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Abstract 

Let K be a field of characteristic p > 0, let G be a locally finite group, and let K[G] denote 

the group algebra of G over K. In this paper we study the Jacobson radical JK[G] when G has 
a finite subnormal series with factors which are either p’-groups, infinite simple, or generated by 
locally subnormal subgroups. For example, we show that if such a group G has no finite locally 
subnormal subgroup of order divisible by p, then JK[G] = 0. The argument here is a mixture 
of group ring and group theoretic techniques and requires that we deal more generally with 
twisted group algebras. Furthermore, the proof ultimately depends upon certain consequences of 
the classification of the finite simple groups. In particular, we use J.I. Hall’s classification of the 
locally finite finitary simple groups. 

1991 Math. Subj. Class.: 16334, 20E32, 20F50 

0. Introduction 

This paper is a continuation of recent work in [8-lo]; it concerns group algebras 

K[G], where K is a field of characteristic p > 0 and where G is a locally finite 

group. Specifically, we show that if G has a particular global structure, then K[G] is 

semiprimitive, or equivalently that its Jacobson radical JK[G] is zero. Recall that a 

finite subgroup A of G is locally subnormal if A a a B for all finite subgroups B of 

G containing A. For example, if G is locally nilpotent, then every finite subgroup of 

G is locally subnormal. Furthermore, if G is an f.c. group, then G is generated by 
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its finite normal subgroups and hence by its locally subnormal subgroups. The goal of 

this paper is to prove 

Main Theorem. Let K[G] be the group algebra of a locally jinite group G over a 
field K of characteristic p > 0. Suppose that G has a jinite subnormal series 

1 = Go a G1 a . . + a G,, = G 

with each quotient Gi+l/Gi either 
(i) a p’-group, or 

(ii) a nonabelian simple group, or 
(iii) generated by its locally subnormal subgroups. 

Then K[G] is semiprimitive if and only if G has no locally subnormal subgroup of 
order divisible by p. 

A twisted generalization of this result is obtained in Section 3 and a brief outline 

of its proof is as follows. 

First, we can assume that K is algebraically closed. Then we proceed by induction 

on the number of factors of the subnormal series for G which are infinite simple but 

not a pl-group. It turns out that we can quickly reduce to the case of just one such 

factor. Indeed, it suffices to assume that G has a normal subgroup N with G/N = H an 

infinite simple group containing an element of order p, and with IN : @N(g)] < cc for 

all g E G. Furthermore, N is a p’group and we can suppose that G has no nontrivial 

f.c. homomorphic image. In other words, the pair (G,N) is a p’-$c. cover of H. Now 
if N is central in G, then G is a central cover of H and K[G] is a subdirect product 

of various twisted group algebras K’[H]. Thus, the main theorems of [9,10] apply here 

and yield the result. 

On the other hand, if N is not central in G, then we show that H = G/N is a finitary 

linear group over the Galois field GF(q) for some prime q involved in the subgroup 

N. Furthermore, since H cannot be a linear group, the results of [3-51 imply that H is 

isomorphic to one of the stable finitary groups Alt,, FSL,(F), FSp,(F), FSU,(F), 

or F&!,(F) for some locally finite field F of characteristic q. As will be apparent, the 

bulk of this paper is concerned with these few special cases. 

Let W be any locally finite group. We say that W is p-insulated if, for every finite 

subset {x1,x*,..., x, } of nonidentity elements of W, there exists a p-element z of W 
such that no zxi is a p-element. For example, any p’group is p-insulated and, as is 

shown in [lo], if W is p-insulated then JK[W] = 0. In fact, the main result of the 

latter paper is obtained by proving that any nonlinear .locally finite simple group is 

p-insulated. In Section 1 of this paper we define a stronger version of this concept and 

show that if H is strongly p-insulated, then any p’-f.c. cover G of H is p-insulated 

and hence satisfies JK[G] = 0. Thus all that remains is to prove that the stable groups 

H are strongly p-insulated, and this is done in Section 2. Note that, since N is a p’- 
group, we have q # p. Thus we need only consider the stable groups in characteristic 

q # p, and this is a great simplification. Nevertheless, for the sake of completeness 
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and for possible later applications, we show in the rather long and unpleasant Section 4 

that stable groups in characteristic p are also strongly p-insulated. 

1. p-Insulated groups 

Let G be a locally finite group and let p be a fixed prime. If {x1,x2,. . . ,xt } is a 

set of nonidentity elements of G, then a p-insulator for this set is a p-element z E G 

such that no ZXi is a p-element. We say that G is a p-insulated group if every finite 

subset of G\ 1 has a p-insulator. This concept, with a somewhat different name, was 

used in [2] and later in [lo] to prove that certain group algebras are semiprimitive. 

Here we need a stronger version to handle larger classes of groups. 

We say that G is strongly p-insulated if, for any x1,x2,. . . ,xt E G\l and any integer 

r 2 1, there exists a homocyclic p-subgroup P of G having rank r such that every 

generator z of P is a p-insulator for {x1,x2,. . . ,xf }. Note that every p’group G is 

p-insulated, but that no p’-group is strongly p-insulated. In this section we briefly 

consider some applications of these concepts. 

Let P be a finite abelian p-group and define the rank of P to equal the minimal 

number of generators of the group. In particular, if @(P) denotes the Frattini subgroup 

of P and if jP/@(P)I = p’, then we know that r = rank P. Furthermore, if C&(P) = 
{x E P 1 xJ’ = 1 }, then I&(P)1 = p’ and hence rank l&(P) = r = rank P. Of course, 

z is a generator of P if and only if z E P\@(P). 
We say that P is homocyclic of type p” if P g Z,. x Z,. x . . . x H, is a direct 

product of finitely many copies of the cyclic group B, of order p”. Some basic 

properties of such groups are as follows. 

(l)IfA~P,thenA~a~PwhereA”ishomocyclicoftypep”andrankA=rankd. 

Of course, 2 is not uniquely determined by A. 

(2) If A C P, then A is a direct factor of P if and only if A is homocyclic of type 

P”- 
These are easy to prove directly. They also follow from the fact that Z/p’lZ is a 

self-injective ring. We first need 

Lemma 1.1. Let P be a homocyclic group of type p” and let S 2 R be subgroups of 
P. Then there exists a direct factor Q of P with rank P/Q 5 rank R/S and Q n R C S. 

Proof. We proceed by induction on IP(, the result being trivial when (PI = 1. There 

are two cases to consider according to the relationship between the rank of S and the 

rank of P. 

Case 1: rankS < rankP. 

Proof. Write P = I? x Y and i? = s” x X, so that P = s” x X x Y. By assumption, 

rankS = ranks < m&P and therefore Is”] -C [PI. Now observe that s”> R f~ s” 2 S 
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and that R >(R n #) x (R n X). Thus R/S >(R fl 3)/S x (R n X) and hence 

r = rank R/S > rank(R n s)/S + rank(R n X) = s + t, 

where s = rank(R il s”)/S and t = rank(R n X). Since rankI? = rank R, it follows 

that n,(R) = l&(R). In particular, R n X 2 521 (r?) n X = f&(X), so rankX = 

rank(R n X) = t. 
By induction applied to the subgroups S CR n 3 of #, there exists a direct factor U 

of s” with rank S/U 1. s and U n (R n s”) g S. Finally, set Q = U x Y so that Q is a 

direct factor of P and P/Q % ,!?/lJ x X has rank 

rankP/Q=rankS/U+rankX<s+tir. 

Furthermore, since Q C S x Y, R c s” x X and (s” x Y) n (s” x X) = s”, it follows that 

QnR=(Qfl~)r3(RfIS”)=Un(RnS”)~S 

and this case is proved. 0 

Case 2: rank S = rank P. 

Proof. If n = 1, then rank S = rank P implies that S = R = P. Hence rank S/R = 0 

and we can take Q = P. Thus we may suppose that n 2 2. 

If L = 521 (P), then the equality of ranks implies that P 2 R 2 S > L. Furthermore, 

L C @(P) since n 2 2. Let -: P --) P/L be the natural epimorphism and note that 

P > R 2 S, R/S E R/S has rank r = rank R/S, and P is homocyclic of type p”-‘. By 

induction, we can write P = Q x 7 where rank V < r and Q n l? 2 3. Finally, choose 

Q, V c P such that rank Q 5 rank Q, rank V < rank v and QL/L = 0, VL/L = r. 

Then QVL = P and, since L C Q(P), we have QV = P. By order considerations, 

it follows that Q and V are homocyclic of type p” and that P = Q x V. Thus 

rank P/Q = rank V I: rank 7 < r. Furthermore, Q n R C 0 n l? C ,t? so, since S > L, we 

have Q n R c S and the lemma is proved. 0 

As a consequence, we obtain 

Lemma 1.2. Let H = BP where B a H, B is a locally jinite p’-group and P is a jinite 

homocyclic p-group. Furthermore, let A be a finite normal subgroup of B. Then 

there exists a direct factor Q of P, with rank P/Q < 2 log, /A(, such that za is not a 

p-element for any z E Q and 1 # a E A. 

Proof. We proceed by induction on JAI, the case (A[ = 1 being clear. Suppose now 

that JAI > 1. 

We can assume that B = AP is generated by the P-conjugates of A. Thus B is finite 

and H = (A, P). Now choose L LB maximal with respect to L a H and L n A = 1. 

If -: H ---t H/L is the natural epimorphism, then 1 s A. Furthermore, if .Z = Ei is not 

a p-element, then certainly za is not a p-element. Thus it suffices to work in I?, or 
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equivalently we can assume that L = 1. In particular, any nonidentity subgroup of B 

which is normal in H must meet A nontrivially. 

