
Evan Sorensen Math 846 Lecture 12-11 Part 2

Recall that B(n)
λ is the crystal of tableaux with highest weight λ. For example, B(2, 1)(n) is

the crystal of semi-standard tableaux of shape whose entries lie in 1, 2, . . . , n.

The highest weight element is 1 1

2
.

Our goal for the rest of the lecture today is to prove and show examples for the following:

Theorem 9.5(The Littlewood-Richardson Rule) The multiplicity of B(n)
λ in B(n)

µ ⊗B(n)
ν equals

cλµ,ν .

By Theorem 8.14, the multiplicity of B(r)
µ � B(s)

ν in the GL(r) × GL(s) crystal obtained

from branching B(r+s)
λ is cλµ,ν . The result follows once we prove Theorem 9.4 below.

Theorem 9.4 Let λ, µ,, and ν be partitions. Then, the multiplicity of B(n)
λ in B(n)

µ ⊗ B(n)
ν

equals the multiplicity of B(r)
µ �B(s)

ν in the GL(r)×GL(s) crystal obtained by branching B
(r+s)
λ .

To be clear, by multiplicity of B(n)
λ in B(n)

µ ⊗B(n)
ν , we mean the number of connected compo-

nents of the latter crystal that are isomorphic to the former.
Recall the following:

Theorem 8.6 For x ∈ B⊗k, x ≡ P (x). Furthermore, if P (x) = P (y), then x ≡ y.

Theorem 8.7 Let x, y ∈ B⊗k. Then, Q(x) = Q(y) if and only if x and y lie in the same
connected component of B⊗k.

Now, we are ready to prove Theroem 9.4.

Proof of Theorem 9.4. Let

C := {X ∈ Mat(r+s)×n)(N)|P (X) ∈ B(n)
λ , Q′(X) ∈ B(r)

µ , Q′′(X) ∈ B(s)
ν }.

By Theorems 8.6 and 8.7, C consists of every element of Mat(r+s)×n(N) that are GL(n) ×
GL(r)×GL(s)− plactically equivalent to some element of the GL(n)×GL(r)×GL(s) crystal

B(n)
λ � B(r)

µ � B(s)
ν . Because C consists of all such elements, it must be a disjoint union of

copies of the crystal B(n)
λ � B(r)

µ � B(s)
ν . We will prove the theorem by counting the number

of copies of this crystal in C.
First, we observe that

C ⊂ C1 := {X ∈ Mat(r+s)×n(N)|P (X) ∈ B(n)
λ }.

We note that the isomorphism of Corollary 9.2 is given by X 7→ P (X) � Q(X). Hence,

we have that C1
∼= B(n)

λ �B(r+s)
λ . As discussed last Friday (lecture 40, part 2), we can branch

(using Levi branching) the GL(n)×GL(r+s) crystal B(n)
λ �B(r+s)

λ to a GL(n)×GL(r)×GL(s)

crystal. In doing so, B(n)
λ stays the same, which means that the number of subcrystals

isomorphic to B(n)
λ �B(r)

µ �B(s)
ν is equal to the multiplicity of B(r)

µ �B(s)
ν in the GL(r)×GL(s)

crystal that results from branching B(r+s)
λ .
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Now, we also note that

C ⊂ C2 := {X ∈ Mat(r+s)×n(N)|Q′(X) ∈ B(r)
µ , Q′′(X) ∈ B(s)

ν }.

As was just proven in Proposition 9.3, Q(X) ≡ Q′(X)�Q′′(X).Also, we have that Mat(r+s)×n(N) ≡
Matr×n(N) � Mats×n(N) by stacking the matrices. Therefore, we have that

C2 ≡ B(n)
µ � B(n)

ν � B(r)
µ � B(s)

ν .

Equivalently, we have the extra condition that P ′(X) ∈ B(n)
µ and P ′′(X) = B(n)

ν . By Propo-

sition 9.3, P (X) ≡ P ′(X) ⊗ P ′′(X). However, we also know that for X ∈ C, P (X) ∈ B(n)
λ .

Therefore, the number of subcrystals isomorphic to B(n)
λ �B(r)

µ �B(s)
ν equals the multiplicity

of B(n)
λ in B(n)

µ ⊗ B(n)
ν .

Example: Use the Littlewood-Richardson Rule to compute c
(3,2,1)
(2,1),(2,1). In other words, we

need to find the number of connected components of B(n)
(2,1) ⊗ B

(n)
(2,1) that are isomorphic to

B(n)
(3,2,1). Here, n is chosen large enough so that all of the above are well-defined. For simplicity,

we choose n = 3. B(3)
(2,1) has 8 elements, namely 1 1

2
, 1 2

2
, 1 1

3
,

1 3

2
, 1 2

3
, 1 3

3
, 2 2

3
, and 2 3

3
.

Instead of drqwing the crystal graph for all 64 elements of B(3)
(2,1) ⊗ B

(3)
(2,1), we simply need to

find the highest weight elements of this crystal that correspond to a higest weight element in

the crystal B(3)
(3,2,1), which has highest weight element 1 1 1

2 2

3

. To get the weight

(3, 2, 1), there are only six possibilities in B(3)
(2,1)⊗B

(3)
(2,1) becase we need three 1s, two 2s, and

one 3. The possibilities are 1 1

2
⊗ 1 2

3
, 1 1

2
⊗ 1 3

2
,

1 1

3
⊗ 1 2

2
, 1 2

2
⊗ 1 1

3
,

1 2

3
⊗ 1 1

2
, and 1 3

2
⊗ 1 1

2
.

Now, we count how many of these are highest weight. We do this by using the row reading
and signature rule.

In the first case, the row readings give

2 1 1⊗ 3 1 2.

We place a ) correspinding to every 1 and a ( correspinding to every 2 to check the 1−adjacency.
This gives us

( ) ) ) (

2



After cancellation, this results in ))(, so we have ϕ1 = 2 and ε1 = 1. Hence, this element
is not highest weight. We do this for all of these elements, using a ) next to each 2 and
a ( next to each 3 to check the 2−adjacencies. The only elements that give ε1 = ε2 = 0

are 1 2

3
⊗ 1 1

2
, and 1 3

2
⊗ 1 1

2
. To see this more

clearly, we take the row readings in the first tensor above to get

3 1 2⊗ 2 1 1.

To check the 1-adjacency, we place appropriate parenthesis to get

) ( ( ) ) ,

which reduces to ). Hence, ϕ1 = 1 and ε1 = 0. To check the 2-adjacency, we place appropriate
parenthesis to get

( ) ) ,

which also reduces to ), giving ϕ2 = 1 and ε2 = 0. We get the same result when we exammine

2 1 3⊗ 2 1 1. Hence, c
(3,2,1)
(2,1),(2,1) = 2.
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