NOTES: HOPF ALGEBRA STRUCTURE OF ${\cal U}_q$ AND SEMISIMPLICITY OF U_q -MODULES

JASON STEINBERG

1. HOPF ALGEBRA STRUCTURE OF U_q

Throughout these notes, assume $k = \mathbb{C}$ and that q is not a root of unity. Recall U_q is the algebra generated by symbols E, F, K, K^{-1} subject to the constraints

> $KE = q^2 EK$ $KK^{-1} = K^{-1}K = 1$ $KF = q^{-2}FK$ $[E, F] = \frac{K - K^{-1}}{q - q^{-1}},$

where $[E, F] = EF - FE$ denotes the commutator.

Theorem 1. U_q has a Hopf algebra structure with

$$
\Delta: E \mapsto 1 \otimes E + E \otimes K \qquad \varepsilon: E, F \mapsto 0 \qquad S: E \mapsto -EK^{-1}
$$

\n
$$
F \mapsto K^{-1} \otimes F + F \otimes 1 \qquad K, K^{-1} \mapsto 1 \qquad F \mapsto -KF
$$

\n
$$
K \mapsto K \otimes K \qquad K \mapsto K^{-1}
$$

\n
$$
K^{-1} \mapsto K^{-1} \otimes K^{-1} \qquad K^{-1} \mapsto K.
$$

Proof. Claim 1: Δ and ε are algebra morphisms.

Proof of claim 1: We check that Δ and ε preserve the defining relations for U_q . For instance,

$$
\Delta(K)\Delta(E) = (K \otimes K)(1 \otimes E + E \otimes K)
$$

= $K \otimes KE + KE \otimes K^2$
= $K \otimes q^2 EK + q^2 EK \otimes K^2$
= $q^2(K \otimes EK + EK \otimes K^2)$
= $q^2(1 \otimes E + E \otimes K)(K \otimes K)$
= $q^2 \Delta(E)\Delta(K)$.

The other relations are similarly preserved by $\Delta,$ and similarly for $\varepsilon.$

Claim 2: Δ is coassociative and ε satisfies the counit axiom. Thus U_q is a bialgebra.

Proof of claim 2: now that we know Δ and ε are algebra morphisms, it suffices to show that these properties hold for the generators of U_q . For example, to show that Δ is coassociative when applied to E, we have

$$
(\Delta \otimes id) \circ \Delta(E) = (\Delta \otimes id)(1 \otimes E + E \otimes K)
$$

\n
$$
= \Delta(1) \otimes E + \Delta(E) \otimes K
$$

\n
$$
= 1 \otimes 1 \otimes E + (1 \otimes E + E \otimes K) \otimes K
$$

\n
$$
= 1 \otimes 1 \otimes E + 1 \otimes E \otimes K + E \otimes K \otimes K
$$

\n
$$
(id \otimes \Delta) \circ \Delta(E) = (id \otimes \Delta)(1 \otimes E + E \otimes K)
$$

\n
$$
= 1 \otimes \Delta(E) + E \otimes \Delta(K)
$$

\n
$$
= 1 \otimes (1 \otimes E + E \otimes K) + E \otimes K \otimes K
$$

\n
$$
= 1 \otimes 1 \otimes E + 1 \otimes E \otimes K + E \otimes K \otimes K.
$$

A similar computation suffices for the rest of the generators, proving coassociativity. Similarly we can prove the counit axiom.

Claim 3: $S: U_q \to U_q^{\text{op}}$ is an algebra morphism.

Proof of claim 3: We show that S preserves the defining relations for U_q . For example,

$$
S(KE) = S(E)S(K)
$$

= (-EK⁻¹)(K⁻¹)
= -K⁻¹KEK⁻²
= -q²K⁻¹EKK⁻²
= -q²K⁻¹EK⁻¹
= q²S(K)S(E)
= S(q²EK).

A similar computation suffices for the remaining relations.

Claim 4: S is an antipode.

Proof of claim 4: by claim 3, it suffices to show

$$
\sum_{(x)} x'S(x'') = \varepsilon(x)1 = \sum_{(x)} S(x')x''
$$

for all x in a generating set for U_q , namely for $x = E, F, K, K^{-1}$. Here is the computation for $x = E$:

$$
\sum_{(E)} E'S(E'') = 1S(E) + ES(K)
$$

\n
$$
= -EK^{-1} + EK^{-1}
$$

\n
$$
= 0 = \varepsilon(E)1.
$$

\n
$$
\sum_{(E)} S(E')E'' = S(1)E + S(E)K
$$

\n
$$
= E + (-EK^{-1}K)
$$

\n
$$
= 0 = \varepsilon(E)1.
$$

Notice that U_q is neither commutative nor cocommutative. Additionally, $S^2 \neq id$. For instance, $S^2(E)$ $S(-EK^{-1}) = -S(K^{-1})S(E) = -K(-EK^{-1}) = KEK^{-1} = q^2E$. However, we do have that $S^2(u) =$ $K u K^{-1}$ for all $u \in U_q$, and so in that sense S^2 is an inner automorphism of U_q .

Our next goal is to show that all finite dimensional U_q modules are semisimple, i.e. a direct sum of simple modules. We recall that every simple U_q -module is isomorphic to exactly one module $V_{\varepsilon,n}$, with $\varepsilon \in \{1, -1\}$ and $n \in \mathbb{N}$, which has the following properties:

- \bullet $V_{\varepsilon,n}$ has dimension $n + 1$.
- $V_{\varepsilon,n}$ is generated as a U_q -module by some $v \in V_{\varepsilon,n}$ with $Kv = \varepsilon q^n v$. We call εq^n the weight of $V_{\varepsilon,n}$. $\bullet \exists C_q$ in the center of U_q that acts on $V_{\varepsilon,n}$ as multiplication by

$$
\varepsilon \frac{q^{n+1} + q^{-(n+1)}}{(q - q^{-1})^2}.
$$

Lemma 1. Fix $\varepsilon \in \{\pm 1\}$. There exists C_{ε} in the center of U_q which acts on $V_{\varepsilon,0}$ as 0 and on $V_{\varepsilon',n}$ as multiplication by a nonzero scalar for any $\varepsilon' \in \{\pm 1\}$ and $n > 0$.

Proof. Let

$$
C_{\varepsilon} = C_q - \varepsilon \frac{q + q^{-1}}{(q - q^{-1})^2}.
$$

Then C_{ε} is in the center of U_q and acts on $V_{\varepsilon,0}$ as 0. For $\varepsilon' \in \{\pm 1\}$ and $n > 0$, C_{ε} acts on on $V_{\varepsilon',n}$ as multiplication by

$$
\varepsilon' \frac{q^{n+1} + q^{-(n+1)}}{(q-q^{-1})^2} - \varepsilon \frac{q+q^{-1}}{(q-q^{-1})^2},
$$

so it suffices to show that $\varepsilon'(q^{n+1} + q^{-(n+1)}) - \varepsilon(q+q^{-1})$ is nonzero. Multiplying this expression by $\varepsilon'q^{n+1}$, we get $q^{2n+2} + 1 - \varepsilon \varepsilon'(q^{n+2} - q^n) = (q^{n+2} - \varepsilon \varepsilon')(q^n - \varepsilon \varepsilon')$, which is nonzero because q is not a root of unity. \Box

We now prove the main theorem.

Theorem 2. Any finite-dimensional U_q -module is a direct sum of simple modules.

Proof. Let V be a finite dimensional module and $V' \subseteq V$ a submodule. Then it suffices to show that there is a submodule $V'' \subseteq V$ such that $V = V' \oplus V''$. We proceed in two steps.

Step 1: Suppose that V' has codimension 1 in V. We will use induction on dim V'. If dim $V' = 0$, we can just take $V'' = V$.