Suppose there is a proper subgroup N of B which is normal in H. Since N # 1, 

weknowthatN~A#1.Ontheotherhand,ifNnA=AthenN~AsoN~AP= 

B, a contradiction. Thus 1 c N n A c A. By induction, P has a direct factor R, with 

rank P/R 5 2 log, IN n A(, such that za is not a P-element for any z E R and 1 # 

a E N n A. Furthermore, by induction working in H/N, R has a direct factor Q, with 

rank R/Q 5 2 log, IAI(N n 41, such that za is not a p-element for any z E Q and 

a E A\(N f’ A). Since 

rank P/Q 5 rank P/R + rank R/Q 

the result follows in this situation. 

We can therefore assume that no such N exists. In particular, B has no proper 

characteristic subgroup, so B is either an elementary abelian q-group for some prime 

q # p or it is semisimple. We consider the two cases separately. 

Case 1: B is abelian. 

Proof. Notice that any P-stable subgroup of B is normal in H. Thus, by assumption, 

P acts irreducibly on B. In particular, if C = c:p(B) then P/C is cyclic. Now, by 

Lemma 1.1, there exists a direct factor Q of P with rank P/Q 5 1 5 2 log, IAl and 

Q & C. Since BQ = B x Q and B is a p’group, it therefore follows that zb is not a 

p-element for any z E Q and 1 # b E B. 0 

Case 2: B is semisimple. 

Proof. Let { Si 1 1 5 i 5 v } be the set of normal simple subgroups of B. Then B is 

the direct product B = ny Si and, since A aB, we can assume that A = n’; Si. Certainly ’ 

r 5 log, IA(. Also P permutes { Si } and the direct product of the factors in any orbit 

is a normal subgroup of H. Thus, since H has no normal subgroup N with 1 c N c B, 

it follows that P is transitive on { Si }. Indeed, if L is the kernel of this permutation 

action then, since P is abelian, P/L acts regularly. For each 1 < i < r, choose xi E P 

so that ST = Si and let R be the subgroup of P generated by L and x1,x2,. . . ,x,. Then 

rank R/L 5 r and SF > A. Moreover, since R is a subgroup of P and R > L, it is easy 

to see that R = { y E P 1 Sf’ n Sf # 1). 

Now L stabilizes all Si, so L normalizes A and we let C = @L(A). In particular, L/C 

is an abelian p-group which embeds in the symmetric group Sym~. Since the largest 

elementary abelian p-subgroup of SymA has rank t I log, IAl I log, IAl, it follows 

that m&L/C < t. Thus 

rank R/C < rank R/L + rank LJC 

< r + t 5 21og, JAI. 
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By Lemma 1.1 applied to P 2 R 2 C, there exists a direct factor Q of P with rank P/Q 

I 2log,]A] and R n QcC. In particular, L fl QCC so R rl Q = L fl Q = 

c n Q. 

Finally, let z E Q and let 1 # a E A. Say t has order p” modulo R n Q = L n Q = 

C n Q and observe that 

Since zj $! R for I 5 j < p” - 1 and R = { y E P 1 Sp’ n Sf # 1 }, it follows 

that a” E Sfpl’ has all Sf-components equal to 1 in the direct product B = ny’si. 
In other words, if we write B = A x D, then (za)P” = zp’ad for some d E D. 
Now zp’ E L so D a (B,zP”). Also z Pn E C, so zJ’” centralizes A. Thus (B,zP”)/D 2 
A x (zf) and, since A is a p’group, this clearly implies that (za)J”D = zP’aJ’“D is 

not a p-element in (B,zP”)/D. But then (za)P” IS not a p-element and therefore neither 

is za. 0 

Our main application is as follows. 

Proposition 1.3. Let G be u locally jinite group and let B be a normal fc. subgroup 
of G. If G/B is strongly p-insulated and if B is a p’-group, then G is p-insulated. In 
particular, if K is a jield of charucteristic p, then any twisted group algebra K’[G] 
is semiprimitive. 

Proof. We can write finitely many nonidentity elements of G as 

where al,a?,..., ak E B\l and where x1,x2,..., x, E G\B. Since B is a locally finite 

f.c. group, there exists a finite normal subgroup A of B with al,az,. . . ,ak E A\ 1. Let 

r be an integer larger than 2 log, JAI. 
Now let -: G + G = G/B be the natural epimorphism. Since Xl ,.?I,. . . ,X, E G \ 1 

and since d is strongly p-insulated, there exists a homocyclic p-subgroup P of 6 

with rat&P = r such that, for all generators Y of P, no Zi is a p-element of G. 

Furthermore, since B is a p’group and G is locally finite, there exists a homocyclic 

p-subgroup P of G such that P S PB/B = P. 
Finally, we apply Lemma 1.2 to H = BP with A a B to conclude that there exists 

a direct factor Q of P, with rank P/Q 5 2 log, IAI, such that za is not a p-element 

for any z E Q and 1 # a E A. Furthermore, since rank P = r > 2 log, (A(, we have 

Q # 1. Thus we can choose z E Q to be a generator of P. For this p-element, we 

know that no zai is a p-element and that no %j is a p-element. Therefore, no Zj is 

a p-element and G is indeed p-insulated. The last remark concerning K’[G] follows 

from [ 10, Lemma 7.41. 0 

A minor modification of the above proves that G is strongly p-insulated. 
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2. Finitary linear groups I 

The goal of this section is to show that certain finitary simple groups of infinite 

rank are strongly p-insulated. The techniques used are extensions of those of [lo]. For 

convenience, we let 03 denote a fixed set of countably infinite size. 

Theorem 2.1. If G is a 1ocallyJinite group with Alt, C G C Sym,, then G is strongly 
p-insulated. 

Proof. Suppose we are given nonidentity elements x1 ,x2,. . . ,x,, of G C_ Sym, and a 

positive integer Y 2 2. Say x1,x2,. . . ,x, E Symk so that these elements move points in 

the set { 1,2,. . . , k } and fix the remaining ones. Let P be a homocyclic p-group of 

type pk and of rank r. We define an embedding of P into Alt, c G as follows. 

For each j = 1,2, . . . , k let ,Cj = ?_Sj(P) = { gd ) g E P } SO that Lj is a characteristic 

subgroup of P with P/Lj homocyclic of type p j. Let Zj: P -+ P/Lj denote the natural 

epimorphism. Under the regular permutation representation, let P/Lj act on the set rj. 

Then by using the various maps rtj, there is a natural permutation action of P on 

r=r,i,rzlj ... i, rk. We now embed r into the set { 1,2,. . . } = 00 in such a way 

that j E rj. Since P acts faithfully on rk, we see that P C Symr 2 Sym,. 

Let z be a generator of P so that z has order pk. Then Xj(z) has order pj in P/Lj 

and, since P/Lj acts regularly on rj, it follows that the cycle structure of nj(Z) on rj 

consists entirely of cycles of length pj. But j E rj and thus the cycle structure of z 

on r looks like 

(l*.. . *)(2 * . . *). . . (k * . . . *)(* . . . *). . . (* . . . *), 

where (j * . . *) has length pi and where the *‘s indicate distinct elements. 

It now follows as in [2] that no ZX~ is a p-element. Indeed, if xi E Symk contains 

the nontrivial cycle (et u2 . . . at), then zxi contains the cycle 

(at * . . . * a2 * . . * . . . at * . . . *) 

of length t! = pa1 + pa2 + . . + par. Since the latter exponents are all distinct, 8 is not 

a power of p and therefore zxi is not a p-element. 

Finally, if p is odd, then it is clear that P c Alt, 2 G. On the other hand, if p = 2 

then, since r 2 2, we see that each nj(z) is a product of an even number of cycles of 

length 2j. Thus Xi(z) E Altr, and again P 5 Alt, C G. 0 

We now move on to consider linear groups over a locally finite field F. Specifically, 

we study the finitary special linear, unitary, symplectic, and orthogonal groups of in- 

finite degree over F. Fortunately, with one minor exception, these can all be studied 

simultaneously using sesquilinear forms. 

Let V be a vector space over the field F and let @: V x V ---t F be a map which is F- 
linear in the second variable. Then @ is said to be a sesquilinear form if, for all v, w E 

V, we have @(w, v) = E@(v, w)” for some fixed E = 3~1 and some field automorphism K 
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of order 1 or 2. As usual, we write FU( V, @) C FGL(V) for the group of finitary 

isometries associated with @, and we assume throughout that @ is nonsingular. 

When K is nontrivial and E = 1, then @ is a unitary form and FU( V, @) is the 

usual finitary unitary group. On the other hand, if K = 1, then 4p is either orthogonal 

or symplectic according to whether E = 1 or - 1. Of course, when char F = 2, then 

symplectic forms require @(u, u) = 0 for all v E V and orthogonal forms are defined 

somewhat differently, but are nevertheless based on an auxiliary symplectic form. See 

[ 1, Chap. l] for details. 

If dim V = n < CO, then these forms can also be described matrix theoretically. 

To this end, let * denote the composition of matrix transpose with K. Then the n x n 

matrix @ determines the sesquilinear form v x w H u*@w if and only if @* = E@, 

and the form is nonsingular precisely when @ is a nonsingular matrix. Furthermore, 

x E GL,(F) is an isometry if and only if x*@x = @, and we let U,(F, @) denote the 

set of all such x. We will use this notation even for orthogonal groups in characteristic 

L. 

