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1 Introduction

Qo for this talk we will begin to consider something called the plactic monoid.
Recall that a *monoid’ is merely a group without inverses —a set with an identity

and an associative binary operation.
T B is the standard, A,, GL(n) crystal, let’s recall what this looks like. I

is a simple chain of numbers 1 Lok (n-1) 2,
Let A be a partition of k with at most n elements; recall that we can form a

crystal out of partitions.
For instance, this is what the Bz 1) crystal looks like:

(111, 1, 2))
/ |
{[{1,2],2]) ({i1,1],3])
[ b
({1, 3],2]) ([1,2],3)
& b

(i[1,31,3]) (([2,21,3])

li/

(12,31, 3])

The 1 arrow (denoting the fi operation) finds a 1 inside the crystal that we

can change to a 2 while keeping it semistandard and does so. Likewise for the

two.
This can be seen by use of the signature rule: for instance, recall from row

read that

(1, 21,3) = [3le[1]=[2]




By using the signature, rule, look at subscript 1. The last unpaired cloging
parenthesis is at 1; this represents the 1 we move (and it gets us to ([[2,2], 3])).
The first unpaired opening parenthesis is at 2 (and it gets us to ([[1,1],3]))
representing ey {which is the reverse move). Also, if we look at fo and ey all
parentheses {opening at 3 and closing at 2} are paired so they both go to the
special symbol @,

2 What is the plactic monoid?

If Cy and Cs are crystals of the same type, then if @1 and x5 are elements of these
crystals, then if the connected components containing them are isomorphic we
ghall consider 1 and 22 to be plactically equivalent. Denote this by 21 =p 2.
Since this connects through tensor products, the plactic monoid is the monoid
of equivalence classes, where the identity is the empty crystal and the operation
is tensoring (which is associative).

This allows us to rephrase one of our best known results, and that is that
each CC (connected component) of the k-th power tensor product of our crystal
B is isomorphic to some partition (and there is at least one isomorphic to every
partition}. If we go back over the results from chapter 3, we can now define a
monoid on B* (the k-dimensional tensor product) by using the equivalencies as
needed.

3 Knuth Equi\}alences

If we have an element of the tensor product as a product of K squares of the
form w1, ug, ..., g, consider Ilnuth equivalences, essentially saying that bxax ¢
can be switched if ¢ is larger than b and a is not between them (the last two
can be swapped if ¢ > b > a and the fivst two can be swapped if a > ¢ = b.

We can do this al any point in our sequence, and in either direction. For

example if we have
[4]s[8]e[2]e[1]s[5]

is equivalent, by the above,

[de[8]e[2]efs]e[1]

, and then, since 5 is (strictly) between 2 and 8, it is equivalent to
[4]e[2]e[8]s|5|s[1]

FYT: It turns out that standard tableawx of shape A are in 1-1 correspondence
with the associatively shaped subtableaus of B*. For instance, with 3 we got
the scenario that there was one of type (1,1,1), one of type (3), and two of
type (2,1) (as there are 2 standard ”L-shaped” tableaux). If we continually




insert numbers we can generate a ”cancnical” tableau. It so happens that z
is represented by that specific tableau, and the whole CC by @ (which is the
*recording tableau”, and is standard)

How meny such connected components are there? Well, we'll get to that
later.

Can we reverse this process and turn tensor product into tableau? We can
with Schensted insertion. let’s go back to our old tactic and consider the reading
word I x 2 x2x1x3x2.

We create the following sequence of additions. Start with the empty tableau
{shape §). Add the 1 {(shape (1)). Add the 2, which we can do without much
issue (shape {2)). Add the other 2, doing this without any difficulty (shape (3)).
Add the I, which bumps our first 2 into the second row (shape (3,1)). Add the
3 to the first row (4,1) and then add the 2 to the first row once again, and the
3 falls into the second row, loading to P = | 2|2 2] and a @ of 12 5]
This allows us to "multiply” two partitions of n into a partition of size 2n.

So let’s denote a "word” as a sequence of numbers. For instance, 2514

represents & & ® .




4 Yamanouchi words

A Yamanouchi word is one whaose final segments all contain weakly more is than
i+ 1s for all 4. For example,

773615455265444444443232323211111111232323231111111121

is a Yamanouchi word.

PROPOSITION:
Yamanouchi words correspond to highest weights elements.

Proof. Recall that an element is highest-weight if e;(x) = & for all 4, or alter-
natively that e;(z} = 0 for all i.

We will use the signature rule. This, converted) into actual math, gives us
the following equation:

k k
ei(m):I;Izaic(z eifun) — Y di(ur))

he=j hesg-1

This is a consequence of Lemma 2.33 from the textbook.

Should the maximum not be zero it is obtained when u; =14 -+ 1 (as this is
1 less than when u; = i; this can be expanded; in this case the maximum is 1
as the g5 sum to 1 but the ¢;s sum to 0). Then we can add ¢;(uiq1) (which is
0}, or rather ¢;(u;), to the second sum. This allows us to define the equation
as the number of is in final segment minus the number of ¢ 4 1s, so if this max
is indeed zero (i.e. il ¢ == 0) it requires that we have a Yamanouchi word. [

Not every element is in the Row Read embedding of B, but they're all in a
component isomorphic to the lambda crystal.

Tt so happens that there are 4 Connected Components of B3, as above. This
is, as similarly, there are 2 Yamanouchi words with (1,1, 2), namely 121 and 211
(since 112 isn’t a Yamanouchi word), corresponding to 2 highest weight elements
and thus 2 connected components for the (2,1) tableau shape. There are also
individual Yamanouchi words (111 and 321) corresponding to the other two
tablean shapes (The first is (3) and the second is (1,1,1); recall that columns
are strictly increasing).) Consider B111, Bay, B),, Bs as our four components.

