} = 0 = V_{d+1}$ and $V_{-1}^* = 0 = V_{d+1}^*$.

Consequently A, B act on V as a **tridiagonal pair**.

The topic of tridiagonal pairs is an active area of research, with links to

- combinatorics and graph theory (E. Bannai, T. Ito, W. Martin, S. Miklavic, K. Nomura, A. Pascasio, H. Tanaka) ;
- special functions and orthogonal polynomials (H. Alnajjar, B. Curtin, A. Grunbaum, E. Hanson, M. Ismail, J. H. Lee, R. Vidunas);
- quantum groups and representation theory (S. Bockting-Conrad, H. W. Huang, S. Kolb);
- mathematical physics (P. Baseilhac, S. Belliard, L. Vinet, A. Zhedanov)

We now return to U_q^+ .

Recently we introduced a type of element in U_q^+ , said to be alternating.

Each alternating element commutes with exactly one of

A, B,
$$
qBA - q^{-1}AB
$$
, $qAB - q^{-1}BA$.

This gives four types of alternating elements, denoted

$$
\{W_{-k}\}_{k\in\mathbb{N}},\quad \{W_{k+1}\}_{k\in\mathbb{N}},\quad \{G_{k+1}\}_{k\in\mathbb{N}},\quad \{\tilde{G}_{k+1}\}_{k\in\mathbb{N}}.
$$

The alternating elements of each type mutually commute.

In order to describe the alternating elements in closed form, we use a q-shuffle algebra.

[The alternating central extension for the positive part of](#page-0-0) \hat{U}_q (s

For this q -shuffle algebra, the underlying vector space is a free algebra on two generators.

This free algebra is described on the next slide.

Let x, y denote noncommuting indeterminates.

Let V denote the free algebra with generators x, y .

By a **letter** in V we mean x or y.

For $n \in \mathbb{N}$, a word of length n in $\mathbb V$ is a product of letters $V_1V_2\cdots V_n$.

The vector space V has a linear basis consisting of its words.

We just defined the free algebra V .

There is another algebra structure on V , called the q-shuffle algebra. This is due to M. Rosso 1995.

The *q*-shuffle product is denoted by \star .

The *q*-shuffle product on V , cont.

For letters u, v we have

$$
u\star v=uv+vuq^{\langle u,v\rangle}
$$

where

$$
\begin{array}{c|cc}\n\langle , \rangle & x & y \\
\hline\nx & 2 & -2 \\
y & -2 & 2\n\end{array}
$$

So

$$
x \star y = xy + q^{-2}yx,
$$

\n
$$
x \star x = (1 + q^2)xx,
$$

\n
$$
y \star x = yx + q^{-2}x
$$

\n
$$
y \star y = (1 + q^2)yy.
$$

[The alternating central extension for the positive part of](#page-0-0) \hat{U}_q (s

 $^{-2}$ xy,

Paul Terwilliger

The *q*-shuffle product on V , cont.

For words u, v in V we now describe $u * v$.

Write $u = a_1 a_2 \cdots a_r$ and $v = b_1 b_2 \cdots b_s$.

To illustrate, assume $r = 2$ and $s = 2$.

We have

$$
u * v = a_1 a_2 b_1 b_2
$$

+ $a_1 b_1 a_2 b_2 q^{\langle a_2, b_1 \rangle}$
+ $a_1 b_1 b_2 a_2 q^{\langle a_2, b_1 \rangle + \langle a_2, b_2 \rangle}$
+ $b_1 a_1 a_2 b_2 q^{\langle a_1, b_1 \rangle + \langle a_2, b_1 \rangle}$
+ $b_1 a_1 b_2 a_2 q^{\langle a_1, b_1 \rangle + \langle a_2, b_1 \rangle + \langle a_2, b_2 \rangle}$
+ $b_1 b_2 a_1 a_2 q^{\langle a_1, b_1 \rangle + \langle a_1, b_2 \rangle + \langle a_2, b_1 \rangle + \langle a_2, b_2 \rangle}$

Theorem (Rosso 1995)

The q-shuffle product \star turns the vector space $\mathbb {V}$ into an algebra.

