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1. Hopf algebra structure of Uq

Throughout these notes, assume k “ C and that q is not a root of unity.
Recall Uq is the algebra generated by symbols E,F,K,K´1 subject to the constraints

KE “ q2EK KK´1 “ K´1K “ 1

KF “ q´2FK rE,F s “ K´K´1

q´q´1 ,

where rE,F s “ EF ´ FE denotes the commutator.

Theorem 1. Uq has a Hopf algebra structure with

∆ : E ÞÑ 1b E ` E bK ε : E,F ÞÑ 0 S : E ÞÑ ´EK´1

F ÞÑ K´1 b F ` F b 1 K,K´1 ÞÑ 1 F ÞÑ ´KF
K ÞÑ K bK K ÞÑ K´1

K´1 ÞÑ K´1 bK´1 K´1 ÞÑ K.

Proof. Claim 1: ∆ and ε are algebra morphisms.
Proof of claim 1: We check that ∆ and ε preserve the defining relations for Uq. For instance,

∆pKq∆pEq “ pK bKqp1b E ` E bKq

“ K bKE `KE bK2

“ K b q2EK ` q2EK bK2

“ q2pK b EK ` EK bK2q

“ q2p1b E ` E bKqpK bKq

“ q2∆pEq∆pKq.

The other relations are similarly preserved by ∆, and similarly for ε.
Claim 2: ∆ is coassociative and ε satisfies the counit axiom. Thus Uq is a bialgebra.
Proof of claim 2: now that we know ∆ and ε are algebra morphisms, it suffices to show that these

properties hold for the generators of Uq. For example, to show that ∆ is coassociative when applied to E,
we have

p∆b idq ˝∆pEq “ p∆b idqp1b E ` E bKq

“ ∆p1q b E `∆pEq bK

“ 1b 1b E ` p1b E ` E bKq bK

“ 1b 1b E ` 1b E bK ` E bK bK

pidb∆q ˝∆pEq “ pidb∆qp1b E ` E bKq

“ 1b∆pEq ` E b∆pKq

“ 1b p1b E ` E bKq ` E bK bK

“ 1b 1b E ` 1b E bK ` E bK bK.

A similar computation suffices for the rest of the generators, proving coassociativity. Similarly we can prove
the counit axiom.

Claim 3: S : Uq Ñ Uop
q is an algebra morphism.

Proof of claim 3: We show that S preserves the defining relations for Uq. For example,

SpKEq “ SpEqSpKq

“ p´EK´1qpK´1q

“ ´K´1KEK´2

“ ´q2K´1EKK´2

“ ´q2K´1EK´1

“ q2SpKqSpEq

“ Spq2EKq.

A similar computation suffices for the remaining relations.
Claim 4: S is an antipode.
Proof of claim 4: by claim 3, it suffices to show

ÿ

pxq

x1Spx2q “ εpxq1 “
ÿ

pxq

Spx1qx2
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for all x in a generating set for Uq, namely for x “ E,F,K,K´1. Here is the computation for x “ E:
ÿ

pEq

E1SpE2q “ 1SpEq ` ESpKq

“ ´EK´1 ` EK´1

“ 0 “ εpEq1.
ÿ

pEq

SpE1qE2 “ Sp1qE ` SpEqK

“ E ` p´EK´1Kq

“ 0 “ εpEq1.

�

Notice that Uq is neither commutative nor cocommutative. Additionally, S2 ‰ id. For instance, S2pEq “
Sp´EK´1q “ ´SpK´1qSpEq “ ´Kp´EK´1q “ KEK´1 “ q2E. However, we do have that S2puq “
KuK´1 for all u P Uq, and so in that sense S2 is an inner automorphism of Uq.

Our next goal is to show that all finite dimensional Uq modules are semisimple, i.e. a direct sum of simple
modules. We recall that every simple Uq-module is isomorphic to exactly one module Vε,n, with ε P t1,´1u
and n P N, which has the following properties:

‚ Vε,n has dimension n` 1.
‚ Vε,n is generated as a Uq-module by some v P Vε,n with Kv “ εqnv. We call εqn the weight of Vε,n.
‚ D Cq in the center of Uq that acts on Vε,n as multiplication by

ε
qn`1 ` q´pn`1q

pq ´ q´1q2
.