Now we shall go over the proof that if z,y ¢ B®*, then if their words are
Knuth-equivalent then # =p y. Note that this is a one-sided proof.

5 The Big Proof

This can be restricted to the case but & = 3 but can be generalized for larger
powers. Here's how we do it:

Let’s consider when k == 3. Assume the premise.

By considering tableaux, a x b x cisin Bygy if a b < ¢, Bipnifa>b>c
(recall that columns are strictly increasing), By, if b is the smallest {perhaps tied




with ¢), Bj; otherwise. Consider the isomorphism between the two equishapic
crystals. I acknowledge that that isn't a word. Suppose a < b < ¢.

It so happens that = = (¢, a,b) and y = (o, c,b) are Knuth-Equivalent. But
are they isomorphic? Induct on b. Let & = a, so ¢ is the unique element with its
corresponding weight. We're checking isomorphism of (¢, a,a) and (g, c, a); they
have the same weight (2wt(a)+wi(c)) and they appear in connected components
of the same type so such an isomorphism exists.

Status: a <b<ec

Assumption: 8(z;) = y; where z; = ®@® and y; =~ axexbhb—1.
So assuine it works for case minus one. Nexi, we will apply f,_; to this.

What happens? It can be checked with the signature rule that f,_; applied
to x¢ i8 indeed .

To be fair, it makes a fair amount of sense. (Recall that ¢p_1 is, of course,
since our crystal is seminormal, the number of f;_1s required to reach the special
symbol, end so, since e, {c) is the special symbol we can carry through f,—1(z1)
as ¢ X fp—1(e,b—1) = 2. Rigorously it is because ¢p_1(a ® (b—1)) > e5_1(c) as
the latter is zero.

A similar argument shows that fo_1(y1) =0 x ¢ X fy.1{b— 1) = y (noting
that es_1{a Vc) is zero, and ¢p..1(b— 1) > 0)

So recalling that € is the isomorphism map between the two connected com-

ponents,
0(x) = 0(fo—1(21)) = for8{z1) = fo—rth =¥

For the other half of the proof (provingifae<b<c—bxaxc=bxcxa)
the proof is quite simiar and will be omitted.

6 Extension

To extend to words of length > 3, we can write ¢ = ¥ Q@ 23 ® v and y =
U@y ®v. % and y; are length 3 and Knuth equivalent and thus plactically
equivalent — isomorphism of subcrystals € and D of B? contianing them, leads
to isomorphism of B! x C' ¥ B™ to B! x D x B™. Tt must take z to y for obvious
reasons (as they are by construction identical except for these three numbers),

go the theorem has been proven

7 A few further notes

Here are few further notes.

Here’s a question 1 came to wonder: the number of strings of length n, in
the alphabet from 1 — &, up to Knuth equivalency, is what?

Tet’s find a pattern.

sk(1, k) = k. This should be obvious.

sk(n, 1) = 1. This should also be obvious, as it has to be 1,1,1,1, ....



sk(2, k) = k2. This should still be obvious, as Knuth transformation requires
at least 3 elements.

sk(3,2) = 6. This can be checked because 121 = 211 and 212 = 221,

Claim: .

sk(3, k) = S2EAD

Proof:

‘We have three cases.
If we have three distinct numbers, a,b, ¢, and a < b < ¢, Knuth equivalence

tells us that bac = bea and ach = eab, so there are 4 equivalence classes for each
trio of distinet numbers, leading to w gtrings.

If we have two distinct and one other, a, a,b, then if a > b, aba and aab are
equivalent, while if b > a, eba and bac are equivalent. Either way there are 2
equivalence classes for each ordered pairs, for a total of 2k(k — 1) equivalence
classes.

Finally, if all three numbers are the same {a, a,a) there is clearly one string,
so there are k equivalence classes, so the total number of equivalence classes is:

2k — 1)(k — 2) + 6k{k — 1) + 3% 2% - 6k? 4k + 6k — 6k + 3k k(2k% 4 1)
3 - 3 - 3

Unfortunately, for strings of length 4 or longer it becomes much more com-
plicated as we can often do multiple Knuth-switches. However, we can bound
the number of equivalence classes by determining the number of connected com-
ponents of B®* corresponding to our tableau shape. :

This is directly related to the number of gemistandard (minimal) tableaux

for a given partition.

8 Hooks

This is given by something called the hook-length formula. This formula tells us
how many standard tableaux exist of a given shape, and states that the number
of such tablean with n squares is %, where H is the product of the hook-lengths
(the hook length of a square is the length of the sequence of squares that goes
up from the bottom, turns right at this square, and goes until the right end of
the tableau) of all n squares.

For instance, if we lock at the tableau of shape (5, 8, 3, 2) then the total hook
lengths follow the following pattern:

gl7in[2j1]
5(4]2
4131
2[1

The product of these numbers is 537600, so there are 13!/537600 =[ 11,583

standard tableawrx of this shape
This means that for this partition of the number 13, B'® (assuming B is large
enough) will have & staggering 11,583 connected components corresponding to




this tableau shape. Perhaps this is why we didn’t make an example of thirteenth
powers of tableaux.

However, it can be used to generate hounds on things, such as the munber
of strings that are Knuth equivalent to a given 13-string. If we assume that the
above tablean shape has the greatest number of SYTs of any shape of size 13 (I
do not actually know if this is true), there are at most 11583 tableaux plactically
equivalent / Knuth equivalent to any word, which implies that sk(13,n) > i%
(for instance, sk(13,3) has to be at least 1694825 -~ 138). 1 would like to see if
this bound can be improved, but as of now that remains a fiture investigation.