If dim V = CO and F is a locally finite field, then it is well known that there is 

a unique nonsingular unitary, symplectic or orthogonal form defined on V. Therefore, 

we just write FU,(F) for the group of isometries in this case, and we let FU,(F)’ 

be its commutator subgroup. Of course, these commutator groups are all contained in 

the finitary special linear group FSL,(F). Note that FSL,(F) is the (unique) stable 

group since 00 has countably infinite size. 

The goal now is to obtain linear group analogs of Theorem 2.1. As in [lo], there 

are two cases to consider according to whether p = char F or not. Again, the latter 

case is quite easy while the former requires a good deal of work. Recall that if e < k 
are integers, then we embed the general linear group GLe(F) into GLk(F) via the map 

x H x” = diag(x,e’) where e’ is the (k - e) x (k - 8) identity matrix. For obvious 

reasons, we call this the corner embedding. It allows us to distinguish different matrix 

representations for the same element of FGL,(F). 

Theorem 2.2. Let F be a locally jinite jeld, let FU,(F) denote thejnitary unitary, 
symplectic or orthogonal group of infinite degree, and let G be a group with 

F&(F) C G C FGL,(F). 

If p # char F, then G is strongly p-insulated. 

Proof. Let x1,x2,. . . , xt be nonidentity elements of G and let r 1 1 be a given inte- 

ger. For convenience, assume that {x1,x2,. . . , xt } contains a p-element and, further- 

more, if xi is a p-element, then a$ E {xl ,x2,. . . ,xt } for all exponents u prime to p. 
By reordering the subscripts, we can suppose that x1 ,x2,. . . , x,,,_i are p-elements and 

that x,,,,x,,,+r,..., x, are not. Since G cFGL,(F) and since FU,(F) is determined 

by a nonsingular sesquilinear form, it follows that, for some integer / >_ 1, we have 

{%X2,..., xt } C GLc(F) with 4, the restriction of the sesquilinear form to this 8 x I 
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upper left-hand corner, nonsingular. Now define the me x me matrices X and Z by 

X = diag(xi ,x2,. . . ,x,-l, d) and z = (x*)-l, 

where d = diag(d’, 1,. . . , 1) is an e x e matrix with d’ = ny=<‘(det Xi)-‘. Since each 

xi with i 2 m - 1 is a p-element, it is clear that X and Z are p-elements in SL,t(F) 

with order 1x1 = IZI = max{ ]Xi] ) 1 < i 5 m - 1). 

Let E denote the rml x rmt identity matrix and set k = 6 + 2rmt = (1 + 2rm)t. 
Since FU,(F) depends only on the nature of the sesquilinear form, we can assume 

that the k x k upper left corner of FU,(F) has the form determined by the matrix 

4 0 0 
@= 0 0 E 

( 1 0 EE 0 

(or the characteristic 2 quadratic form as described in [lo, Lemma 4.21). Next, let e 

be the e x 8 identity matrix and define Q = Qr to be the set of all k x k block diagonal 

matrices 

diag(e,X“‘,X@,. . .,Xar,Zn’, Zaz,. . .,Zar) 

with ai E Z. It is clear that Q is a homocyclic p-group of type n = IX] and rank r. 
Furthermore, [lo, Lemmas 4.1(i) and 4.2(i)] imply that Q G U,(F, ~3)‘. 

Ifaistheexrmdmatrixa=(e e ... e ), then it follows from [lo, Lemmas 4.l(ii) 

and 4.2(ii)] that there exist F-matrices /3 and y of suitable size with 

e a 0 
Y= OEO 

( ) YBE 

contained in Uk(F, @). Set P = P, = Y-‘QY Z Q. Then 

P C &(F, @)’ C F&(F)’ C_ G 

and we claim that if z is a generator of P and if - is the corner embedding defined 

on GL/(F), then no z-?i is a p-element. To this end, we first note that 

Z1 
z= ( > z2 ‘73 ’ 

where 

zl=(e;)-‘(ex)(e;) 
and where X = diag(X@ ,X@, . . . ,X+). Thus, since 

Z.?i = 
Z*ifi ( > z2 z3 

has order divisible by Izizij, it suffices to show that zix”i is not a p-element, 
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Suppose first that xi is not a p-element, and note that zi is in upper block triangular 

form. Specifically, we have 

and zi& = 

Thus zrfi has order divisible by [xii and therefore it is not a p-element. 

On the other hand, let xi be a p-element so that 1 5 i 5 m - 1. By assumption, since 

z is a generator of P, some integer aj is prime to p. Since the set {xi ,x2,. . . ,x,-l } 

is closed under p’ powers, it follows that xi occurs as a block diagonal entry of XaJ. 

Thus, by suitably permuting the rows and columns of 3, we can assume that xi OCCUTS 

as the first block entry of PI. In other words, zi is similar to a matrix of the form 

where 

Therefore, zi& is similar to 

where 

Notice that the latter two matrices commute, that 

xi ( > xi 

is a p-element and that 

C’“;:-‘) 

has order q = char F # p since Xi # e. Thus Bi is not a p-element and therefore 

neither is zi&. Since r 2 1 was chosen arbitrarily, the result follows. 0 

The characterisitc p analog of Theorem 2.2 will be considered in Section 4. 

3. Semiprimitivity 

We continue to work in the context of locally finite groups and we recall some 

notation from [8]. To start with, suppose G is a group and H is a normal subgroup. 
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Then 

is the normal subgroup of G consisting of all those elements which act in a jinitary 
manner on H. In particular, 

DG(G) = A(G) = {x E G 1 IG : cG(x)I < cc > 

is the Jc. center of G, and G is said to be an Jc. group if G = A(G). 

Next, the ordered pair (C, N) is said to be an jc. cover of G if 

(i) C is a locally finite group, N a C and C/N Z G. 

(ii) C = DC(N), so that every element of C acts in a finitary manner on N. 

(iii) C has no nontrivial f.c. factor group. 

Notice that if (C, N) exists, then G itself has no nontrivial f.c. factor group and, in 

particular, G cannot be a nonidentity finite group. On the other hand, if G satisfies 

(iii), then G has at least one f.c. cover, namely (G, 1). Since any f.c. group is center- 

by-(residually finite), it is clear that condition (iii) is equivalent to 

(iii’) C has no nontrivial finite or abelian factor group. 

Furthermore, (ii) certainly implies that N is an fc. group and hence that it is locally 

normal. 

The f.c. cover is clearly an analog of the usual Schur covering group where N is 

taken to be central and where C is assumed to be equal to its commutator subgroup. 

However, unlike the Schur situation, there is no universal f.c. covering group. For 

example, let G = Alt, be the infinite simple alternating group and let W be any finite 

nonabelian simple group. Then the permutation wreath product C = W 1 G is easily 

seen to yield an f.c. cover of G with N, the base group of the wreath product, being 

an infinite direct sum of copies of W. If x is any element of C\N, then x must move 

one of the W direct summands of N and therefore IN : C&x)1 2 1 W). But ]I#‘] can 

be taken to be arbitrarily large and thus no universal f.c. cover of G could map onto 

all such W 2 G. 

The following is a slight sharpening of [8, Lemma 4.31 with essentially the same 

proof. For convenience we let X(G) denote the set of prime divisors of the orders of 

the elements of G. 

Lemma 3.1. Let (C,N) be anJ.‘c. cover of G and suppose that @v(G) # 1 whenever 
G acts in a jinitary manner on an infinite elementary abelian q-group V with q E 
x(N). Then N is central in C. 

Proof. Since (C,N) exists, it follows that G has no nontrivial f.c. factor group. In 

particular, G = G’ and G has no nontrivial finite factor groups. We can clearly assume 

that N # 1 and we proceed in a series of steps. 
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Step 1: Suppose that G acts in a finitary manner on an abelian group A with 

n(A) C n(N). Then G centralizes A. Similarly, suppose G acts as permutations on a 

set 52 and that each element of G moves only finitely many points. Then G acts trivially 

on Q. 

Proof. Let G act on A. We first observe that if A # 1 then Z = CA(G) # 1. To this 

end, let q E n(A) C n(N) and let V be the set of elements of A of order 1 or q. Then V 

is a nonidentity characteristic subgroup of A, so G acts on Y in a finitary manner. If 1 VI 

is finite, then IG : C,(V)/ < cc and, since G has no nontrivial finite factor group, it 

follows that G centralizes V. On the other hand, if IV/ = co, then Z # 1 follows from 

the hypothesis of the lemma. Suppose now that Z # A. Then G acts on A= A/Z # 1 

and hence, by the above, there exists W > Z such that W/Z = CJ(G). Notice that G 

acts on W, stabilizes the chain W > Z 2 1 and acts trivially on each factor. Thus the 

commutator subgroup G’ of G centralizes W. But G’ = G, so W g CA(G) = Z, a 

contradiction, and therefore Z = A. 

Finally, suppose that G acts as permutations on 52. Let F = GF(q) for some q E 

z(N) and let B = FL2 be the permutation G-module determined by Sz. Since (F( < co, 

it is clear that G acts in a finitary manner on B. Thus, by the result of the previous 

paragraph, G centralizes B and hence it acts trivially on 52. 0 

Now we consider the f.c. cover (C,N). 

Step 2: G centralizes N/N’ and N’ = N”. 

Proof. It is clear that G = C/N acts on the abelian group N/N’. Furthermore, since 

lDc(N) = C, it follows from Step 1 that G centralizes N/N’. In particular, N/N’ is 

central in C/N’. 

