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1. HOPF ALGEBRA STRUCTURE OF U,

Throughout these notes, assume k = C and that ¢ is not a root of unity.
Recall U, is the algebra generated by symbols E, F, K, K~! subject to the constraints

KE = ¢*EK KKl =K1K =1
KF =q?FK [E,F] =K

q—q~1

where [E, F| = EF — FE denotes the commutator.
Theorem 1. U, has a Hopf algebra structure with
A: E-»1QF+FERK e: E;F—0 S: E— —EK™!

F->KlQF+F®1 KK 1—1 F— —-KF
K- KK K— K1
Kl KlgK! K1 K.

Proof. Claim 1: A and ¢ are algebra morphisms.
Proof of claim 1: We check that A and ¢ preserve the defining relations for U,. For instance,

AK)A(E) = (K®K)(1®E+EQ®K)
= K®KE+KEQ®K?
K®¢EK + ¢*FK @ K*
= ¢(K®FK + EK ® K?)
= FI®E+EQK)K®K)
= ¢FA(BE)A(K).
The other relations are similarly preserved by A, and similarly for €.
Claim 2: A is coassociative and € satisfies the counit axiom. Thus Uy is a bialgebra.
Proof of claim 2: now that we know A and e are algebra morphisms, it suffices to show that these

properties hold for the generators of U,. For example, to show that A is coassociative when applied to F,
we have

(A®id) o A(F) = (ARIA)(1I®F+E®K)
= A1)FE+AE)Y®K
IRIRF+(1RE+ERK)®K
= IRIQF+1QERK+ERKQRQK
((d®A)oA(E) = (dR®A)(I®F+E®K)
= 1QA(F)+ERQA(K)
= I1(IQE+ERK)+EQKR®K
= IQIXF+1QERK+ER®RKRK.
A similar computation suffices for the rest of the generators, proving coassociativity. Similarly we can prove
the counit axiom.

Claim 3: S : Uy — UgP is an algebra morphism.
Proof of claim 3: We show that S preserves the defining relations for U,. For example,

S(KE)

S(E)S(K)
= (-EK7)(K™)
= —-K 'KEK™?
= —¢*K'EKK™?
= —¢*K'FEK!
— @S(K)S(E)
= S(¢°EK).

A similar computation suffices for the remaining relations.

Claim 4: S is an antipode.
Proof of claim 4: by claim 3, it suffices to show

Zx’S(az”) =e(z)l = 2 S(x")z"
(z) (z)
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for all = in a generating set for U,, namely for z = E, F, K, K~1. Here is the computation for z = E:

Y E'S(E") = 1S(E)+ ES(K)
(B)
= —-EK'+FEK™!
= 0=¢(E)l.
M S(EE" = S()E+S(E)K
(E)

= E+(-EK'K)
= 0=¢(E)l
O

Notice that Uy is neither commutative nor cocommutative. Additionally, S? # id. For instance, S?(E) =
S(-EK™1') = —S(K)S(E) = ~K(-EK™!) = KEK™! = ¢*E. However, we do have that S?(u) =
KuK~! for all u € Uy, and so in that sense S? is an inner automorphism of U,.

Our next goal is to show that all finite dimensional U, modules are semisimple, i.e. a direct sum of simple
modules. We recall that every simple U,-module is isomorphic to exactly one module V; ,,, with € € {1, —1}
and n € N, which has the following properties:

e V., has dimension n + 1.
e V., is generated as a U;-module by some v € V; ,, with Kv = eq"v. We call eq" the weight of V.
e 3 C, in the center of U, that acts on V , as multiplication by

q7z+1 +q—(n+1)
ei T4
(g—q1)?
Lemma 1. Fiz ¢ € {£1}. There exists C. in the center of Uy which acts on V.o as 0 and on Vo, as
multiplication by a nonzero scalar for any &' € {1} and n > 0.

Proof. Let

g+q !

(¢—q 1)
Then C; is in the center of U, and acts on V.o as 0. For ¢’ € {#1} and n > 0, C. acts on on Vs, as
multiplication by

C.=C;—c¢

/qn+1 4 q—(n+1) . q+ q—l
(¢—q1)? (¢—q 1)
so it suffices to show that ¢’(¢"*' 4+ ¢~ ("*1)) — (g + ¢~ ) is nonzero. Multiplying this expression by &’¢"*1,
we get ¢°"? + 1 —ee(¢"? — ¢") = (¢"** — e€’)(¢" — e€’), which is nonzero because ¢ is not a root of
unity. O

We now prove the main theorem.
Theorem 2. Any finite-dimensional Ug-module is a direct sum of simple modules.

Proof. Let V be a finite dimensional module and V' € V' a submodule. Then it suffices to show that there
is a submodule V” € V such that V = V' @ V"”. We proceed in two steps.

Step 1: Suppose that V' has codimension 1 in V. We will use induction on dim V’. If dim V'’ = 0, we can
just take V" = V.