Theorem (Rosso 1995)

There exists an algebra homomorphism \natural from U_q^+ to the q-shuffle algebra $\mathbb V$, that sends $A \mapsto x$ and $B \mapsto y$. The map \natural is injective.

> Paul Terwilliger [The alternating central extension for the positive part of](#page-0-0) \hat{U}_q (s

We can now easily describe the alternating elements in U^+_q .

The map \natural sends

In the next three slides, we describe some relations that are satisfied by the alternating elements of U^+_q .

For notational convenience define $G_0=1$ and $\tilde{G}_0=1.$

Lemma (Type I relations)

For $k \in \mathbb{N}$ the following holds in U_q^+ :

$$
[W_0, W_{k+1}] = [W_{-k}, W_1] = (1 - q^{-2})(\tilde{G}_{k+1} - G_{k+1}),
$$

\n
$$
[W_0, G_{k+1}]_q = [\tilde{G}_{k+1}, W_0]_q = (q - q^{-1})W_{-k-1},
$$

\n
$$
[G_{k+1}, W_1]_q = [W_1, \tilde{G}_{k+1}]_q = (q - q^{-1})W_{k+2}.
$$

Lemma (Type II relations)

For $k, \ell \in \mathbb{N}$ the following relations hold in U_q^+ :

$$
[W_{-k}, W_{-\ell}] = 0, \t W_{k+1}, W_{\ell+1}] = 0,
$$

\n
$$
[W_{-k}, W_{\ell+1}] + [W_{k+1}, W_{-\ell}] = 0,
$$

\n
$$
[W_{-k}, G_{\ell+1}] + [G_{k+1}, W_{-\ell}] = 0,
$$

\n
$$
[W_{-k}, \tilde{G}_{\ell+1}] + [\tilde{G}_{k+1}, W_{-\ell}] = 0,
$$

\n
$$
[W_{k+1}, G_{\ell+1}] + [G_{k+1}, W_{\ell+1}] = 0,
$$

\n
$$
[W_{k+1}, \tilde{G}_{\ell+1}] + [\tilde{G}_{k+1}, W_{\ell+1}] = 0,
$$

\n
$$
[G_{k+1}, G_{\ell+1}] = 0, \t [\tilde{G}_{k+1}, \tilde{G}_{\ell+1}] = 0,
$$

\n
$$
[\tilde{G}_{k+1}, G_{\ell+1}] + [G_{k+1}, \tilde{G}_{\ell+1}] = 0.
$$

Lemma (Type III relations)

For $n\geq 1$ the following relations hold in U_q^+ :

$$
\sum_{k=0}^{n} G_k \tilde{G}_{n-k} q^{n-2k} = q \sum_{k=0}^{n-1} W_{-k} W_{n-k} q^{n-1-2k},
$$

$$
\sum_{k=0}^{n} G_k \tilde{G}_{n-k} q^{2k-n} = q \sum_{k=0}^{n-1} W_{n-k} W_{-k} q^{n-1-2k},
$$

$$
\sum_{k=0}^{n} \tilde{G}_k G_{n-k} q^{n-2k} = q \sum_{k=0}^{n-1} W_{n-k} W_{-k} q^{2k+1-n},
$$

$$
\sum_{k=0}^{n} \tilde{G}_k G_{n-k} q^{2k-n} = q \sum_{k=0}^{n-1} W_{-k} W_{n-k} q^{2k+1-n}.
$$

[The alternating central extension for the positive part of](#page-0-0) \mathcal{V}_q (s

Paul Terwilliger

It turns out that the relations of type I, II, III imply the q -Serre relations, which are the defining relations for $\, U^+_q.\,$

Consequently we have the following.

Lemma

The algebra U_q^+ has a presentation by generators

 $\{W_{-k}\}_{k\in\mathbb{N}}, \{W_{k+1}\}_{k\in\mathbb{N}}, \{G_{k+1}\}_{k\in\mathbb{N}}, \{(\tilde{G}_{k+1}\}_{k\in\mathbb{N}})$

and the relations of type I, II, III.

Using the relations of type I, II, III we can recursively express each alternating element as a polynomial in A, B.

The details are on the next slide.

Obtaining the alternating elements from A, B

Lemma

Using the equations below, the alternating elements in U_q^+ are recursively obtained from A, B in the following order:

$$
W_0, \quad W_1, \quad G_1, \quad \tilde{G}_1, \quad W_{-1}, \quad W_2, \quad G_2, \quad \tilde{G}_2, \quad \ldots
$$

We have $W_0 = A$ and $W_1 = B$. For $n > 1$,

$$
G_n = \frac{q \sum_{k=0}^{n-1} W_{-k} W_{n-k} q^{n-1-2k} - \sum_{k=1}^{n-1} G_k \tilde{G}_{n-k} q^{n-2k}}{q^n + q^{-n}} + \frac{W_n W_0 - W_0 \star W_n}{(1 + q^{-2n})(1 - q^{-2})},
$$

$$
\tilde{G}_n = G_n + \frac{W_0 W_n - W_n W_0}{1 - q^{-2}}, \qquad W_{-n} = \frac{q W_0 G_n - q^{-1} G_n W_0}{q - q^{-1}},
$$

$$
W_{n+1} = \frac{q G_n W_1 - q^{-1} W_1 G_n}{q - q^{-1}}.
$$

It is tempting to guess that the alternating elements of U_q^+ form a PBW basis for U_q^+ .

This guess is incorrect, but can be corrected as follows.

Lemma (Terwilliger 2018)

A PBW basis for U_q^+ is obtained by the elements

 $\{W_{-i}\}_{i\in\mathbb{N}},\qquad \{\tilde{\mathsf{G}}_{j+1}\}_{j\in\mathbb{N}},\qquad \{W_{k+1}\}_{k\in\mathbb{N}}$

in any linear order $<$ that satisfies

$$
W_{-i} < \tilde{G}_{j+1} < W_{k+1} \qquad i, j, k \in \mathbb{N}.
$$

The above PBW basis for U_q^+ will be called $\,$ altern $\,$ ating.

The alternating PBW basis for U^+_q is obtained from the set of alternating elements of U_q^+ , by removing $\{\textsf{G}_{k+1}\}_{k\in\mathbb{N}}.$

This removal seems unnatural to us.

To fix the problem, we replace U_q^+ by a certain central extension of U_q^+ , denoted \mathcal{U}_q^+ .

Definition

We define the algebra \mathcal{U}_q^+ by generators

$$
\{\mathcal{W}_{-k}\}_{k\in\mathbb{N}},\quad \{\mathcal{W}_{k+1}\}_{k\in\mathbb{N}},\quad \{\mathcal{G}_{k+1}\}_{k\in\mathbb{N}},\quad \{\tilde{\mathcal{G}}_{k+1}\}_{k\in\mathbb{N}}
$$

and the relations of type I, II from the previous slides. These generators are called alternating.

For notational convenience define $\mathcal{G}_0=1$ and $\tilde{\mathcal{G}}_0=1.$

The algebras \mathcal{U}_q^+ and \mathcal{U}_q^+ are related as follows.

Lemma

There exists an algebra homomorphism $\gamma: \mathcal{U}_q^+ \to \mathcal{U}_q^+$ that sends

$$
\mathcal{W}_{-n} \mapsto W_{-n}, \quad \mathcal{W}_{n+1} \mapsto W_{n+1}, \quad \mathcal{G}_n \mapsto \mathcal{G}_n, \quad \tilde{\mathcal{G}}_n \mapsto \tilde{\mathcal{G}}_n
$$

for $n \in \mathbb{N}$. Moreover γ is surjective.

Shortly we will describe the kernel of γ .

It turns out that \mathcal{U}^+_q has a large center.

In order to describe this center, we bring in some polynomials.

Definition

Let $\{z_n\}_{n=1}^{\infty}$ denote mutually commuting indeterminates. Let $\mathbb{F}[z_1, z_2, \ldots]$ denote the algebra consisting of the polynomials in z_1, z_2, \ldots that have all coefficients in $\mathbb F$. For notational convenience define $z_0 = 1$.