Next, we show that N’ = N”. For this it suffices to assume that N” = 1 and 

then prove that N’ = 1. Set A = N’, so that C/N’ acts on the abelian group A 

and set Z = @A(C/N’). Note that N is an f.c. group and therefore, if x E N/N’, then 

[A,x] 2 A/CA(X) is finite. But x is central in C/N’, so [A,x] is C/N/-stable and therefore 

[A,x] c Z since C has no nontrivial f.c. factor group. It follows that N acts trivially 

on A/Z, so G acts on A/Z and Step 1 implies that G centralizes A/Z. In particular, C 

also centralizes A/Z and hence C stabilizes the chain N > A 2 Z 2 1 and acts trivially 

on each factor. Thus C” acts trivially on N. But C = C”, so N is central in C and, 

in particular, N is abelian. Thus N’ = 1, as required. 0 

Step 3: N is locally solvable. 

Proof. Let S be the largest normal locally solvable subgroup of N. Then S is charac- 

teristic in N and N/S has no nonidentity solvable normal subgroup. Thus it sufices to 

assume that S = 1 and then prove that N = 1. 

Suppose by way of contradiction that N # 1. Since N is an f.c. group, it has a 

minimal nonidentity finite normal subgroup T. Since T is not solvable, it is semisimple 

and hence so is D = TC, the normal closure of T in C. In other words, D = fliDi 
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is the weak direct product of finite nonabelian simple groups. As is well known, any 

normal subgroup of D is a partial direct product of the Di’s. In particular, N permutes 

the Di’S by conjugation and the minimal normal subgroups of N contained in D are 

precisely the products of Di’S over the finite N-orbits under this action. Thus, by 

combining factors, we see that D = nj Mj is the weak direct product of those (finite) 

minimal normal subgroups Mj of N which are contained in D. 
Now C normalizes both N and D and therefore C permutes the set Sz of all such 

Mj by conjugation. Furthermore, since each Mj a N, we see that N acts trivially on 

Q and therefore that G = C/N acts as permutations on this set. Notice that if x E C, 

then c,(x) has finite index in D and therefore contains a normal subgroup of D of 

finite index. This normal subgroup is clearly the weak direct product of all but finitely 

many Di’S and therefore it contains the weak direct product of all but finitely many of 

the Mj’S. In other words, every element of G moves only finitely many points in its 

action on 52. By Step 1, we conclude that G acts trivially on Q and hence that each 

Mj is a finite normal subgroup of C. This means that IC : @c(Mj)I < 00 and, since 

C has no nontrivial f.c. factor group, we see that each Mj is central in C. But this 

implies that D C Z(C), a contradiction since D # 1 is semisimple. 0 

Step 4: N is central in C. 

Proof, Let M be any finite normal subgroup of N. Since N/en(M) is finite and N is 

locally solvable, it follows that N/en(M) is solvable. Thus N@), the kth term of the 

derived series for N, is contained in c&M) for some k. But N’ = N”, by Step 2, and 

therefore we see that N’ centralizes all such M. Indeed, since N is locally normal, N 

is generated by its finite normal subgroups and therefore N’ C Z(N). This implies that 

N’ is abelian and, since N’ = N”, we conclude that N’ = 1. Thus N is abelian and, 

since G centralizes N/N’ by Step 2, the lemma is proved. 0 

As a consequence, we have 

Lemma 3.2. Let G have an fc. cover (C,N) with N not central in C. Then some 
nonidentity homomorphic image G/H of G is a finitary linear group over the field 
GF(q) for some prime q E z(N). 

Proof. Since N is not central in C, the previous lemma implies that, for some prime 

q E n(N), G acts in a finitary manner on an infinite elementary abelian q-group V 

with Cv(G) = 1. In particular, if H = 4Zo( V), then G/H is a finitary linear group over 

GF(q). Furthermore, G/H # 1 since @v(G/H) = (lZ=v(G) = 1. q 

By combining all of our results so far with the work of J. I. Hall and others, we 

can now prove 

Proposition 3.3. Let K be a field of characteristic p > 0 and let N a C be locally 
finite groups with G = C/N injinite simple. If C = D=(N) and if N is a pr-group, 
then any twisted group algebra K’[C] is semiprimitive. 
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Proof. We begin with several reductions using results described in [8, Section 21. 

To start with, if k is the algebraic closure of K, then z’[C] = l? @.K K’[C] is a 

twisted group algebra over I? with Jacobson radical satisfying Jk’[C] >JK’[C]. Thus 

it suffices to show that JZ?[C] = 0 or equivalently we can now assume that K = k 

is algebraically closed. 

Next, let CI E JK’[C] and let HI 2 N be the subgroup of C generated by N and the 

support of c(. Then HI/N is a finite subgroup of the infinite simple group C/N = G 

and hence there exists a countably infinite simple subgroup H/N of G with HI C H. 

But then 

CI E JK’[C] n K’[H] c JK’[H] 

so it suffices to prove that K’[H] is semiprimitive. In other words, we can now as- 

sume that C = H or equivalently that G is a countably infinite simple group. We 

can of course also assume that C is not a pl-group and hence that G is not a 

p’-group. 

Finally, let L be the subgroup of C generated by its p-elements. Then C/L is a 

locally finite p’group, so JK’[C] = JK’[L] . K’[C] and it suffices to prove that K’[L] 

is semiprimitive. Notice also that L is not contained in N, so LN/N is a nonidentity 

normal subgroup of G, and thus L/(L n N) E LN/N = G. In other words, L has the 

same structure as C, and we can therefore assume that C = L is generated by its 

p-elements. With this, we see that (C, N) is an f.c. cover of G. Indeed, it is clear that 

(C,N) satisfies the defining conditions (i) and (ii). Furthermore, for (iii), let A4 # C 

be any normal subgroup of C. Since C/M is generated by its p-elements and since 

N is a p’-group, it follows that MN # C. Thus, since MN/N a G, we conclude that 

MN = N and hence that M C N. But then G = C/N is a homomorphic image of C/M, 

so C/M is not an f.c. group and condition (iii) is proved. There are now two cases to 

consider. 

Case 1: N is central in C. 

Proof. Let 6 = {E 1 c E C} be the group basis for K’[C] and let x E NC Z(C). 

Then, @i(x) = {c E C 1 E = E} is a subgroup of C and, by [8, Section 21, 

C/Q(x) = Q(x)/C’,(x) is abelian. But (C,N) is an f.c. cover, so C = C’ and 

therefore @L(x) = C. We conclude that K’[N] is central in K’[C]. 

Now N is a p’-group, so K’[N] is a semiprimitive commutative algebra. Furthermore, 

since the group basis ti is periodic modulo K’ = K \O and since K is algebraically 

closed, it follows that all irreducible representations of K’[N] are homomorphisms 

into K. Thus there exists a family { li 1 i E 4) of ideals of K’[N] of codimension 

1 with nil;: = 0. Of course, these ideals are central in K’[C] and freeness implies 

that nZiK’[C] = 0. Therefore, it suffices to prove that each factor K’[C]/liK’[C] is a 

semiprimitive ring. But it is easy to see that 

K’[C]/ZiK’[C] = Kt2[C/N] = K”[G] 
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is a suitable twisted group algebra of C/N = G. Thus, since the main results of [9,10] 

imply that JKrz[G] = 0 for any locally finite infinite simple group G, the result follows 

in this case. Cl 

Case 2: N is not central in C. 

Proof. Since (C,N) is an f.c. cover of G with N $ Z(G) and since G is infinite 

simple, it follows from the preceding lemma that G is a finitary linear group over 

GF(q) for some prime q E n(N). In particular, since N is a $-group, it follows that 

q # p. At this point, we can apply the recent characterization of locally finite, infinite 

simple groups which are finitary linear groups. 

Suppose first that G can be realized as a finite dimensional linear group over some 

field Fi. Then [6,1 I] imply that G is a simple group of Lie type over some infinite, 

locally finite field F2, and this contradicts [8, Theorem 4.51. Thus G cannot be realized 

in this manner and results of J. I. Hall apply. In particular, since G is countably infinite, 

it follows from [3-51 that G 2 Ah,, FSL,(F), FSp,(F), FSU,(F) or F&_(F) for 

some locally finite field F and, indeed, F must have characteristic q. This latter fact 

follows from the work in [3, Section 71. Specifically, if G is one of the latter four 

groups and if char F = r, then G has a classical sectional cover 9 in characteristic 

r. Furthermore, since G is a finitary linear group in characteristic q, [3, Theorem 7.21 

implies that % has a subcover which is classical in characteristic q. Thus r = q, as 

claimed. 

Finally, since char F = q # p, it follows that G satisfies the hypothesis of Theo- 

rem 2.1 or 2.2 and therefore G is strongly p-insulated. Proposition I .3 now implies 

that C is p-insulated and hence that K’[C] is semiprimitive. This completes the proof 

of the second case and the result follows. 0 

The goal now is to generalize [9, Theorem 3.21. As it turns out, the original argument 

can be considerably simplified by using the earlier techniques of [7]. We first recall 

several definitions and then we quote the necessary facts from the latter paper, but in 

the context of twisted group algebras. 

Let G be a locally finite group. A finite subgroup A of G is said to be locully sub- 
normal, written A Isn G, if A is subnormal in every finite subgroup B of G with A c B. 
For example, every finite subnormal subgroup of G is locally subnormal. Furthermore, 

if G is locally nilpotent, then every finite subgroup is locally subnormal. Note that 

if Al,Az,..., A, are locally subnormal subgroups of G, then so is (Al, Al,. . . ,A,,), the 

group they generate. Consequently, G is generated by locally subnormal subgroups if 

and only if it is a union of locally subnormals. Furthermore, this property of G is 

inherited by subgroups and quotient groups. 

