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Let F be a field of characteristic 0 and let A, ; € F’ for | <4, j < n. Define
R = F[x,, %;....,X,] to be the skew polynomial ring with XX, = A, X;%, and let
S =F[x,%,....%,, % ', %3, ..., %, '] be the corresponding Laurent polynomial
ring. In a recent paper, Kirkman, Procesi, and Small considered these two rings
under the assumption that § is simple and showed, for example, that the Lie ring
of inner derivations of § is simple. Furthermore, when n = 2, they determined the
automorphisms of §, related its ring of inner derivations to a certain Block algebra,
and proved that every derivation of R is the sum of an inner derivation and a
derivation which sends each x, to a scalar multiple of itself. In this paper, we
extended these results to a more general situation. Specifically, we study twisted
group algebras F/[G] where G is a commutative group and F is a field of any
characteristic. Furthermore, we consider certain subalgebras F'[H] where H is a
subsemigroup of G which generates G as a group. Finally, if e: G X G > F is a
skew-symmetric bilinear form, then we study the Lie algebra F,[G] associated with
e, and we consider its relationship to the Lie structure defined on various twisted
group algcbras F’[G]. € 1995 Academic Press, Inc.

1. TWISTED GROUP ALGEBRAS

Let G be an arbitrary multiplicative group and let F be a field. Then a
twisted group ring F'[G]is an associative F-algebra with F-basis G, a copy
of G, and with multiplication defined distributively using

iy =t(x,y)xy forall x,y €G.
Here t: G X G — F'= F\ {0} is the twisting function and associativity is
easily seen to be equivalent to
t(x,y)t(xy,z) = t(x,yz2)t(y, z) forall x,y,z € G.

In other words, + must be a 2-cocycle. On the other hand, a simple
(diagonal) change of basis, replacing each ¥ by ¥ = d(x)x with d: G » F,
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obviously maintains the same structure but replaces the twisting ¢ by

i(x,y) = d(x)d(y)d(w) ' t(x,y).

Thus ¢ and ¢ are equivalent modulo a 2-coboundary and therefore the
various twisted group algebras F'[G] are in one-to-one correspondence
with the elements of the cohomology group H*(G, F’). By way of a
diagonal change of basis, we can assume, without loss of generality, that
1 =1 is the identity element of F/[G]. Furthermore, & = {ag|a € F,
g € G} is a group of units of F'[G], the so-called group of trivial units, and
£/F=G. If t(x,y)=1 for all x,y € G, then F'[G] is untwisted and
F'[G] = F[G] is the ordinary group algebra of G over F.

Again let F'[G] be given. If o € F'[G], then « is a finite sum «a =
¥, a,g with a, € F and g € G. We then let supp a, the support of a, be
the finite subset of G consisting of those group elements g which occur in
this sum with coefficient a, # 0. Furthermore, if X is a subset of G, we let

F'[X]={a€ F[G]|supp a € X}.

In particular, if H is a subsemigroup of G (with 1), then F'[H] is a
subalgebra of F'[G). Now if x is any element of G, then we set Cg(x) =
{g € G|gx = xg} so that C{,(x) is clearly a subgroup of G contained in
C(x). Similarly, we set

7(G)={geGlg=x forall x € G}

so that Z'(G) is a subgroup of Z(G).
At this point and throughout the remainder of the paper we assume that
G is an abelian group. Thus

Xy =AMx,y)ix forall x,y € G,
where A: G X G — F’ is a map which is easily seen to satisfy
A(x,yz) = AMx,y)A(x,2) and My, x) = /\(x,y)fl
for all x, y, z € G. Notice that
[2,5] =37 — 3% = (1 = My, x))XF = (1 = A(y, ) 1(x, )5y
for all x,y € G. In particular, supp[¥,y]=1{xy} if X and y do not
commute and the support is empty otherwise. Since xy € Z'(G) implies

that ¥ and j commute, it follows immediately that supp{X, y] is always
disjoint from Z'(G).
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Now let G* = G \ 1 be the set of nonidentity elements of G. Then the
preceding remark implies that #(G) = F'[G¥] is a Lie subalgebra of
F'[G]. Furthermore, if #(G) is Lie simple, then clearly either Z'(G) = 1,
or |G| = 2 and dim, Z(G) = 1.

LEMMA 1.1.  Let F'[G] be given.

(i) ZF'[G), the center of F'IG), is equal to F'[Z) where Z = Z(G).
In particular, ZF'(G] = F if and only if Z'(G) = 1.

(ii) If Z is free abelian or if F is algebraically closed, then F'[Z] = F[Z].

Proof. () It is clear that F'[Z] c ZF'[G]. For the converse, let
a=1L%,a,g € ZF[G] Then, for any x € G,

0=[a.x]=Ya,(1-A(x g))&x

so Mx,g) = 1forall g€ suppa.Thussuppa C Z,and a € F[Z].

(i) Let Z ={az|a € F, z € Z} be the group of trivial units of the
commutative algebra F'[Z]. Then 2 is a commutative group with Z/F =
Z. If F is algebraically closed, then F~ is divisible and hence injective. If Z
is free abelian, then Z is projective. In either case, Z/F'= Z splits, so
2 = F'x X where X is a complementary subgroup isomorphic to Z. Since
the elements of X form an untwisted group basis for F/[Z], we conclude
that F/[Z]=F[X]=F[X]1=F[Z] 1

For any ring R, let InDer R denote its Lie ring of inner derivations. We
can now prove

LEMMA 1.2, Let F'[G] be given and assume that either

(i) F'[G]is a simple ring, or
(ii) InDer F'[G] is a nonzero simple Lie algebra.

Then ZF'[G] is a field. In particular, if F is algebraically closed or if G
is free abelian, then ZF'[G)} = F and Z'(G) = 1.

Proof. 1f F'[G]is a simple ring, then certainly ZF[G] is a field.

On the other hand, suppose InDer F/[G] is a nonzero simple Lie
algebra. Then the nonzero hypothesis implies that F[G] is noncommuta-
tive and therefore G properly contains Z(G) = Z. Now let « be a
nonzero element of ZF'[G] = F'[Z] and observe that aF'[G] is a two-
sided ideal of F[G]which therefore determines a Lie ideal of InDer F[G].
Since G # Z, it is clear that aF'[G] cannot be contained in the center of
F'[G] and therefore aF'{G] must determine all of InDer F/[G). As a
consequence, oF'[G] + F'[Z] = F'[G]. Now choose a fixed element x
G\ Z and apply the natural projection F'[G] — F'[Zx] to the previous
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equality. Then aF'[Zx] = Fi{Zx] = F'[Z]&, so it follows that aF'[Z] =
F'[Z). Thus « is invertible in F'[Z], and F'[Z]is a field in this case also.

Finally, if G is free abelian, then so is Z. Thus if either G is free abelian
or F is algebraically closed, then Lemma 1.1(ii) implies that F'[Z] = F[Z]
But F[Z] has an augmentation homomorphism onto F determined by
sending the group basis to 1. In particular, if F/[Z]is a field, then the
kernel of this homomorphism must be trivial and therefore Z = 1, as
required. 1

Observe that if F is the field of rational numbers and if y is a complex
nth root of 2, then Fly]is a field which is easily seen to be isomorphic to a
twisted group algebra over F of the cyclic group G of order n. In
particular, Z F'[G] can be a field without having Z'(G) = 1. Of course, in
this case, G is not free abelian and F is not algebraically closed.

For the remainder of this section we assume that Z'(G) =1 and
therefore that ZF'[G] = F. Let H be a subsemigroup of G (with 1) and
suppose that H generates G as a group. Then certainly F'[ H] generates
F'[G] and therefore ZF'[H ] is also equal to F. Now let H* = H\ 1 be
the set of nonidentity elements of H and, as before, write S(H) = F'[H*],
Then {H]is a Lie subalgebra of F/[H), and F'[H] = ZF'[H] ® ¥ (H),
so it is clear that InDer F'[H] is Lie isomorphic to Z(H).

PropOSITION 1.3.  Let F'[G] be a twisted group ring with Z'(G) = 1 and
let H be a subsemigroup of G which generates G as a group.

(i) Any nonzero Lie ideal of #(H) contains h for some h € H*.

(i)  Any nonzero ideal of F'{ H) contains h for some element h € H. In
particular, F'LH] is a prime ring.

Proof. (i) Let I be a nonzero Lie ideal of L = %(H) and let m be
the minimal support size of the nonzero elements of I. Our goal is to show
that m = 1. To this end, let a = L' | 4,X; be any element of / of support
size m. If g € Ci;(x)), then [, g] € I has support size less than m and
therefore this Lie commutator must be 0. Thus A(g, x;) = 1 for all i and
all such g. In particular, since x, € C},(x,), it follows that ¥, commutes
with all %;. In other words, the elements of supp a all commute in F'[H].
Now suppose that g € H/C},(x,). Then [a, g] € [ and

n

[@,8] = X a(l — Mg, x))%g

i=1
is nonzero, so this Lie commutator must also have support size m.
Therefore, by the above argument, the supporting elements of [a, g]
commute in F'[H]. In other words, %,g%,8 = X;gx;§ for all i, j and, since
gx, = Mg, x)x;g and X%, = XX, it follows that A(g,x,) = Mg, x;). We
have therefore shown that Mg, x;) = A(g, x;) for all /,j and all g € H.
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Viewing these elements in G, we see that Mg, x,x; ') =1 for all g € H.
Thus )'c,-)'cj“ centralizes F'[ H] and therefore it centralizes all of F[G]. In
other words, x,-xj" € Z'(G) = 1,50 x, = x; for all i, j, and therefore m is
indeed equal to 1.

(ii) Now let J be a nonzero ideal of F/[H], and assume that 1 & J.

Since J is clearly not central in F'[H], we see that [J, F'[H ] is a nonzero

Lie ideal of (H). Thus, by (i) above, [J, F'[H ] € J contains 4 for some
h € H*, and the result follows since each /4 is a regular element of the
ring. §

As a consequence, we obtain the following generalization of [KPS,
Theorem 3.1] and [MPe, Proposition 1.3]. Obviously, it is a converse to
Lemma 1.2.