The algebras \mathcal{U}_q^+ and $\mathbb{F}[z_1, z_2, \ldots]$ are related as follows.

Lemma

There exists an algebra homomorphism $\eta: \mathcal{U}_q^+ \to \mathbb{F}[z_1, z_2, \ldots]$ that sends

$$
\mathcal{W}_{-n} \mapsto 0, \qquad \mathcal{W}_{n+1} \mapsto 0, \qquad \mathcal{G}_n \mapsto z_n, \qquad \tilde{\mathcal{G}}_n \mapsto z_n
$$

for $n \in \mathbb{N}$. Moreover η is surjective.

Shortly we will describe the kernel of η .

We have indicated how \mathcal{U}_q^+ is related to \mathcal{U}_q^+ and $\mathbb{F}[z_1,z_2,\ldots].$

Next we describe how \mathcal{U}^+_q is related to the tensor product $U_q^+ \otimes \mathbb{F}[z_1, z_2, \ldots].$

Theorem (Terwilliger 2019)

There exists an algebra isomorphism $\varphi: \mathcal{U}_q^+ \to \mathcal{U}_q^+ \otimes \mathbb{F}[z_1, z_2, \ldots]$ that sends

for $n \in \mathbb{N}$. Moreover φ sends

 $\mathcal{W}_0 \mapsto W_0 \otimes 1, \qquad \qquad \mathcal{W}_1 \mapsto W_1 \otimes 1.$

We just gave an algebra isomorphism

$$
\varphi: \mathcal{U}_q^+ \to \mathcal{U}_q^+ \otimes \mathbb{F}[z_1, z_2, \ldots].
$$

Over the next few slides, we describe how φ is related to γ and η .

We now describe how φ is related to γ .

There exists an algebra homomorphism $\theta : \mathbb{F}[z_1, z_2, \ldots] \to \mathbb{F}$ that sends $z_n \mapsto 0$ for $n \ge 1$.

The map θ is surjective.

Consequently the vector space $\mathbb{F}[z_1, z_2, \ldots]$ is the direct sum of $\mathbb{F}1$ and the kernel of θ .

This kernel is the ideal of $\mathbb{F}[z_1, z_2, \ldots]$ generated by $\{z_n\}_{n=1}^{\infty}$.

Lemma

The following diagram commutes:

$$
\begin{array}{ccc}\nU_q^+ & \xrightarrow{\varphi} & U_q^+ \otimes \mathbb{F}[z_1, z_2, \ldots] \\
\uparrow \downarrow & & \downarrow \mathrm{id} \otimes \theta & & \mathrm{id} = \mathrm{identity \ map} \\
U_q^+ & \xrightarrow{\downarrow \downarrow \downarrow \downarrow \downarrow} & & U_q^+ \otimes \mathbb{F}\n\end{array}
$$

Next we describe how φ is related to η .

Since U_q^+ is generated by A,B and the q -Serre relations are homogeneous, there exists an algebra homomorphism $\vartheta:U_{\bm{q}}^+\to\mathbb{F}$ that sends $A \mapsto 0$ and $B \mapsto 0$.

The map ϑ is surjective.

Consequently the vector space U_q^+ is the direct sum of $\mathbb{F}1$ and the kernel of ϑ .

The kernel of ϑ is the two-sided ideal of U_q^+ generated by $A,B.$

The map ϑ acts on the alternating elements of U_q^+ as follows. The map ϑ sends

 $W_{-k} \mapsto 0, \qquad W_{k+1} \mapsto 0, \qquad G_{k+1} \mapsto 0,$ $\tilde{G}_{k+1} \mapsto 0$ for $k \in \mathbb{N}$.