Lemma 3.4. Let K’[G] be u twisted group algebra of the locally finite group G over 
a field K of churucteristic p. 

(i) If A Isn G. then JK’[A] C JK’[G]. 
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(ii) If N a G with JK’[N] nilpotent, then JK’[G] = JK’[D] . K’[G] where D = 

DG(N). 

(iii) Let Na a G with JK’[N] = 0 and suppose that 

N=NsaNia...aN,,,=G 

with each quotient Ni+l /Ni either a p’-group or generated by its locally subnormal 

subgroups. If G has no locally subnormal subgroup of order divisible by p, then 

JK’[G] = 0. 

Proof. (i) It suffices to show that the right ideal JK’[A] . K’[G] is nil and this can 

be verified locally. Indeed, we need only show that JK’[A] . K’[B] is nil for any finite 

group B with A C B g G. But A a a B, so JK’[A] . K’[B] is contained in the nilpotent 

ideal JK’[B] and the result follows. 

(ii) This is the twisted version of [7, Lemma 3.71 and it is proved in precisely the 

same manner. 

(iii) By induction on m, it suffices to assume that NaG and that G/N is either a p’- 

group or is generated by its locally subnormal subgroups. In the former case we have 

JK’[G] = JK’[N] .K’[G] = 0, so we need only consider the latter situation. For this, let 

CI E JK’[G] and choose N c A C G with A/N lsn G/N and with a E K’[A]. Notice that 

any locally subnormal subgroup of A is locally subnormal in G. Thus, by assumption, 

A has no locally subnormal subgroup of order divisible by p and, in particular, A 

has no finite normal subgroup of order divisible by p. Hence, by [8, Proposition 2.51, 

K’[A] is semiprime. Furthermore, since JK”[N] = 0 and ]A : NI < oo, it follows from 

[8, Proposition 2.11 that JK’[A] is nilpotent, and therefore that JK’[A] = 0 in this 

semiprime ring. Finally, we have 

CI E JK’[G] n K’[A] C JK’[A] = 0, 

so c( = 0 as required. 0 

The next result is well known and allows us to better understand the nature of the 

groups considered in Theorem 3.6. We include a full proof for the sake of completeness. 

Lemma 3.5. Let G be an injinite locally jinite simple group. 

(i) G is not locally solvable. 

(ii) G has no nonidentity locally subnormal subgroup. 

Proof. (i) Certainly G is nonabelian, so we can choose a, b E G with 1 # c = [a, b]. 

Furthermore, since G is simple it follows that G = (c)~ = (cg 1 g E G), and hence 

there exists a finite subgroup H of G containing a, b, c and with a, b E (c)~ = C. Now 

C is a nonidentity normal subgroup of H and a, b E C, so c = [a, b] E C’. But then 

(c)~ c C’ a H, so C = C’ and G is not locally solvable. 

(ii) Suppose by way of contradiction that G contains a nonidentity locally subnormal 

subgroup A. We can assume that A has minimal order and therefore that A is simple. 
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Furthermore, since G is simple, we have G = AG = (Ag ] g E G). Suppose first that 

A is abelian, so that A has prime order q. If B = (Ae' , Ae*, . . . , A@), then each Aef is a 

subnormal q-subgroup of B and hence is contained in O,(B). Thus B is a q-group, so 

G is locally nilpotent and this contradicts part (i) above. On the other hand, if A is 

nonabelian simple, then so is each AS, and by considering the subgroup C = (A, As), 
we see that Ag normalizes A. Thus A a G and again we have a contradiction. 0 

We can now easily prove the main result of this paper. 

Theorem 3.6. Let K’[G] be a twisted group algebra of the locally finite group G 
over a field K of characteristic p > 0. Suppose that G has a finite subnormal series 

1 = Go a G, a . , . a G,, = G 

with each quotient Gi+l/Gi either 
(i) a p’-group, or 

(ii) a nonabelian simple group, or 
(iii) generated by locally subnormal subgroups. 

If G has no locally subnormal subgroup of order divisible by p, then K’[G] is 
semiprimitive. 

Proof. For any group G with a subnormal series as above, let p(G) denote the number 

of infinite simple factors of the series which are not p’-groups. Since any two finite 

subnormal series have equivalent refinements, it follows from the preceding lemma that 

p(G) is finite and well defined. Notice that if Ma G, then M and G/M have subnormal 

series of the same type, and certainly p(G) = p(M) + p(G/M). Notice also that if 

S a a G, then S has no locally subnormal subgroup of order divisible by p. The proof 

now proceeds by induction on p(G). 
If p(G) = 0, then the result follows from Lemma 3.4(iii) with N = 1. Thus we may 

suppose that p(G) 2 1, and we let k be the largest subscript with Gk/Gk_i infinite 

simple and not a p’group. In view of Lemma 3.4(iii) again, it suffices to prove that 

JK[Gk] = 0. Indeed, since p(Gk) = p(G), we may assume that Gk = G. In other 

words, G has a normal subgroup H with G/H infinite simple and not a p’group. Note 

that p(H) < p(G) and therefore, by induction, JK”[H] = 0. Thus, Lemma 3.4(ii) 

implies that JKf[G] = JK’[C] . K’[G] where C = Do(H). 

If C 2H, then p(C) 5 p(H) < p(G), so JK’[C] = 0 and hence .IK’[G] = 0. 
Thus, we may suppose that’ C $Z H and therefore, since H is maximal normal, we 

have G = HC. In particular, if N = H n C, then C/N ” GJH is infinite simple. 

Furthermore, since N G H, we have D=(N) = C. Consequently, N is an f.c. group 

and, since N has no locally subnormal subgroup of order divisible by p, it follows 

that N is a p’group. Proposition 3.3 now implies that .IK”[C] = 0 and therefore 

JK’[G] = JK’[C] . K’[G] = 0, as required. 0 

Notice that if G has a locally subnormal subgroup of order divisible by p and 

if K is a perfect field, then Lemma 3.4(i) implies that .IK’[G] # 0. Thus the locally 
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subnormal hypothesis is definitely required in the preceding theorem. In fact, in the case 

of ordinary group algebras, this observation holds even when K is not perfect. Thus 

Theorem 3.6 and Lemma 3.4(i) yield the Main Theorem, as stated in the Introduction. 

Of course, it would be nice to obtain a complete description of JK’[G] even when 

locally subnormal subgroups of order divisible by p do exist. If there is a bound on 

the p-parts of such subgroups, then the techniques of [8, Theorem 6.11 easily solve 

the problem. But the more general situation seems to require new group theoretic ideas 

and we leave this for a later project. 

4. Finitary linear groups II 

The goal of this final section is to obtain the characteristic p analog of Theorem 2.2. 

While it is not needed for the particular semiprimitivity problem studied in this paper, 

this result may nevertheless have later applications and it is certainly interesting in its 

own right. As will be apparent, the proof of Theorem 4.5 pushes the methods of [lo] 

to their limit. 

To start with, we need the following extension of [ 10, Lemma 5.11. Here we use 

the notation { b,c }{ a,~ } = 0 to indicate that bjail = bjcll,j’ = c;,jai/ = ci,jc;‘,_/’ := 0 
for all appropriate subscripts i, j, i’, j’. 

Lemma 4.1. Let e be the e x rP identity matrix, let g E GL/(F), and consider the 
partitioned nL x nG matrix .A given by 

he -g 

).n-le -9 1 . . . . 

ize -g 

ile 

4-l Cn-l,n-I cn- l.n-2 . . . cn- I.1 

4-2 Crl-2,n- I C,-.2*n_2 . ’ . G-2.1 

al Cl,+1 Cl+-2 ... Cl.1 

d b,_l bn-2 ... 6, 

where AI,&,..., I, E F. We assume that most products of the a’s, b’s and c’s are zero 
and write the precise assumption symbolically by { b,c }{ a,c } = 0. Furthermore, we 
suppose that gci,j = Ci,j = ci,jg and b,g = bj for aN appropriate subscripts 1 < i, j 5 
n - 1. If .hl’^ is the e x e matrix given by 

then det JH = det Jv. 
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Proof. If w = diag(e,g,g2 ,..., g*-’ ), then the multiplicative nature of g implies that 

wAw_’ is the matrix A? given by 

i 

2s -e 

il,_le -e 

I2e -e 

he II + 4-l Cn-l,n-1 Cn-1,s2 ’ . . G-l,1 

4-2 Cn-2,n-1 Cn-2,n-2 . . . G-2,1 

4 qn-1 qn-2 . ‘. Cl,1 

d’ b;_, b;_2 .+. b; 

where ai = gn-lvi ai, d’ = g”-‘d and b$ = g”-‘bj for all subscripts i, j. Furthermore, 

{b’, c }{ a’, c } = 0 by the original product assumption and the multiplicative nature 

of g. Thus [lo, Lemma 5.11 applies to A” and, since det A = det A?, the lemma is 

proved. 0 

The next four results use the following notation. Let F be a field, let L and n be 

positive integers, and let “: GLe(F) -+ GL,c(F) be the comer embedding. Fix x E 

GLe(F), suppose e is the & x 8 identity matrix, and define the partitioned n& x n&’ 

matrices y and z by 

Y= 

e h-1 ... p2 p1 

h-1 e 

. . 

cf.2 e 

a1 e 1 I and z = 

e 

e 

e 

e 

where ~ll,a2,...,a~-l,Bl,P2,...,~~-1 are any e x L matrices over F with UiPj = Fiji = 

0 for all i, j. Set ~1 = YZY-‘, let g E GLe(F) satisfy aig = Mi = gut and pig = j3i = 

gpi for all i, and define i = diag(g, g, . . . , g). Our goal is to compute the characteristic 

polynomial of zt;& for various integers u and then to show that these polynomials 

yield information about X. We start with 

Lemma 4.2. Use the above notation and assume that u is relatively prime to n. Then 
the characteristic polynomial $--(A) E F[A] of the matrix zrkj2 is equal to det N where 

n-1 n-1 n-l n-l 

N = I”e - gnX + C A’Oriu(X - e) + C A”-jg”-‘(e - gX)bju + C C ~““-‘CliuXBju 
i=l j=l i=l j=l 

and where the subscripts are computed modulo n. 

