SOME TOPICS ON TENSOR PRODUCTS OF $U_q(\mathfrak{g})$ -MODULES

PETER RUAN

1. FORMAL CHARACTERS

We'll talk about certain tensor products of U-modules. Here we make the convention that $U = U_q(\mathfrak{g})$ be such that:

- all finite dimensional *U*-modules are semisimple;
- for any dominant $\lambda \in \Lambda$, dimensions of the weight spaces of $L(\lambda)$ are given by Weyl's character formula.

To satisfy these conditions, it suffices to assume that q is not a root of unity and no conditions on the field k, as discussed in [4], 5.15.

We consider the decomposition of tensor products of such U-modules using the group ring $\mathbf{Z}(\Lambda)$ with basis $\{e(\lambda) \mid \lambda \in \Lambda\}$.

Definition 1.1. The formal character of a finite dimensional U-module M is given by

$$\operatorname{ch}(M) = \sum_{\mu \in \Lambda} \dim(M_{\mu}) e(\mu).$$

Definition 1.2. For any dominant $\lambda \in \Lambda$,

$$\chi(\lambda) = \operatorname{ch} L(\lambda).$$

As we may expect, formal characters have the following good propositions.

Proposition 1.1. For any finite dimensional U-module M,

$$\operatorname{ch}(M) = \sum_{\lambda} m(\lambda) \chi(\lambda),$$

where the sum is over all dominant weights λ .

Proof. There is a decomposition $M = \bigoplus_{\lambda} L(\lambda)^{m(\lambda)}$, where all $m(\lambda) \ge 0$ and is nonzero almost nowhere.

Remark. Since all $\chi(\lambda)$ with λ dominant are linearly independent (e.g., see [3], Proposition 22.5A), this means M is uniquely determined by these $m(\lambda)$ up to isomorphism.

Proposition 1.2. For any finite dimensional U-modules M, N,

$$\operatorname{ch}(M \otimes N) = \operatorname{ch}(M) \operatorname{ch}(N).$$

Proof. The weights of $M \otimes N$ are of the form $\lambda + \mu$ where λ is a weight of M and μ is a weight of N, and each specific weight has multiplicity $\sum_{\nu} \dim(M_{\nu}) \dim(M_{\lambda+\mu-\nu})$.

Remark. Using this proposition and Weyl's character formula, we can get a result on the decomposition of $L(\lambda') \otimes L(\lambda'')$ know as Steinberg's formula (see [3], Theorem 24.4).

For convenience, we extend the definition of $\chi(\lambda)$.

Definition 1.3. Let $\rho = \sum_{\alpha \in \Pi} \overline{\omega}_{\alpha}$ be the sum of all fundamental weights. Note that $\langle \rho, \alpha^{\vee} \rangle = 1$ for all $\alpha \in \Pi$. Now for any $\lambda \in \Lambda$,

- if there exists a root $\beta \in \Phi$ with $\langle \lambda + \rho, \beta^{\vee} \rangle = 0$, then let $\chi(\lambda) = 0$;
- otherwise, there exists a unique $w \in W$ such that $\langle w(\lambda + \rho), \alpha^{\vee} \rangle > 0$ for all $\alpha \in \Pi$, and let $\chi(\lambda) = \det(w)\chi(w(\lambda + \rho) \rho)$.

Remark. To see how the second case is well-defined, we only need to show $w(\lambda + \rho) - \rho$ is dominant (so that χ of it is already defined). This is true since $\langle w(\lambda + \rho), \alpha^{\vee} \rangle > 0$ for all $\alpha \in \Pi$.

Remark. It's easy to check that this definition is compatible with the previous one.

Using this extended definition, we can produce a decomposition of $L(\lambda) \otimes M$ where λ is dominant and M is finite dimensional.

Proposition 1.3. Let $\lambda \in \Lambda$ be dominant and M be a finite dimensional U-module, then

$$\chi(\lambda) \operatorname{ch}(M) = \sum_{\mu \in \Lambda} \dim(M_{\mu})\chi(\lambda + \mu).$$

Proof. Use Weyl's character formula. See [3], exercise 24.9.