To complete the base case, suppose dim $V' = 1$. Then V' and V/V' are both modules of dimension 1, hence simple. So we have $V' \simeq V_{\varepsilon_1,0}$ and $V/V' \simeq V_{\varepsilon_2,0}$ for some $\varepsilon_1, \varepsilon_2 \in {\pm 1}$. We have two cases:

- Case 1: $\varepsilon_1 \neq \varepsilon_2$. Then the action of K on V has two distinct eigenvalues ε_1 and ε_2 , and so is diagonalizable. So V has a basis $\{v_1, v_2\}$ with $Kv_i = \varepsilon_i v_i$, and $V' = kv_1$. Note that $K(Ev_i)$ $q^2 E K v_i = q^2 \varepsilon_i (E v_i)$, so $E v_i$ is an eigenvector for the action of K with eigenvalue $q^2 \varepsilon v_i \notin {\varepsilon}_1, {\varepsilon}_2$. Thus $Ev_i = 0$. Similarly $Fv_i = 0$. Thus kv_2 is a submodule of V, and so, letting $V'' = kv_2$, we have $V = V' \oplus V''.$
- Case 2: $\varepsilon_1 = \varepsilon_2 = \varepsilon$. Then there exists a basis $\{v_1, v_2\}$ for V, with $V' = kv_1$, such that $Kv_1 = \varepsilon v_1$ and $Kv_2 \in \varepsilon v_2 + V'$. So we can write $Kv_2 = \varepsilon v_2 + \alpha v_1$ for some $\alpha \in k$. Again, $K(Ev_1) = q^2 \varepsilon(Ev_1)$, so $Ev_1 = 0$. We will show that it is also the case that $Ev_2 = 0$. To see this, write $Ev_2 = \lambda v_1 + \mu v_2$. Then on the one hand,

$$
KEv_2 = K(\lambda v_1 + \mu v_2) = \lambda \varepsilon v_1 + \mu \varepsilon v_2 + \mu \alpha v_1,
$$

and on the other hand

$$
KEv_2 = q^2 E K v_2 = q^2 E (\varepsilon v_2 + \alpha v_1) = q^2 \varepsilon \lambda v_1 + q^2 \varepsilon \mu v_2.
$$

Comparing coefficients, we see $\mu \varepsilon = q^2 \varepsilon \mu \implies \mu \varepsilon (q^2 - 1) = 0 \implies \mu = 0$, and $\lambda \varepsilon + \mu \alpha = q^2 \varepsilon \lambda \implies$ $\lambda \varepsilon (q^2 - 1) = 0 \implies \lambda = 0.$ Therefore, $Ev_2 = 0.$ A similar computation shows that $F v_1 = F v_2 = 0.$ Thus $[E, F]$ acts as 0 on V. But $[E, F] = (K - K^{-1})/(q - q^{-1})$, and so K and K^{-1} have the same action on V . Thus

$$
v_2 = KK^{-1}v_2 = K^2v_2 = K(\varepsilon v_2 + \alpha v_1) = \varepsilon(\varepsilon v_2 + \alpha v_1) + \alpha(\varepsilon v_1) = v_2 + 2\alpha\varepsilon v_1.
$$

Therefore $2\alpha \epsilon = 0$, and so $\alpha = 0$. Thus we have that the action of K is diagonalizable, and complete the proof as in case 1.

We now move on to the inductive step. Assume that $\dim(V') = p > 1$, and that the assertion is true for all smaller dimensions. We again have two cases:

- Case 1: Suppose that V' is not simple. Then there exists a submodule $V_1 \subseteq V'$ with $0 < \dim V_1 <$ dim V'. Let $\pi: V \mapsto \overline{V} := V/V_1$ be the canonical map. Then $\overline{V'} := \pi(V')$ is a submodule of \overline{V} of codimension 1, and dim $\overline{V'}$ < p. By induction, there is a submodule $\overline{V''} \subseteq \overline{V}$ such that $\overline{V} = \overline{V'} \oplus \overline{V''}$. Lifting this to V, we have $V = V' + \pi^{-1}(\overline{V''})$, although the sum is no longer direct. Since dim $\overline{V''} = 1$, we have that $V_1 \subseteq \pi^{-1}(\overline{V''})$ is a submodule of codimension 1. By induction again, there exists a submodule $V'' \subseteq \pi^{-1}(\overline{V''})$ such that $\pi^{-1}(\overline{V''}) = V_1 \oplus V''$. Thus $V = V' + V_1 + V''$, and since $V_1 \subseteq V'$, we have $V = V' + V''$. Since dim $V = \dim V' + \dim V''$, we have $V = V' \oplus V''$.
- Case 2: Suppose that V' is simple. We know V/V' has dimension 1, hence $V/V' \simeq V_{\varepsilon,0}$ for some $\varepsilon \in {\pm 1}$. Take the element $C_{\varepsilon} \in U_q$ from the lemma. Then C_{ε} acts on V/V' as 0, so $C_{\varepsilon} V \subseteq V'$. Since dim $V' > 1$ and V' is simple, C_{ε} acts as multiplication by some $\alpha \neq 0$ on V'. So C_{ε}/α acts as the identity on V'. Thus $C_{\varepsilon}/\alpha : V \to V'$ is a projection and is U_q -linear since C_{ε}/α is in the center of U_q . Thus $V = V' \oplus \ker(C_{\varepsilon}/\alpha)$ is a direct sum of submodules.

Step 2: We now consider the general case, where $V' \subseteq V$ is a subdimension of any codimension. Recall that, since U_q is a Hopf algebra, we can give $\text{Hom}(V, V')$ the structure of a U_q -module as follows: given $x \in U_q$ and $f \in \text{Hom}(V, V')$, we get $xf \in \text{Hom}(V, V')$ with
 $(xf)(v) = \sum_i x'f$

$$
(xf)(v) = \sum_{(x)} x' f(S(x'')v).
$$

Let $W = \{ \phi \in \text{Hom}(V, V') \mid \exists \alpha \in k \text{ s.t. } \phi(v) = \alpha v \ \forall v \in V' \} \text{ and } W' = \{ \phi \in \text{Hom}(V, V') \mid \phi|_{V'} = 0 \}.$ Then $W' \subseteq W$ is a subspace of codimension 1. We show that W is a submodule of Hom (V, V') . For any $x \in U_q$ and $f \in W$, we wish to show $xf \in W$. We have some $\alpha \in k$ such that $f(v) = \alpha v$ for all $v \in V'$. Then, for all $v \in V',$

$$
(xf)(v) = \sum_{(x)} x' f(S(x'')v) = \sum_{(x)} x'(\alpha S(x'')v) = \alpha \left(\sum_{(x)} x'S(x'')\right)v = \alpha \varepsilon(x)v,
$$

and so $xf \in W$. Thus $W \subseteq Hom(V, V')$ is a submodule. Replacing α by 0 in the above argument, we also have that $W' \subseteq W$ is a submodule.

Now, having proved the codimension 1 case, we know that there exists a dimension 1 submodule $W'' \subseteq W$ such that $W = W' \oplus W''$. Let f be a generator for W''. Then f is an element of W but not W', so there is some $\alpha \neq 0$ such that $f(v) = \alpha v$ for all $v \in V'$. Thus $f/\alpha : V \to V'$ is a projection. Letting $V'' = \text{ker}(f/\alpha) = \text{ker}(f)$, we have $V = V' \oplus V''$ as vector spaces. Thus it suffices to show that V'' is a submodule of V .

Since W'' is a dimension 1 U_q module, $W'' \simeq V_{\pm 1,0}$, and so $Ef = Ff = 0$ and $Kf = K^{-1}f = \pm f$. Fix $v \in V''$. Then we have

$$
\pm f(Kv) = Kf(Kv) = Kf(S(K)Kv) = Kf(K^{-1}Kv) = Kf(v) = 0,
$$

and thus $Kv \in V''$. Similarly $K^{-1}v \in V''$. In addition, we have

$$
0 = Ef(Kv) = f(S(E)Kv) + Ef(S(K)Kv)
$$

=
$$
f((-EK^{-1})Kv) + Ef(K^{-1}Kv)
$$

=
$$
-f(Ev) + Ef(v)
$$

=
$$
-f(Ev),
$$

and thus $Ev \in V''$. Similarly, $Fv \in V''$. Therefore V'' is a submodule of V, completing the proof.