LEVI BRANCHING OF \mathcal{B}_{λ} FROM GL(n) TO $GL(r) \times GL(n-r)$

PETER RUAN

Recall that [1] Section 2.8 described the Levi branching: suppose \mathcal{B} is a crystal for the root system Φ and J is a subset of the index set I for Φ , then deleting $f_i, e_i, \varphi_i, \varepsilon_i$ from B gives a Φ_J crystal B_J .

Note that $GL(r) \times GL(n-r)$ is naturally a subgroup of GL(n), and their weight lattices satisfy

$$\Lambda_{\mathrm{GL}(n)} = \mathbb{Z}^n \cong \mathbb{Z}^r \times \mathbb{Z}^{n-r} = \Lambda_{\mathrm{GL}(r)} \times \Lambda_{\mathrm{GL}(n-r)}.$$

Let $I = \{1, 2, \dots, n-1\}$ be the index set for $\mathrm{GL}(n)$, then $I \setminus \{r\}$ is the index set for $\mathrm{GL}(r) \times \mathrm{GL}(n-r)$, where the simple roots $\alpha_1, \dots, \alpha_{r-1}$ are identified as simple roots for $\mathrm{GL}(r)$, and $\alpha_{r+1}, \dots, \alpha_{n-1}$ are identified as simple roots for $\mathrm{GL}(n-r)$. On top of this, let \mathfrak{C} and \mathfrak{D} be connected Stembridge crystals for $\mathrm{GL}(r)$ and $\mathrm{GL}(n-r)$ respectively, then $\mathfrak{C} \boxtimes \mathfrak{D}$ is a connected Stembridge crystal for $\mathrm{GL}(r) \times \mathrm{GL}(n-r)$. Here as a set

$$\mathbb{C} \boxtimes \mathbb{D} = \{ x \boxtimes y \mid x \in \mathbb{C}, y \in \mathbb{D} \}$$

is the Cartesian product of \mathcal{C} and \mathcal{D} ,

$$\operatorname{wt}(x \boxtimes y) = (\operatorname{wt}(x), \operatorname{wt}(y)),$$

$$f_i(x \boxtimes y) = \begin{cases} f_i(x) \boxtimes y, & \text{if } i < r, \\ x \boxtimes f_i(y), & \text{if } i > r, \end{cases}$$

$$\varphi_i(x \boxtimes y) = \begin{cases} \varphi_i(x), & \text{if } i < r, \\ \varphi_i(y), & \text{if } i > r, \end{cases}$$

and the definitions for e_i and ε_i are similar.

The above shows how to construct connected Stembridge $\operatorname{GL}(r) \times \operatorname{GL}(n-r)$ crystals from connected Stembridge $\operatorname{GL}(r)$ and $\operatorname{GL}(n-r)$ crystals. In fact, it turns out that this construction exhausts all connected Stembridge $\operatorname{GL}(r) \times \operatorname{GL}(n-r)$ crystals, up to isomorphism.

Lemma 1. Every connected Stembridge $GL(r) \times GL(n-r)$ crystals are of the form $\mathfrak{C} \boxtimes \mathfrak{D}$, where \mathfrak{C} and \mathfrak{D} are connected Stembridge GL(r) and GL(n-r) crystals respectively.

Proof. Given any connected Stembridge GL(r) and GL(n-r) crystal \mathcal{E} , consider its highest weight $\mu \in \Lambda_{GL(r)} \times \Lambda_{GL(n-r)}$. Write $\mu = (\mu', \mu'')$ where $\mu' \in \Lambda_{GL(r)}$ and $\mu'' \in \Lambda_{GL(n-r)}$. Note that μ must be a dominant weight for GL(r) and GL(n-r) since Stembridge crystals are seminormal, so μ' and μ'' are also dominant weights for GL(r) and GL(n-r) respectively. Hence there are connected Stembridge GL(r) and GL(n-r) crystals \mathcal{C} and \mathcal{D} with highest weights μ' and μ'' respectively. Consider $\mathcal{C} \boxtimes \mathcal{D}$ as constructed above, it is isomorphic to \mathcal{E} by [1] Theorem 4.13, since $\mathcal{C} \boxtimes \mathcal{D}$ and \mathcal{E} have the same highest weight.

Next we consider the Levi branching of crystals of tableaux. Again we have $\Lambda_{\mathrm{GL}(n)} = \Lambda_{\mathrm{GL}(r)} \times \Lambda_{\mathrm{GL}(n-r)}$.

PETER RUAN

Theorem 2. Suppose λ is a partition, $|\lambda| = k$, and $l(\lambda) \leq n$. Branching \mathcal{B}_{λ} to $\mathrm{GL}(r) \times \mathrm{GL}(n-r)$ gives

$$\mathcal{B}_{\lambda} \cong \bigoplus_{\substack{l(\mu) \leq r \\ \mathrm{YD}(\mu) \subseteq \mathrm{YD}(\lambda)}} \mathcal{B}_{\mu} \boxtimes \mathcal{B}_{\lambda/\mu} \cong \bigoplus_{\substack{|\mu| + |\nu| = k \\ l(\mu) \leq r \\ l(\nu) \leq n - r}} (\mathcal{B}_{\mu} \boxtimes \mathcal{B}_{\nu})^{\oplus c_{\mu\nu}^{\lambda}}.$$

Proof. Given any tableau $T \in \mathcal{B}_{\lambda}$, T is semistandard, so all boxes with values $\leq r$ form a tableu of shape μ , the remaining boxes form a skew tableau of skew shape λ/μ , and both of them are still semistandard. This gives a bijection of sets

$$\mathcal{B}_{\lambda} \cong \bigoplus_{\substack{l(\mu) \le r \\ \mathrm{YD}(\mu) \subseteq \mathrm{YD}(\lambda)}} \mathcal{B}_{\mu} \boxtimes \mathcal{B}_{\lambda/\mu}.$$

Since the construction of \boxtimes preserves wt, e_i , f_i , ε_i , φ_i as expected, this is in fact an isomorphism of \mathcal{B}_{λ} to $\mathrm{GL}(r) \times \mathrm{GL}(n-r)$ crystals. By the property

$$\mathcal{B}_{\lambda/\mu} \cong \bigoplus_{\nu} \mathcal{B}_{\nu}^{\oplus c_{\mu\nu}^{\lambda}},$$

we have

2

$$\bigoplus_{\substack{l(\mu) \leq r \\ \mathrm{YD}(\mu) \subseteq \mathrm{YD}(\lambda)}} \mathcal{B}_{\mu} \boxtimes \mathcal{B}_{\lambda/\mu} \cong \bigoplus_{\substack{|\mu| + |\nu| = k \\ l(\mu) \leq r \\ l(\nu) \leq n - r}} (\mathcal{B}_{\mu} \boxtimes \mathcal{B}_{\nu})^{\oplus c_{\mu\nu}^{\lambda}}.$$

Remark. The result of this theorem gives

$$s_{\lambda}(t_1, \dots, t_n) = \sum_{\mu, \nu} c_{\mu\nu}^{\lambda} s_{\mu}(t_1, \dots, t_r) s_{\nu}(t_{r+1}, \dots, t_n).$$

Note that s_{λ} is symmetric, so $c_{\mu\nu}^{\lambda} = c_{\nu\mu}^{\lambda}$.

Futhermore, this result can be used to prove the identity

$$s_{\mu}s_{\nu} = \sum_{\lambda} c_{\mu\nu}^{\lambda} s_{\lambda},$$

which is equivalent to

$$\langle s_{\mu}s_{\nu}, s_{\lambda}\rangle = c_{\mu\nu}^{\lambda}.$$

Here $\langle \ , \ \rangle$ is the inner product defined on the ring of symmetric functions such that the Schur functions s_{λ} form an orthonormal basis for this ring, i.e. we define $\langle s_{\lambda}, s_{\mu} \rangle = \delta_{\lambda\mu}$ and extend it to all of this ring.

Note that the property

$$\mathcal{B}_{\lambda/\mu} \cong \bigoplus_{\nu} \mathcal{B}_{\nu}^{\oplus c_{\mu\nu}^{\lambda}},$$

gives the identity

$$s_{\lambda/\mu} = \sum_{\lambda} c_{\mu\nu}^{\lambda} s_{\nu},$$

which is equivalent to

$$\langle s_{\lambda/\mu}, s_{\nu} \rangle = c_{\mu\nu}^{\lambda}.$$

This is compatible with the common definition

$$\langle s_{\lambda/\mu}, s_{\nu} \rangle = \langle s_{\mu} s_{\nu}, s_{\lambda} \rangle$$

of $s_{\lambda/\mu}$ from the perspective of symmetric functions, for example as in [2].

REFERENCES

- [1] D.Bump, A.Schilling. Crystal Bases: representations and combinatorics. World Scientific; New Jersey, 2016
- [2] I.Macdonald. Symmetric Functions and Hall Polynomials, Second Edition. Oxford University Press; New York, 2015.