To complete the base case, suppose dim V' = 1. Then V' and V/V’ are both modules of dimension 1,
hence simple. So we have V'’ ~V,, g and V/V’ ~ V,, (, for some €1,¢2 € {£1}. We have two cases:

e Case 1: g1 # 9. Then the action of K on V has two distinct eigenvalues £; and €5, and so is
diagonalizable. So V has a basis {v1,v2} with Kv; = g;v;, and V' = kv;. Note that K(Ev;) =
P*EKv; = ¢%¢;(Ev;), so Ev; is an eigenvector for the action of K with eigenvalue ¢?ev; ¢ {e1,e2}.
Thus Ev; = 0. Similarly Fv; = 0. Thus kvs is a submodule of V', and so, letting V" = kv, we have
V=VaeV"

e Case 2: €1 = e3 = &. Then there exists a basis {vy,vs} for V| with V' = kv, such that Kv; = evy
and Kvg € evg + V'. So we can write Kvy = evg + av; for some a € k. Again, K(Evi) = ¢*c(Ev),
so Fvy = 0. We will show that it is also the case that Fvy, = 0. To see this, write Evy = Avy + pvs.
Then on the one hand,

KEvy = K(Mvy + pg) = Aevy + pevg + pauy,
and on the other hand
KEvy = ?EKvy = ¢*E(evy + avy) = ¢*e\vy + ¢Pepvs.

Comparing coefficients, we see ue = ¢’cpp = pe(¢® —1) =0 = p =0, and \e + pa = e\ =
Ae(q¢? —1) =0 = X = 0. Therefore, Evy = 0. A similar computation shows that Fv; = Fuvy = 0.
Thus [E, F] acts as 0 on V. But [E,F] = (K — K~')/(¢—¢7'), and so K and K~! have the same
action on V. Thus

vy = KK vy = K%y = K(evy + awy) = e(evy + avy) + a(evy) = va + 20ev;.
Therefore 2ae = 0, and so a = 0. Thus we have that the action of K is diagonalizable, and complete
the proof as in case 1.

We now move on to the inductive step. Assume that dim(V’) = p > 1, and that the assertion is true for
all smaller dimensions. We again have two cases:
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e Case 1: Suppose that V' is not simple. Then there exists a submodule V; € V/ with 0 < dim V; <
dimV’. Let 7 : V +— V := V/V; be the canonical map. Then V' := 7(V’) is a submodule of V of
codimension 1, and dim V’ < p. By induction, there is a submodule V” < V such that V = V'@ V".
Lifting this to V, we have V = V' +7~1(V”), although the sum is no longer direct. Since dim V" = 1,
we have that V; < 7=1(V”) is a submodule of codimension 1. By induction again, there exists a
submodule V" < 771(V”) such that 7=}(V”) = V1@ V”. Thus V = V' +V; + V" and since V; < V',
we have V =V’ + V", Since dimV = dim V' + dim V", we have V = V' @ V".

e Case 2: Suppose that V' is simple. We know V/V’ has dimension 1, hence V/V' ~ V, for some
¢ € {£1}. Take the element C, € U, from the lemma. Then C. acts on V/V' as 0, so C.V < V.
Since dim V' > 1 and V' is simple, C. acts as multiplication by some « # 0 on V'. So C./a acts as
the identity on V’. Thus C./a : V — V' is a projection and is Ug-linear since C./c is in the center
of Uy. Thus V =V’ @ker(C./a) is a direct sum of submodules.

Step 2: We now consider the general case, where V' € V is a subdimension of any codimension. Recall
that, since U, is a Hopf algebra, we can give Hom(V,V’) the structure of a U,-module as follows: given
z €U, and f € Hom(V, V'), we get zf € Hom(V, V') with

(2f)(v) = Y @' f(S(")v).
(2)

Let W = {¢p €e Hom(V, V') | Fa € k s.t. (v) = av Yv e V'} and W’ = {¢ € Hom(V, V") | |y = 0}. Then
W' < W is a subspace of codimension 1. We show that W is a submodule of Hom(V,V”). For any z € U,
and f € W, we wish to show zf € W. We have some « € k such that f(v) = awv for all v € V’. Then, for all
veV’,

(zf)(v) = Zx'f(S(x”)v) = Zx'(aS(x”)v) =« Zx’S(a:”) v = ae(x)v,
() () (=)
and so xf € W. Thus W < Hom(V,V’) is a submodule. Replacing o by 0 in the above argument, we also
have that W’ < W is a submodule.

Now, having proved the codimension 1 case, we know that there exists a dimension 1 submodule W’ < W
such that W = W/ @ W”. Let f be a generator for W”. Then f is an element of W but not W', so
there is some a # 0 such that f(v) = av for all v € V'. Thus f/a : V — V' is a projection. Letting
V" = ker(f/a) = ker(f), we have V. = V' @ V" as vector spaces. Thus it suffices to show that V" is a
submodule of V.

Since W” is a dimension 1 U, module, W’ ~ Vyj 9, and so Ef = Ff =0and Kf = K~'f = +f. Fix
v € V”. Then we have

(1) = K(K0) = K (SOK0) = KJ(KTKv) = Kf(0) = 0.
and thus Kv e V”. Similarly K ‘v € V”. In addition, we have
0=Ef(Kv) = f(S(E)Kv)+ Ef(S(K)Kv)
= f((-EK ")Kv) + Ef(K 'Kv)
= —f(Ev)+Ef(v)
= _f(EU)a
and thus Ev € V”. Similarly, Fv € V”. Therefore V" is a submodule of V', completing the proof. O