Lemma 1. Fix ε P t˘1u. There exists Cε in the center of Uq which acts on Vε,0 as 0 and on Vε1,n as
multiplication by a nonzero scalar for any ε1 P t˘1u and n ą 0.

Proof. Let

Cε “ Cq ´ ε
q ` q´1

pq ´ q´1q2
.

Then Cε is in the center of Uq and acts on Vε,0 as 0. For ε1 P t˘1u and n ą 0, Cε acts on on Vε1,n as
multiplication by

ε1
qn`1 ` q´pn`1q

pq ´ q´1q2
´ ε

q ` q´1

pq ´ q´1q2
,

so it suffices to show that ε1pqn`1 ` q´pn`1qq ´ εpq` q´1q is nonzero. Multiplying this expression by ε1qn`1,
we get q2n`2 ` 1 ´ εε1pqn`2 ´ qnq “ pqn`2 ´ εε1qpqn ´ εε1q, which is nonzero because q is not a root of
unity. �

We now prove the main theorem.

Theorem 2. Any finite-dimensional Uq-module is a direct sum of simple modules.

Proof. Let V be a finite dimensional module and V 1 Ď V a submodule. Then it suffices to show that there
is a submodule V 2 Ď V such that V “ V 1 ‘ V 2. We proceed in two steps.

Step 1: Suppose that V 1 has codimension 1 in V . We will use induction on dimV 1. If dimV 1 “ 0, we can

just take V 2 “ V .
To complete the base case, suppose dimV 1 “ 1. Then V 1 and V {V 1 are both modules of dimension 1,

hence simple. So we have V 1 » Vε1,0 and V {V 1 » Vε2,0 for some ε1, ε2 P t˘1u. We have two cases:

‚ Case 1: ε1 ‰ ε2. Then the action of K on V has two distinct eigenvalues ε1 and ε2, and so is
diagonalizable. So V has a basis tv1, v2u with Kvi “ εivi, and V 1 “ kv1. Note that KpEviq “
q2EKvi “ q2εipEviq, so Evi is an eigenvector for the action of K with eigenvalue q2εvi R tε1, ε2u.
Thus Evi “ 0. Similarly Fvi “ 0. Thus kv2 is a submodule of V , and so, letting V 2 “ kv2, we have
V “ V 1 ‘ V 2.

‚ Case 2: ε1 “ ε2 “ ε. Then there exists a basis tv1, v2u for V , with V 1 “ kv1, such that Kv1 “ εv1
and Kv2 P εv2 ` V

1. So we can write Kv2 “ εv2 ` αv1 for some α P k. Again, KpEv1q “ q2εpEv1q,
so Ev1 “ 0. We will show that it is also the case that Ev2 “ 0. To see this, write Ev2 “ λv1 ` µv2.
Then on the one hand,

KEv2 “ Kpλv1 ` µv2q “ λεv1 ` µεv2 ` µαv1,

and on the other hand

KEv2 “ q2EKv2 “ q2Epεv2 ` αv1q “ q2ελv1 ` q
2εµv2.

Comparing coefficients, we see µε “ q2εµ ùñ µεpq2´ 1q “ 0 ùñ µ “ 0, and λε` µα “ q2ελ ùñ

λεpq2 ´ 1q “ 0 ùñ λ “ 0. Therefore, Ev2 “ 0. A similar computation shows that Fv1 “ Fv2 “ 0.
Thus rE,F s acts as 0 on V . But rE,F s “ pK ´K´1q{pq ´ q´1q, and so K and K´1 have the same
action on V . Thus

v2 “ KK´1v2 “ K2v2 “ Kpεv2 ` αv1q “ εpεv2 ` αv1q ` αpεv1q “ v2 ` 2αεv1.

Therefore 2αε “ 0, and so α “ 0. Thus we have that the action of K is diagonalizable, and complete
the proof as in case 1.