By **Proposition 1.2**, the lefthand side is $ch(L(\lambda) \otimes M)$. To obtain a decomposition of $L(\lambda) \otimes M$ from the righthand side, first note that the sum in **Proposition 1.1** is only over dominant weights, so we need to transform the righthand side. We can drop zero terms in the sum, and for the rest, if $\lambda + \mu$ is dominant, we keep them. For $\lambda + \mu$ not dominant with $\chi(\lambda + \mu) \neq 0$, it must be defined by the second case of **Definition 1.3**, so $\chi(\lambda + \mu) = det(w)\chi(w(\lambda + \mu + \rho) - \rho)$, and $w(\lambda + \mu + \rho) - \rho$ is dominant since $\langle w(\lambda + \mu + \rho), \alpha^{\vee} \rangle > 0$ for all $\alpha \in \Pi$.

Example 1.1. Suppose Φ is of type A_1 , then $ch(L(n)) = \sum_{i=0}^n e(n-2i)$ for all $n \in \mathbb{Z}^{\geq 0}$, so for $m \geq n \geq 0$, by **Proposition 1.3** we have

$$\chi(m)\chi(n) = \sum_{\mu} \dim(L(n)_{\mu})\chi(m+\mu).$$

Note that $\dim(L(n)_{\mu}) = 1$ where $\mu = n - 2i$ for $i = 0, \dots, n$ and $\dim(L(n)_{\mu}) = 0$ otherwise, so

$$\chi(m)\chi(n) = \sum_{i=0}^{n} \chi(m+n-2i),$$

hence

$$L(m) \otimes L(n) \simeq \bigoplus_{i=0}^{n} L(m+n-2i).$$

This is the Clebsch-Gordan formula.

Proposition 2.1. Let $\lambda \in \Lambda$ be a dominant weight and $\lambda_0 \in \Lambda$ be a minuscule dominant weight, then

$$L(\lambda) \otimes L(\lambda_0) \simeq \bigoplus_{\mu} L(\lambda + \mu),$$

where the sum is over all $\mu \in W\lambda_0$ such that $\lambda + \mu$ is dominant.

Proof. By **Proposition 1.3**,

$$\chi(\lambda)\chi(\lambda_0) = \sum_{\mu \in W\lambda_0} \chi(\lambda + \mu).$$

Given any $\mu \in W\lambda_0$ with $\lambda + \mu$ not dominant, $\langle \lambda + \mu, \alpha^{\vee} \rangle < 0$ for some $\alpha \in \Pi$. Note that $\langle \lambda, \alpha^{\vee} \rangle \geq 0$ since λ is dominant, so $\langle \mu, \alpha^{\vee} \rangle < 0$, hence $\langle \mu, \alpha^{\vee} \rangle = -1$ since λ_0 is dominant and $\mu \in W\lambda_0$, hence $\langle \lambda, \alpha^{\vee} \rangle = 0$, hence $\langle \lambda + \mu + \rho, \alpha^{\vee} \rangle = 0 + (-1) + 1 = 0$, so $\chi(\lambda + \mu) = 0$ by definition.

Therefore, the above sum is over all $\mu \in W\lambda_0$ with $\lambda + \mu$ dominant.

Proposition 2.2. Suppose Φ is irreducible. Let $\lambda \in \Lambda$ be a dominant weight and $\lambda_0 = \alpha_0$ be the largest short root, then

$$L(\lambda) \otimes L(\lambda_0) \simeq \bigoplus_{\mu} L(\lambda + \mu) \oplus mL(\lambda),$$

where the sum is over all $\mu \in W\lambda_0$ such that $\lambda + \mu$ is dominant and m is the number of short simple roots $\alpha \in \Pi_s$ such that $\langle \lambda, \alpha_{\vee} \rangle > 0$.

Proof. Since 0 (with multiplicity $|\Pi_s|$) is the only weight outside $W\lambda_0$, by **Proposition 1.3**,

$$\chi(\lambda)\chi(\lambda_0) = \sum_{\mu \in W\lambda_0} \chi(\lambda + \mu) + |\Pi_s|\chi(\lambda).$$

Given any $\mu \in W\lambda_0$ with $\lambda + \mu$ not dominant, $\langle \lambda + \mu, \alpha^{\vee} \rangle < 0$ for some $\alpha \in \Pi$. Note that $\langle \lambda, \alpha^{\vee} \rangle \geq 0$ since λ is dominant, so $\langle \mu, \alpha^{\vee} \rangle < 0$.

If $\langle \mu, \alpha^{\vee} \rangle = -1$, then as in the last proposition we have $\chi(\lambda_{\mu}) = 0$.

Otherwise, $-\mu = \alpha \in \Pi_s$ and $\langle \mu, \alpha^{\vee} \rangle = -2$, then $\langle \lambda, \alpha^{\vee} \rangle \leq 1$. If $\langle \lambda, \alpha^{\vee} \rangle = 1$, then $\langle \lambda + \mu + \rho, \alpha^{\vee} \rangle = 1 + (-2) + 1 = 0$, so $\chi(\lambda + \mu) = 0$; if $\langle \lambda, \alpha^{\vee} \rangle = 0$, then $\langle \lambda + \mu + \rho, \alpha^{\vee} \rangle = 0 + (-2) + 1 = -1$, so $w = s_{\alpha}$ and $s_{\alpha}(\lambda + \mu + \rho) = \lambda + \mu + \rho + \alpha = \lambda + \rho$, hence $\chi(\lambda + \mu) = -\chi(\lambda)$ by definition.

Therefore, for all $\mu \in W\lambda_0$ with λ_{μ} not dominant and $\chi(\lambda + \mu) \neq 0$, it must be that $-\mu = \alpha \in \Pi_s$ and $\langle \lambda, \alpha \rangle = 0$ and $\chi(\lambda + \mu) = -\chi(\lambda)$. These $\chi(\lambda + \mu)$ cancels with the $|\Pi_s|\chi(\lambda)$, leaving exactly *m* copies.

Remark. We can generalize both propositions in this section to all comultiplications Δ' on U, as long as $\Delta'(K_{\mu}) = K_{\mu} \otimes K_{\mu}$ for all $\mu \in \mathbb{Z}\Phi$. This ensures **Proposition 1.2** is true, and other results follows.

PETER RUAN

3. Tensor products of simple U-modules

Proposition 3.1. Let Λ_0 be the set of all minuscule dominant weights and all largest short roots of an indecomposable component of Φ . For any dominant $\lambda \in \Lambda$, $L(\lambda)$ is a composition factor of $L(\lambda_1) \otimes \cdots \otimes L(\lambda_r)$ for some $\lambda_1, \cdots, \lambda_r \in \Lambda_0$.

Proof. Since the decomposition of tensor products of simple U-modules is the same as the decomposition of tensor products of \mathfrak{g} -modules, we only need to prove for G-modules, where G is a connected, simply connected semisimple algebraic group over \mathbf{C} with Lie algebra \mathfrak{g} . Let $V = \bigoplus_{\lambda_0 \in \Lambda_0} L(\lambda_0)$. We first show V is a faithful G-module.

Since V is not trivial, ker(V) $\subseteq Z(G)$. Thinking of Z(G) as Hom $(\lambda/\mathbb{Z}\Phi, \mathbb{C}^{\times})$, each $z \in Z(G)$ acts on $L(\lambda)$ as a scalar $z(\lambda)$, and the image of Λ_0 in $\Lambda/\mathbb{Z}\Phi$ generates $\Lambda/\mathbb{Z}\Phi$ (see [1], Ch. VI, §2, exercise 5a), so V is faithful.

Now, by a result from representation theory (e.g., see [2], II, §2, Proposition 2.9), we have that each irreducible representation of G is a composition factor of some $V \otimes \cdots \otimes V \otimes V^* \otimes \cdots \otimes V^*$. We'll then show that $V^* \simeq V$.

Let w_0 be the unique element in the Weyl group of Φ with $w_0(\Pi) = -\Pi$, then for any $\lambda_0 \in \Lambda_0$, it is dominant, so $L(\lambda_0)^* \simeq L(-w_0\lambda_0)$ by [4], 5.16, and note that $-w_0$ is an automorphism of Λ_0 , so $V^* \simeq V$.

Therefore, $L(\lambda)$ is a composition factor of some $V \otimes \cdots \otimes V$, which is a direct sum of some $L(\lambda_1) \otimes \cdots \otimes L(\lambda_r)$ with $\lambda_1, \cdots, \lambda_r \in \Lambda_0$, and thus $L(\lambda)$ must be a composition factor of one of these $L(\lambda_1) \otimes \cdots \otimes L(\lambda_r)$.

References

- [1] N. Bourbaki. Groupes et algébres de Lie. Hermann; Paris, 1968.
- [2] M. Demazure, P.Gabriel. Groupes Algébriques, Tome I. Masson & North-Holland; Paris & Amsterdam, 1970.
- [3] J. E. Humphreys. Introduction to Lie Algebras and Representation Theory. Springer-Verlag; New York, 1972.
- [4] J. C. Jantzen. Lectures on Quantum Groups. American Mathematics Society; 1996.