Proof. For convenience, we consider two separate cases. 

Case 1 u= 1. 
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Proof. Since tlipj = DjMi = 0, we see that y is the identity plus a matrix of square 0 

and therefore 

Y 
-1 = 

e -b-1 ... -p2 -p1 

-k-1 e 

. . 

Thus, since x” = diag(x, e,. . . , e), the multiplicative property of g implies that 

Let E = diag(e, e, . . . , e) be the PZ/ x n8 identity matrix. 

Now the nature of z implies that the product z(y-‘62~) is obtained from y-‘&y 

by cyclically permuting its iz rows. Thus 22 - zy-‘$2~ is precisely the matrix A’ 

of Lemma 4.1 provided we set ai = Mi(X - e), bj = (e - gx)pj, ci,j = aixpj and 

d = -gx. Of course, li = i for all i. Furthermore, note that U.ipj = fljai = 0 for all i,j 

implies that { b, c }{ a, c } = 0. Thus, by the multiplicative nature of g, we can apply 

the previous lemma to compute t+&(A) = det(A_E -zy-‘&y) = det A, the characteristic 

polynomial of zy-‘#y. Indeed, since nUCi 1, = 2’ and &,j II, = An-j, we conclude _ 
that &JA) = det A’ = det J where 

n-l n-1 n-l n-l 
Jf = A”e - gnX + C Aiai(X - e) + C A”-jg”-‘(e - gX)fij + C C ~n+i-jWPj. 

i=l j=l i=l j=l 

Finally, since zy-‘~~y = y-‘(zi@Z)y, we see that &lx(A) is also the characteristic 

polynomial of zi&. 0 

Case 2: gcd(u, n) = 1. 

Proof. Since u is relatively prime to IZ it follows that z and 2’ are conjugate in 

GL,l(F). Specifically, let w be the partitioned ne x nL' matrix 

Wl,il wl,n-1 . . . w&l 

wz . 

i: i 

w2, n W2,n-1 ... 4 W2,l 

Wl,iI w,n-1 ... W,l 

where wi,j = e if j E iu mod n and Wi,j = 0 otherwise. Since gcd(u, n) = 1, it is 

clear that w is a permutation matrix which commutes with @ and, since w,,, = e, it 



D.S. Passmanl Journal of Pure and Applied Algebra 107 (1996) 271-302 

follows that w commutes with 2. Furthermore, define 

291 

where the subscripts are viewed modulo n. Then it is easy to verify that zw = wz” and 

y,w = wy, so 

z;“@ = yz”y-‘cjf = w-'(yuzy,'ij~)w 

and the characteristic polynomial of zt&Z is the same as that of yUzy;‘&. In other 

words, the only difference between this situation and the u = 1 case is that y is replaced 

by yU or equivalently that each ai is replaced by aiU and each pi is replaced by piu. 

Case 1 now yields the result. 0 

For more general exponents u, let u = gcd(u,n) be the greatest common divisor of 

u and n, and set m = n/v and ii = u/v. 

Lemma 4.3. We continue with the above notation and assumptions, and we let &x(A) 
denote the characteristic polynomial of z~&. Furthermore, let N be an e x e matrix 

m-l m-1 

N = A”e - g”k + C IziaiU(x - e) + C Am-igm-l(e - gx)fijU 
i=l j=l 

m-l m-l 

+ C C ,Am+i-jc(iuXpju, 
i=l jzl 

where the subscripts are computed module n. Then detN divides t,&(A) in the poly- 
nomial ring F[A]. In fact, if ai = pi = 0 f or all i not divisible by v, then &x(A) = 
det N . (det M)U-’ where M = ;I”‘e - gm. 

Proof. In view of the preceding lemma, it suffices to assume that v > 1. We again 

permute the rows and columns of y and z. To this end, recall that n = mu and let w 

be the nd’ x ne partitioned matrix 

W2,n-1 

w,n-1 

where Wi,j = e if there exist integers r,s with 

n-i=rm+s modn O<s<m-1, 

n-jzsv+r modn O<r<v-1, 
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and Wi,j = 0 otherwise. Since i uniquely determines r,s, it follows that w is a permu- 

tation matrix. Specifically, there is a permutation rc of the set { 1,2,. . . , n } such that 

Wi,j = e if and only if j = xi. Thus w commutes with i and, since w,,, = e, we see 

that w commutes with x”. 

Now let J and Z be the mt x md partitioned matrices 

Jzr;; B(m7v 1:: I’ :‘1 and z= 

Furthermore, let yr and z, denote the nd x n/ matrices 

e 

e I 4 . . 

e 

e 

and z, = diag(f,f, . . . ,Z). Then it is easy to verify that wy = ynw, wz” = z,w and that 

J is the upper left-hand corner of yx. 

Set u = VU and observe that w-‘z:w = (w-*z,w)~ = zUu = z“. Thus 

z;&z = yzUy-‘& = w-‘(ylrz~y,‘@)w 

and hence $Jn) is equal to the characteristic polynomials of both yzz~y;r& and 

z;y, l cjy,. Since v = gcd(u,n), it follows that U is relatively prime to m. Thus, 

using u = VU, the previous lemma implies that both j@J-‘@ and ,@J-‘dfJ have 

characterisitic polynomials equal to det N, where N is the given 8 x 8 matrix. Here, of 

course, @ and x” are suitably truncated me x me versions of the original matrices. Let 

us first consider a simple special case. 

Case 1: Suppose cli = /3i = 0 for all i not divisible by u. 

Proof. The additional assumption implies that yx = diag(y, I?, 2,. . . , .F) where ~5 is the 

mt x mL’ identity matrix. Thus since yn,zn,@ and x” are all in block diagonal form, it 

follows that &(A) = ark-’ where a(n) is the characteristic polynomial of the 

me x me matrix S = j;z”jj-‘$ and where r(n) is the characteristic polynomial of 

T = 36 = CpC-‘g^e”. Again, in S and T, we let 6 and x” denote suitably truncated 

ml x ml versions of the original matrices. As we observed above, o(n) = det N and, of 

course, T is just a special case of the matrix S with x = e and with all Cliu = pj” = 0. 

Thus r(1) = detM where M = I”e - gm is obtained from N by setting x = e and 

/?j” = 0. With this, the special case is proved. 0 
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Case 2: The general situation. 

Proof. Here there are no additional assumptions on the Q’S and flj’s. Write 

and z, = 

where A has first column consisting of various ai’s and B has first row consisting 

of various fij’s. Furthermore, E denotes the (n - m)tf x (n - m)t identity and L? = 

diag(Z, 5,. . . , 2). Since v > 1, we have n -m > 0, and since ai/?j = pjai = 0, we know 

that 

Again, we use suitably truncated versions of @ and x” in the formulas that follow. In 

fact, 6 exists at three different sizes, but this should cause no confusion. 

Note that 

j+&j jj-‘@B _ B 

IZ 

-Afj + A -AZB + g > 

since Ai = A = @A, Bi = B and BA = 0. Thus 

z~y,‘cj~y~ = 
M’ 
A’ 

where 

B’ 

> c’ ’ 

A’ = _?-A~Y + A), 

B’ = p(j+@B -B), c’ = .T(-A~B + 8). 

In particular, since we know that &(A) is equal to the characteristic polynomial of 
< -I..- 

Z,Y, gxyn, we have 

where Z denotes the mt! x mt identity. 

We now work over the rational function field F(A) and let & denote the right ideal 

of the / x e matrix ring Mt (F(A)) generated by tli, ~2,. . . , q-1. In addition, let V be 

the set of all (n - m)C x mL' partitioned matrices with E x J! entries in d. Then Y is a 

finite-dimensional F(1)-vector space and A’ E V since 2” is a partitioned permutation 

matrix. Furthermore, since $V = V and BY = 0, it follows that (J_!? - C’)V C V. 

Note that J.l?-C’ is an invertible matrix, since its determinant is a manic polynomial in 

A, and therefore left multiplication by A,!? - C’ affords a one-to-one linear transformation 
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on -Y. Thus this linear transformation must be onto and there exists A” E V with 

(A_!? - ,‘)A” = A’. Of course, BV = 0 implies that B’A” = 0. 

Finally, note that 

( 

3,; - M’ 

-A’ 
g:>,) (;, E) = (“,M’ &fC’) 

since B’A” = 0 and (A_?? - C’)A” = A’. Thus since 

det A:,E =l, 
(- > 

we conclude that 

&x(A) = det ” - IV’ i!C,) = det(Z - M’) . det(k!? - C’), 

a factorization in the polynomial ring E’[A]. Furthermore, det(Z - M’) is the charac- 

teristic polynomial of M’ = SrJ-‘@x”y and thus det(Z - M’) = det N, as we observed 

previously. In other words, we have shown that detN divides &x(A) in F[A] and the 

result follows. 0 

In order to proceed further, we need some additional notation and assumptions. Let 

y be a fixed positive integer, define r = { i 1 ai # 0 or pi # 0 } and assume that 

]rl 5 y. Furthermore, suppose that, for any io E r, the integer equation 

io E C ,u(i)i mod n 
iET 

with -y 5 ,u(i) 5 y has only the trivial solution p(io) = 1 and p(i) = 0 otherwise. 

Finally, if n is even, we assume that n/2 $ r. 

Lemma 4.4. We continue with the above notation and assumptions. In addition, we 

suppose that each ai and /lj has rank 5 1, and that Mi = pi = 0 if i is not divisible 

by v. Then u and the characteristic polynomial &(x(n) of z;@ determine the 8 x G 

matrix traces tr U.i,(X-’ - e) for all 1 5 i < m - 1. 

Proof. Let T,, be the set of all integers 1 5 i 5 m - 1 with iu E r modulo n. Then 

certainly JTUl 5 y. Furthermore, let io E Tu and suppose that 

io s C p(i)i mod m 
iEr,, 

with -y 5 ,u(i) 5 y for all i. Then 

iou s C ,u(i)iu modn 
ier,, 

and, of course, each iu E r modulo n. Moreover, if ilu z i2u modn, then since v 

divides u and n, we have ilU s i$ modm. But gcd(&m) = 1, so il E i2 modm 
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and hence il = i2. In other words, the preceding congruence describing iou involves 

distinct elements of r on the right and therefore we conclude from our assumption 

that p(io) = 1 and that p(i) = 0 otherwise. Finally, if io = m/2, then n is even and 

iou E r modulo n is divisible by n/2. But O,n/2 4 r, so this cannot occur. 

Since ai = pi = 0 if i is not divisible by v, the previous lemma implies that 

t,&.(A) = detN . (detM)“-’ where A4 = Ame - gm and 

Ii-1 

N = hMe - g”‘x + C Aioliu(x - e) 
i=l 

m-l m-l m-l 

+ C Am-jgm-‘(e - gX)pju + C C lbm+i-jCliuX/?j, 
j=l i=l jzl 

with subscripts computed modulo n. 

Now let io E Tu and let f(io) denote the coefficient of Aio in &(A). Since 

I,&(O) = det(-gmx) . (det(-g”))“-’ 

= det(g”) . det(-x) . (det(-gm))‘-’ # 0, 

it follows that f(io)/&(O) is the coefficient of R’o in (det N’).(det A4’)“-’ where M’ = 

-g-“M = e - l”g-” and 

N’ = _g-mNx-l 

m-l 
= e _ ;Img-mx-1 + C i’Ctiu(X-’ - e) 

i=l 

m-l m-l m-l 

+ C A”-j(X- t?)BjuX-' - 2 C ?Lm+i-jCliuXflj$t-l 
j=l 

since gai = Mi and gj?j = fij. 

i=l j=1 

Note that io < m, so the matrices A”‘g-“x-l and AmgPm do not contribute to the 

Aio coefficient. Thus, by definition of T,,, we see that f (io)/&(O) is the coefficient of 

Ai in det N” where 

N” = e + C ~‘qu(x-’ - e) + jg Am-‘(X - e)/?juX-' 
iET,, ,I 

-ig jg ~m+i-jCliuXpjuX-l. 
‘l I, 

If r: = { 0 } U Tu, then the multilinearity of the determinant function implies that 

det N” = C det C,, 
0Eo 

where Q is the set of all functions 

w:{ 1,2,...,b} -+ r; x r; 
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and where the kth row of C, is equal to the kth row of 

e, if o(k) = (0, 0), 

lb’Miu(X-’ - e), if o(k) = (i, 0), 

A"-'(x - e)fij~x-', if w(k)= (O,j), 
_lm+i-j 

%.tXPiuX -l, if o(k) = (i,j). 

Observe that the ranks of the latter three matrices are all 5 1 since, by assumption, 

the Xi’s and /3j’s have rank at most 1. Thus if two rows of C, come from the same 

one of these three matrices, then det C, = 0. Thus we can restrict our attention to 

those o E Sz with the property that each element of r: x r,# not (0,O) occurs at most 

once as an image point. Furthermore, notice that det C, is a scalar times a power of il 

with the exponent of I equal to the sum of the contributions from each of the e rows. 

Specifically, the degree of the kth row of C, is equal to 

0, if w(k) = (O,O), 

1, if o(k) = (i,O), 

m -_A if o(k) = (O,j), 

i + (m - j), if w(k) = (i,j). 

If o(k) = (i,j), let us call i a left image of o and j a right image. It follows from 

the above that if t E T,, is both a left and a right image of w, then det C, has degree 

>t+(m-t)=m. 

Suppose that det C, has degree io. For convenience, let _YU denote the set of left 

images of w which are contained in T,, and let BW be the set of right images of w in 

T,,. Since io < m, the previous observation implies that 9, and ~‘27~ are disjoint. In 

particular, since each element of rf x rf not equal to (0,O) can occur at most once 

as an image of o, we see that each element t of 9, or W, occurs with multiplicity 

,u(t) < jr: 1 - 1 5 y. Now det C, has degree 

Thus, since _YW n W, = 8 and 0 < p(t) < y, this degree can equal io modulo rn only 

in the trivial situation where p(io) = 1 and p(t) = 0 otherwise. Finally, if io E W,, 

then det C, has degree m - io # io, since io # m/2. Thus io E Tu and we conclude 

that those det C, which contribute to the 1” coefficient of det N” consist precisely of 

e - 1 distinct rows of e and the complementary row from AioMiou(X-’ - e). It follows 

from the nature of e that the sum of these determinants is equal to Ai0 tr CliOu(X-’ - e). 

Therefore, f(io&(O) = tr C(i,,u(x-’ -e) and t&(L) determines the various matrix traces 

tr Ctiou(X-l - e) for all io E ru. 
To summarize, we have shown that the characteristic polynomial &x(A) of z’;& 

determines the matrix traces tr Cli,,u(X-’ - e) for all io E Tu. On the other hand, if 

1 5 io 5 m - 1 and is $! TU, then CliOu = 0 and again the trace is known. Thus &.(A) 

determines tr aiu(n-’ - e) for all 1 5 i 5 m. Finally, if u’ is a multiplicative inverse 
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for ii modulo m, then iv = i&mod n. Thus tr c(~~(x-’ - e) = tr orill(x-’ - e) where 

j 5 iu’mod m, and the lemma is proved. 0 

Let k and L be integers with k / G and, for any a E i&(F), define g(a) = S?/(a) to 

be the G x e partitioned matrix given by 

a a ... a 

a a ... a 
@(a)=%(a) = . . . 

i 1) 

E WV’>. . . . . 

a a ... a 

If a, b,c E A&(F) and if 2 = diag(c,c,. . . ,c) E Mf(F), then clearly 

Na)a(b) = (e/k)a(ab), %9(a); = Am, &%(a) = &?(ca). 

In particular, if char F = p > 0 and if p 1 (E/k), then B(a)9(b) = 0. We can now 

prove the following result. 

Theorem 4.5. Let F be a locally$nite jield of characteristic p > 0 and let FU,(F) 

denote the jinitary unitary, symplectic or orthogonal group of injinite degree. If G is 

a group with 

F&(F)’ C G C FGL,(F), 

then G is strongly p-insulated. 

Proof. Let x1,x2,. . . , xt be nonidentity elements of G c FGL,(F) and choose an inte- 

ger k 2 1 with x1,x2,... ,xt E GLk(F) and such that the restriction 0 of the sesquilin- 

ear form to this k x k upper left-hand comer is nonsingular. The goal is to find a 

homocyclic subgroup of G with appropriate properties. We actually prove a somewhat 

stronger result. 

Claim. Ifn and s arehxed powers of p with n > ps > (k2 +3)kZ, 

r 2 0 there exists a group P, satisfying: 

(i) P, = Z1 x Z, x - . . x Zr where each Zi is cyclic of order n 

(ii) P,. C U,(F, 4)’ where 8 = L(r) is an integer divisible by 

then for all integers 

pk and where 4 = 

diag( 8,8, . . . , 0) is the direct sum of e/k copies of 0 or of its corresponding quadratic 

form in characteristic 2. 

(iii) gBf(c) = 93/(c) = B/(c)g for all g E P, and c E I&(F). 

(iv) rf h = hih2.. . h, E Pr with hj E Zj for all j and if lhjl > sj for some j, then 

no hxi is a p-element. 

Proof. We proceed by induction on r. The case r = 0 is trivially satisfied by taking 

P, = 1 and / = pk, using the fact that the infinite-dimensional sesquilinear form 

contains the direct sum of p copies of 8. 
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Assume the result holds for some r > 0 and let P, be given satisfying the above 

four conditions. For convenience, we modify the notation somewhat and write Pr = 

z, x z, x . . . x zr+l. With this change of subscripts, statement (iv) translates to the 

assertion that if h = hzh3 . . h,.+l E P, and if jhij > sj-’ for some j, then no hxi is a 

p-element. Since FU,(F) depends only on the nature of the sesquilinear form, we can 

assume that the n8 x ne upper left-hand corner of FU,(F) has the form determined 

by the matrix @ = diag(4,4, . . . , 4). In other words, @ is the direct sum of N copies 

of 4 or of its corresponding quadratic form in characteristic 2. Now let y and z be 

the n8 x nd partitioned matrices 

I and z = 

where CII,CIZ ,..., c1,_1 and pi,/32 ,..., fin-i are / x e matrices to be described later and 

where e E Mt(F) is the / x / identity matrix. Set zi = yzy-’ and, for each g E 

P,. G U,(F, q5)‘, define 

s^ = diag(g, 9,. . . , s> E GdF, @I’. 

Then certainly P, 2 P, and we set P,.+I = (zI,~,.). We will show, with appropriate 

choices for the Cli’s and pj’s, that P,+I has all the necessary properties. 

To start with, let each Cli = @[(ai) for a suitable ai E k&(F). Furthermore, if * 

denotes the composition of matrix transpose and the field automorphism K, then we set 

pi = &J/(bi) where bi = -0-‘~f0. Thus 

by the definition of C$ in (ii). Similarly, using p ) (E/k), it follows that $&xi = 

pT4fii = 0 and therefore y*@y = @, since $4 + 4pi = 0. In other words, y E 

U&F, @) except possibly when we are dealing with a quadratic form Q in characteristic 

2. In the latter case, we follow the argument of [lo, Lemma 5.4(ii)]. Specifically, we 

already know that y is an isometry for the symplectic form corresponding to Q and 

therefore it suffices to show that Q(vr) = Q(u) for all 21 in a generating set for 

co&e(F), the n/-dimensional column space over F. From the nature of y, this will 

follow if we can show that Q(ge(c)w) = 0 f or all c E Mk(F) and all w E colt(F). 

But Q(@&h) = (~/k)Q(w’) f or some column w’ E colk(F) and therefore, since 

p ( (e/k), this fact is proved. Of course, z is clearly also contained in U,,t(F, @), 

so certainly zi = yzy-’ E U&F, CD). In fact, since z: = 1 and n is a power of 

p = char F, we conclude that zt E U&F, @)‘. 

Next, condition (iii) applied to P, implies that each g E 8, commutes with both y 

and z. Thus p, commutes with zt and, since P, is abelian, it follows that P,+l is an 
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abelian p-group. Indeed, since z; = 1 and since no smaller power of zi is contained 

in p,., we see that 

n n L h 
P r+~=(Z,)XPr=Z~XZ~Xz~X~~~XZr+~, 

where Zi = (zi ). In other words, P,+, is homocyclic of type it and rank r + 1, and it 

satisfies conditions (i) and (ii) with e(r + 1) = Qr)n. Furthermore, if c E Mk(F), then 

4&(c) is the partitioned matrix 

and thus condition (iii) applied to P, implies that &49’ne(c) = 9&(c) = B’,~(c)& for 

all g E P,.. Furthermore, since p ) (l/k), it follows that cli = gl(ai) and j3i = S?e(bi) 

annihilate Bf(c) and thus multiplication by both y and z fix L&(c). In other words, 

z~s:,e(c) = %~(c) = -@k(c)zi and P,+t also satisfies condition (iii). 

Notice that n and s are powers of p with n 2 ps > (k2 + 3)k2, and thus nJps is 

an integer with (n/ps)(k2 + 3)k* 5 n. At this point, we specify our choices for the 

matrices Cli and pi. First, choose q = k2 + 2 or k2 + 3, so that p does not divide q. 

Since (n/ps)q’-’ < n, we can define r to be the subset of { 1,2,. . . ,n - 1 } of size 

y = k2 given by 

r = { (nips), (nlps)q, (nlps)q2,. . . , Wpskk’-’ >. 

Finally, let oi = 0 if i 4 r and let ai run through the k2 matrix units of k&(F) for 

i E r. Of course, ai now determines Cli = g/(ai) and fii = -$-‘a,!$. 

It remains to prove that condition (iv) holds for P,.+l. To this end, let h E P,+, 
satisfy the hypothesis of (iv) and write h = zy@ where g = 9293. .. g,+t E P, with 

gj E Zj. We use the notation of the preceding three lemmas and, in particular, we set 

u = gcd(u, n) and m = n/v = 1~‘; I. Notice that all the basic hypotheses are satisfied. In 

particular, tY.iflj = /Ijai = 0 for all i,j and r = { i ( ai # 0 or pi # 0). Furthermore, 

since ai = 9Yl(ai) and pi = gl(bi), it follows that aig = ai = gai and flig = pi = gpi 

by condition (iii). We will discuss the hypothesis preceding Lemma 4.4 when it is 

required. If x E GLk(F) G GLl(F) C GL,t(F), then we will use the comer embeddings 

_ to distinguish the various containments. Note that, since char F = p > 0, an element 

w of GL,t(F) is a p-element if and only if all its eigenvalues are equal to 1 and hence 

if and only if its characteristic polynomial is equal to (2 - l),l. There are two cases 

to consider according to whether Iz’;I 5 s’ = s or not. 

Case 1: Izyj 5 s. 

Proof. Here m = Izt;j 5 s and let x E {xi ,x2 ,. . . ,xt } be viewed as an element of 

GLG(F). By Lemma 4.3, the characteristic polynomial &(A) of hx” = zy@ is divisible 
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by detN when N is the 6’ x 8 matrix 

m-1 

N = %me - g”‘x + C l,‘aiu(X - e) 
i=l 

m-l m-lm-I 

+ C Am-jgm-‘(e - gX)pju + C C /Zmfi-jCliuX/3j, 

j=l i=l j=l 

with the subscripts computed modulo n. Now m 5 s, so v 2 n/s and hence v is divisible 

by n/s. But, by construction, the only nonzero ai’s and pi’s have subscript i = (n/ps)q’ 

with q not divisible by p. Thus these subscripts are not divisible by u and hence not 

divisible by u modulo n. In particular, N = AMe - g”x. 

Since iz”;] 5 s, it follows by assumption that (gj( > sj for some j > 2. Thus Igy 1 > 

d/m 2 sj-’ and, by applying (iv) to the element gm = g;gT . . . gr+, E P,., we see that 

gmx is not a p-element. Hence gmx has an eigenvalue distinct from 1, and therefore 

detN = det(3,“e - gmx) has a root distinct from 1. In other words, &(A) # (A. - l)nL 

and zyg? is not a p-element. 0 

Case 2: lz”;] > s. 

Proof. Here m > s, let x be any element of GLk(F) and let x = CZ E GLl(F). Note that 

ai = 3?c(ai) and ai is either 0 or a matrix unit in A&(F). Thus rank Cli = rankai 5 1 

and rank fii = rat&(-~-‘a~~) 5 1. Furthermore, 

and Irl = y = k2. Now suppose we are given the integer equation 

io 3 C p(i)i modn 
iET 

with j,~(i)l 5 y for all i. Then, by writing i = (n/ps)qj in the above and setting 

p(i) = b(j), we have 

k2-1 

Wps)qj” 3 ,Fo PO’)(nlps)qj modn 

or 

k*-1 

gj, E Jgo ,Ci(j)qj modps. 

But q = k2+2 or k*+3, so l+lj(j)i 5 k*+l < q. Thus, since ps > qk2, uniqueness of 

expression in the q-adic expansion implies that ,E(ja) = 1 and ,E(j) = 0 otherwise. In 

other words, p(io) = 1 and p(i) = 0 otherwise, so the hypothesis preceding Lemma 4.4 

is satisfied. Notice also that if n is even, then the elements of r are all odd multiples 

of (n/2s) and therefore n/2 6 r since s > 1. 

Now m > s, so v < n/s and hence v 1 (nips). Thus the multiples of v include 

all multiples of n/ps, and therefore Cli = pi = 0 if i is not divisible by u. Thus, 
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by Lemma 4.4, t+&(n) determines all matrix traces tr tli(x-t - e) with i E r. Let e’ 

denote the k x k identity matrix and observe that x = i = diag(x, e’, . . . , e’) and that 

e = diag(e’, e’, . . . , e’). Since 

0$(X-’ - e) = gl(ai) . diag(x-’ - e’, 0,. . . ,O) 

we see that tr ai(x-’ - e) = tr ai(x-’ - e’). In other words, &(A) uniquely determines 

tr ai(X-’ - e’) for all i E r. But if ai is the matrix unit eLd, then tr ai(X-’ - e’) 

is precisely equal to the (d, c)-entry of x-l - e’. We conclude therefore, from the 

choice of the ai’s, that $X(A) determines all entries of x-’ - e’. Hence it determines 

the matrices x-l - e’, x-l and then x. 

We have therefore shown that the map x H $X(n) is one-to-one and, since zyg = zr@ 

is a p-element, we see that e’ H &(A) = (A- l>,‘. In particular, if x is not the identity 

then &(A), the characteristic polynomial of zy& = z’f$, is not equal to (A - lye and 

therefore zy& is not a p-element. Since this applies to all x E {x1,x2,. . . ,_q }, Case 2 

is proved and hence so is the claim. 0 

Proof of Theorem 4.5 (Conclusion). The remainder of the proof now follows easily. 

Let {x1,x2,... ,xI } c G \ 1 be given and again choose k so that these elements are 

contained in GLk(F) and such that the restriction of the sesquilinear form to this k x k 

upper left-hand comer is nonsingular. Suppose the integer Y 2 1 is given and let n 

and s be powers of p with ps 2 (k2 + 3)k2 and n > s’. By the preceding claim, there 

exists a homocyclic p-group P, of type n and rank r satisfying condition (i), (ii) and 

(iv). In particular, P, 2 FU,(F)’ & G. Finally, suppose h = hih2 . . h, is a generator 

of P,. with hj E Zj. Then (h( = n, SO Ihi\ = n for some j. But then lhjl = IZ > S’ > d, 

so (iv) implies that no hXi is a p-element, and G is indeed strongly p-insulated. q 
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