We now move on to the inductive step. Assume that dimpV 1q “ p ą 1, and that the assertion is true for
all smaller dimensions. We again have two cases:
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‚ Case 1: Suppose that V 1 is not simple. Then there exists a submodule V1 Ď V 1 with 0 ă dimV1 ă
dimV 1. Let π : V ÞÑ V :“ V {V1 be the canonical map. Then V 1 :“ πpV 1q is a submodule of V of
codimension 1, and dimV 1 ă p. By induction, there is a submodule V 2 Ď V such that V “ V 1‘V 2.
Lifting this to V , we have V “ V 1`π´1pV 2q, although the sum is no longer direct. Since dimV 2 “ 1,
we have that V1 Ď π´1pV 2q is a submodule of codimension 1. By induction again, there exists a
submodule V 2 Ď π´1pV 2q such that π´1pV 2q “ V1‘V

2. Thus V “ V 1`V1`V
2, and since V1 Ď V 1,

we have V “ V 1 ` V 2. Since dimV “ dimV 1 ` dimV 2, we have V “ V 1 ‘ V 2.
‚ Case 2: Suppose that V 1 is simple. We know V {V 1 has dimension 1, hence V {V 1 » Vε,0 for some
ε P t˘1u. Take the element Cε P Uq from the lemma. Then Cε acts on V {V 1 as 0, so CεV Ď V 1.
Since dimV 1 ą 1 and V 1 is simple, Cε acts as multiplication by some α ‰ 0 on V 1. So Cε{α acts as
the identity on V 1. Thus Cε{α : V Ñ V 1 is a projection and is Uq-linear since Cε{α is in the center
of Uq. Thus V “ V 1 ‘ kerpCε{αq is a direct sum of submodules.

Step 2: We now consider the general case, where V 1 Ď V is a subdimension of any codimension. Recall

that, since Uq is a Hopf algebra, we can give HompV, V 1q the structure of a Uq-module as follows: given
x P Uq and f P HompV, V 1q, we get xf P HompV, V 1q with

pxfqpvq “
ÿ

pxq

x1fpSpx2qvq.

Let W “ tφ P HompV, V 1q | D α P k s.t. φpvq “ αv @v P V 1u and W 1 “ tφ P HompV, V 1q | φ|V 1 “ 0u. Then
W 1 Ď W is a subspace of codimension 1. We show that W is a submodule of HompV, V 1q. For any x P Uq

and f PW , we wish to show xf PW . We have some α P k such that fpvq “ αv for all v P V 1. Then, for all
v P V 1,

pxfqpvq “
ÿ

pxq

x1fpSpx2qvq “
ÿ

pxq

x1pαSpx2qvq “ α

¨

˝

ÿ

pxq

x1Spx2q

˛

‚v “ αεpxqv,

and so xf P W . Thus W Ď HompV, V 1q is a submodule. Replacing α by 0 in the above argument, we also
have that W 1 ĎW is a submodule.

Now, having proved the codimension 1 case, we know that there exists a dimension 1 submodule W 2 ĎW
such that W “ W 1 ‘ W 2. Let f be a generator for W 2. Then f is an element of W but not W 1, so
there is some α ‰ 0 such that fpvq “ αv for all v P V 1. Thus f{α : V Ñ V 1 is a projection. Letting
V 2 “ kerpf{αq “ kerpfq, we have V “ V 1 ‘ V 2 as vector spaces. Thus it suffices to show that V 2 is a
submodule of V .

Since W 2 is a dimension 1 Uq module, W 2 » V˘1,0, and so Ef “ Ff “ 0 and Kf “ K´1f “ ˘f . Fix
v P V 2. Then we have

˘fpKvq “ KfpKvq “ KfpSpKqKvq “ KfpK´1Kvq “ Kfpvq “ 0,

and thus Kv P V 2. Similarly K´1v P V 2. In addition, we have

0 “ EfpKvq “ fpSpEqKvq ` EfpSpKqKvq

“ fpp´EK´1qKvq ` EfpK´1Kvq

“ ´fpEvq ` Efpvq

“ ´fpEvq,

and thus Ev P V 2. Similarly, Fv P V 2. Therefore V 2 is a submodule of V , completing the proof. �


