EVAN SORENSEN MATH 846 LECTURE 12-11 PART 2

Recall that B&”) is the crystal of tableaux with highest weight A. For example, B2, 1™ is

the crystal of semi-standard tableaux of shape whose entries liein 1,2,... n.
The highest weight element is 1)1
2

Our goal for the rest of the lecture today is to prove and show examples for the following:

Theorem 9.5(The Littlewood-Richardson Rule) The multiplicity of Bg\n) mn Bﬁn) 2B equals

A
Crw

By Theorem 8 14, the multiplicity of B ® BYY in the GL(r) x GL(s) crystal obtained
from branching B ) i c - The result follows once we prove Theorem 9.4 below.

Theorem 9.4 Let A, pu,, and v be partitions. Then, the multiplicity of B(n mn B " @ B
equals the multiplicity of BYRBS in the GL(r)x GL(s) crystal obtained by branching B ™).

To be clear, by multiplicity of Bf\n) in B&”) ® B, we mean the number of connected compo-
nents of the latter crystal that are isomorphic to the former.
Recall the following:

Theorem 8.6 For x € B®* x = P(z). Furthermore, if P(x) = P(y), then v = y.

Theorem 8.7 Let x,y € B®*. Then, Q(z) = Q(y) if and only if x and y lie in the same
connected component of B®¥.

Now, we are ready to prove Theroem 9.4.

Proof of Theorem 9.4. Let
C = {X € Mat( 1) (N)|P(X) € B, Q'(X) € BV, Q"(X) € BY}.

By Theorems 8.6 and 8.7, C' consists of every element of Mat (4, (N) that are GL(n) x
GL(r) x GL(s)— plactically equivalent to some element of the GL(n) x GL(r) x GL(s) crystal

Bg\n) X Bff) X B, Because C' consists of all such elements, it must be a disjoint union of

copies of the crystal Bg") X B K B{). We will prove the theorem by counting the number
of copies of this crystal in C.
First, we observe that

C C Cy = {X € Mat(r;qxn(N)|P(X) € B},

We note that the isomorphism of Corollary 9.2 is given by X — P(X) X Q(X). Hence,
we have that C} = BE\") &B§T+s). As discussed last Friday (lecture 40, part 2), we can branch
(using Levi branching) the GL(n) x GL(r+s) crystal B RB{™ to a GL(n) x GL(r) x GL(s)
crystal. In doing so, Bg\n) stays the same, which means that the number of subcrystals
isomorphic to B/ KB KB is equal to the multiplicity of B KB in the GL(r) x GL(s)

crystal that results from branching BWFS



Now, we also note that
C C Co = {X € Mat (14 (N)|Q'(X) € BY,Q"(X) € BY}.

As was just proven in Proposition 9.3, Q(X) = Q'(X)XQ"(X). Also, we have that Mat (,;.s)xn(N) =
Mat, ., (N) X Matyy, (N) by stacking the matrices. Therefore, we have that

C, =B RBY KB KB,

Equivalently, we have the extra condition that P'(X) € B and P” (X) = BS™. By Propo-
sition 9.3, P(X) = P'(X) ® P"(X). However, we also know that for X € C, P(X) € Bf\n)
Therefore, the number of subcrystals isomorphic to BE\") X B,(f) X B equals the multiplicity
of Bg") in B;(Ln) ® B, O

Example: Use the Littlewood-Richardson Rule to compute 053’231()2 - In other words, we

need to find the number of connected components of BE; )1 B(; @.1) that are isomorphic to

B((:?,)z,n- Here, n is chosen large enough so that all of the above are well-defined. For simplicity,
we choose n = 3. B((;’)l) has 8 elements, namely 1)1 , 1]2 , 1)1 ,
’ 2 2 3
3 7 112 7 113 , 2|2 _and 3

2 3 3

Instead of drqwing the crystal graph for all 64 elements of BY 21 ® 3(2 (21): We simply need to
find the highest weight elements of this crystal that correspond to a hlgest weight element in

the crystal 8(32 1) which has highest weight element ; ; 1 . To get the weight
3

(3,2, 1), there are only six possibilities in Bg’)l) ® B((g)l) becase we need three 1s, two 2s, and

one 3. The possibilities are 1)1 ® 1]2 ; 11 ® 1]3 )
2 3 2 2
1 2 112 ’ 2 ® 1 7
3 2 2 3
2 ® 11 _and 113 ® 1]1
3 2 2 2

Now, we count how many of these are highest weight. We do this by using the row reading
and signature rule.
In the first case, the row readings give

211®312.

We place a ) correspinding to every 1 and a ( correspinding to every 2 to check the 1—adjacency.
This gives us
()))(

2



After cancellation, this results in ))(, so we have ¢; = 2 and ¢; = 1. Hence, this element
is not highest weight. We do this for all of these elements, using a ) next to each 2 and
a ( next to each 3 to check the 2—adjacencies. The only elements that give e = g5 = 0

are

clearly, we take the row read

To check the 1-adjacency, we place appropriate parenthesis to get

1

2

3

®

1

1 113

, and ®

2

1

1

2

2

ings in the first tensor above to get

312®211.

) (0))

. 'To see this more

which reduces to ). Hence, ¢; = 1 and e = 0. To check the 2-adjacency, we place appropriate

parenthesis to get

(),

which also reduces to ), giving s = 1 and 5 = 0. We get the same result when we exammine

213®211. Hence, c

(3,2,1)
(2,1),(2,1)

= 2.