Lemma

The following diagram commutes:

$$
\begin{array}{ccc}\n\mathcal{U}_{q}^{+} & \xrightarrow{\varphi} & \mathcal{U}_{q}^{+} \otimes \mathbb{F}[z_{1}, z_{2}, \ldots] \\
\eta \downarrow & & \downarrow \vartheta \otimes id \\
\mathbb{F}[z_{1}, z_{2}, \ldots] & \xrightarrow{x \mapsto 1 \otimes x} & \mathbb{F} \otimes \mathbb{F}[z_{1}, z_{2}, \ldots]\n\end{array}
$$

We have been discussing the algebra isomorphism

$$
\varphi: \mathcal{U}_q^+ \to \mathcal{U}_q^+ \otimes \mathbb{F}[z_1, z_2, \ldots].
$$

[The alternating central extension for the positive part of](#page-0-0) \hat{U}_q (s

Over the next few slides, we give some consequences of the isomorphism.

Definition

Let $\langle \mathcal{W}_0, \mathcal{W}_1 \rangle$ denote the subalgebra of \mathcal{U}_q^+ generated by \mathcal{W}_0 , \mathcal{W}_1 .

Lemma

There exists an algebra isomorphism $U_q^+ \to \langle \mathcal{W}_0, \mathcal{W}_1 \rangle$ that sends $A \mapsto W_0$ and $B \mapsto W_1$.

Definition

Let $\mathcal Z$ denote the center of $\mathcal U_q^+$.

It is known that the center of U_q^+ is equal to $\mathbb{F}1.$

Consequently $\mathcal Z$ is the preimage of $\mathbb F\otimes \mathbb F[z_1,z_2,\ldots]$ under the isomorphism φ .

Next we give a generating set for the center Z .

Lemma

The subalgebra $\mathcal Z$ is generated by $\{Z_n^{\vee}\}_{n=1}^{\infty}$, where

$$
Z_n^{\vee} = \sum_{k=0}^n \mathcal{G}_k \tilde{\mathcal{G}}_{n-k} q^{n-2k} - q \sum_{k=0}^{n-1} \mathcal{W}_{-k} \mathcal{W}_{n-k} q^{n-1-2k}.
$$

The center of \mathcal{U}_q^+ $q^{\prime +}$, cont.

Next we describe how the isomorphism φ acts on $\{Z_n^\vee\}_{n=1}^\infty.$

Lemma

For $n > 1$ the isomorphism φ sends

$$
Z_n^{\vee} \mapsto 1 \otimes z_n^{\vee},
$$

where

$$
z_n^{\vee} = \sum_{k=0}^n z_k z_{n-k} q^{n-2k}.
$$

Lemma

The elements $\{z_n^{\vee}\}_{n=1}^{\infty}$ are algebraically independent. Moreover the elements $\{Z_n^{\vee}\}_{n=1}^{\infty}$ are algebraically independent.

The subalgebras $\langle W_0, W_1 \rangle$ and $\mathcal Z$ are related as follows.

Lemma

The multiplication map

$$
\langle W_0, W_1 \rangle \otimes \mathcal{Z} \to \mathcal{U}_q^+
$$

$$
w \otimes z \mapsto wz
$$

is an algebra isomorphism.

Using our results so far, we can recursively express each alternating generator for \mathcal{U}_q^+ in terms of \mathcal{W}_0 , \mathcal{W}_1 , $\{Z_n^\vee\}_{n=1}^\infty$.

[The alternating central extension for the positive part of](#page-0-0) \hat{U}_q (s

The details are on the next slide.

The alternating generators in terms of $\mathcal{W}_0,\ \mathcal{W}_1,\ \{Z^\vee_n\}_{n=1}^\infty$ $n=1$

Lemma

Using the equations below, the alternating generators of \mathcal{U}_q^+ are recursively obtained from $\mathcal{W}_0, \mathcal{W}_1, \{Z^\vee_n\}_{n=1}^\infty$ in the following order:

 $\mathcal{W}_0, \quad \mathcal{W}_1, \quad \mathcal{G}_1, \quad \tilde{\mathcal{G}}_1, \quad \mathcal{W}_{-1}, \quad \mathcal{W}_2, \quad \mathcal{G}_2, \quad \tilde{\mathcal{G}}_2, \quad \mathcal{W}_{-2}, \quad \mathcal{W}_3, \ldots$ For $n > 1$,

$$
G_n = \frac{Z_n^{\vee} + q \sum_{k=0}^{n-1} W_{-k} W_{n-k} q^{n-1-2k} - \sum_{k=1}^{n-1} G_k \tilde{G}_{n-k} q^{n-2k}}{q^n + q^{-n}} + \frac{W_n W_0 - W_0 W_n}{(1 + q^{-2n})(1 - q^{-2})},
$$

$$
\tilde{G}_n = G_n + \frac{W_0 W_n - W_n W_0}{1 - q^{-2}}, \qquad W_{-n} = \frac{q W_0 G_n - q^{-1} G_n W_0}{q - q^{-1}},
$$

$$
W_{n+1} = \frac{q G_n W_1 - q^{-1} W_1 G_n}{q - q^{-1}}.
$$

Recall the algebra homomorphism $\gamma: \mathcal{U}_q^+ \to \mathcal{U}_q^+$.

Lemma

The following are the same:

(i) the kernel of γ ;

(ii) the 2-sided ideal of \mathcal{U}_q^+ generated by $\{Z_n^{\vee}\}_{n=1}^{\infty}$.

Lemma

The vector space \mathcal{U}_q^+ is the direct sum of the following:

- (i) the kernel of γ ;
- (ii) the subalgebra $\langle W_0, W_1 \rangle$.

Recall the algebra homomorphism $\eta: \mathcal{U}_q^+ \to \mathbb{F}[z_1, z_2, \ldots].$

Lemma

The following are the same:

(i) the kernel of η ;

(ii) the 2-sided ideal of \mathcal{U}_q^+ generated by \mathcal{W}_0 , \mathcal{W}_1 .

Lemma

The vector space \mathcal{U}_q^+ is the direct sum of the following:

- (i) the center $\mathcal Z$ of $\mathcal U_q^+$;
- (ii) the kernel of η .

In the previous slides we described the algebra \mathcal{U}_q^+ from various points of view.

Using this description we were able to obtain the following result.

Theorem (Terwilliger 2019)

A PBW basis for \mathcal{U}^+_q is obtained by the elements

$$
\{\mathcal{W}_{-i}\}_{i\in\mathbb{N}},\qquad \{\mathcal{G}_{j+1}\}_{j\in\mathbb{N}},\qquad \{\tilde{\mathcal{G}}_{k+1}\}_{k\in\mathbb{N}},\qquad \{\mathcal{W}_{\ell+1}\}_{\ell\in\mathbb{N}}
$$

in any linear order $<$ that satisfies

$$
\mathcal{W}_{-i} < \mathcal{G}_{j+1} < \tilde{\mathcal{G}}_{k+1} < \mathcal{W}_{\ell+1} \quad i, j, k, \ell \in \mathbb{N}.
$$

Summary

In this talk, we recalled the algebra $\, U_q^+$ and its alternating elements

 $\{W_{-k}\}_{k\in\mathbb{N}}, \quad \{W_{k+1}\}_{k\in\mathbb{N}}, \quad \{G_{k+1}\}_{k\in\mathbb{N}}, \quad \{\tilde{G}_{k+1}\}_{k\in\mathbb{N}}.$

We showed how these elements satisfy some relations of type I–III.

We defined an algebra \mathcal{U}^+_q by generators

 $\{W_{-k}\}_{k\in\mathbb{N}}, \quad \{W_{k+1}\}_{k\in\mathbb{N}}, \quad \{\mathcal{G}_{k+1}\}_{k\in\mathbb{N}}, \quad \{\tilde{\mathcal{G}}_{k+1}\}_{k\in\mathbb{N}}$

and the relations of type I, II; these generators are called alternating.

Paul Terwilliger

We used an algebra isomorphism $\varphi:\mathcal{U}_q^+\to\mathcal{U}_q^+\otimes\mathbb{F}[z_1,z_2,\ldots]$ to desribed \mathcal{U}^+_q in various ways.

We showed how the alternating generators give a PBW basis for \mathcal{U}_q^+ .

THANK YOU FOR YOUR AT[TE](#page-54-0) **The alternation of the positive part of** $U_q(s)$