THEOREM 1.4. Let F'[G] be a twisted group algebra with G abelian. If
Z'(G) = 1, then F'[G] is a simple ring and InDer F'[G] = #(G) is a simple
Lie algebra.

Proof. By Proposition 1.3(ii), any nonzero ideal of F'[G] contains a
unit, and therefore F'[G]is a simple ring.

Now let I be a nonzero Lie ideal of $A(G) = InDer F'[G]. Then, by
part (i) of the preceding proposition, / contains Z for some z € G*.
Furthermore, if y € G\ C{,(z), then the formula for [y, Z] implies that /
contains yz. But yz is a typical element of X = G\ C,(z), so I contains
F'[ X']. Finally, observe that X generates G as a group. In particular, if g
is any element of G*, then § cannot centralize all of X. Thus there exists
x € X with g & C[,(x). The above argument now implies that g € I and,
with this, we conclude that I =%(G), and £(G) is Lie simple. |

A second application of Proposition 1.3 concerns the Martindale ring of
quotients of F'[H]. More precisely, if R is any prime ring, then there are
three distinct Martindale rings of quotients which can be defined to extend
R. These are the right, left, and symmetric versions, and basic properties of
each can be found in [Pa, Sect. 10].

ProposiTion 1.5, Let Z'(G) =1 and let H be a subsemigroup of G
which generates G as a group. Then F'[G] is the right, left, and symmetric
Martingale ring of quotients of F'IHY). In particular, any automorphism or
derivation of F'[H] extends uniquely to an automorphism or derivation of
F'[G].

Proof. 'The proofs are virtually identical for all three quotient rings, so
we will consider only the symmetric version. To this end, let Q be the
symmetric Martindale ring of quotients of the prime ring F/[H]. If x € H,
then xH = Hx implies that ¥ is a nonzero normal element of F'[H] and
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therefore ¥ is invertible in Q. Thus Q 2 F'[H)H . Furthermore, since H
consists of normal elements, the ring extension F[H]H™' is uniquely
determined by F'[H]. Hence, since H generates G, it follows that
F'[H]H ' = F'[G), and therefore Q D F'[G]. For the reverse inclusion,
let ¢ be any element of Q. Then, by definition of Q, there exists a nonzero
two-sided ideal I of F'{H] with gI C F'[H]. But, by Proposition 1.3(ii), /
contains y for some y € H, so ¢y € F'[H] and ¢ € F[HIH ' = F[G].
We conclude that Q = F'[G] and [Pa, Lemma 10.9] yields the result. |

2. PSEUDO-INNER DERIVATIONS

Again, let G be an abelian group and let F'[G] be an arbitrary twisted
group algebra. For convenience, write Z = Z'(G) so that ZF'[G] = F'[Z].
As will be apparent, there are two types of F-derivations of F[G] which
are of particular interest; these are the central and the pseudo-inner
derivations which we define below.

Let 8: G — F'[Z]” be a homomorphism from the multiplicative group
G to the additive group F'[Z]*. In other words, 8 is a map satisfying
f(xy) = 8(x)6(y) for all x,y € G. If we define the F-linear operator
9= d, by 9(¥) = 8(x)x for all x € G, then it is easy to see that 4 is an
F-derivation of F'[G]. Indeed, for any x,y € G, we have

A(xy) = a(t(x,y)0) = t(x,y)0( )5y

(0(x) + 0(y))xy = a(x)y +xa(y)

since 6(y) is central in the ring. Furthermore, d(x) € F'[Zx] for all
x € G. We call any such & obtained in this way a central derivation. Of
course, if Z =1, then 6: G — F* and, in this case, we also call ¢ a scalar
derivation.

Now let F'[[ G] denote the sct of all possibly infinite formal sums

y =L, c.g with g € G and ¢, € F. Then F'[[ G ] is no longer a ring, but
with the obvious definition of multiplication determined by the twisting
function ¢, it is at least an F'[G]-bimodule. In particular, if x € G, then

ad, X = [y, %] = yX — Xy
= ¢, (1 = A(x.8))8x
8

is a well-defined element of F'[[ G]. Furthermore, the Jacobi identity
applied to each summand of y shows that

ad, Xy = (acly x)y +x(ad, ¥)
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for all x,y € G. In particular, if y has the additional property that
ad, x € F'[G] for all x € G, then ad_: F'[G] — F'[G] determines an
F-derivation of the algebra. We call any such derivation of F'{G] obtained
in this manner a pseudo-inner derivation. Since the elements of Z N supp y
have no effect on the map ad,, we may always suppose that Z N suppy =
&. Clearly, ad, ¥ € F'I(G\ Z)x] for all x € G.

LEMMA 2.1, Letye F'[G].

() ad, is a pseudo-inner derivation if and only if

(G\ Ci(x)) N suppy

is finite for all x € G

If G has finitely many elements x|, x,,..., x, with N} C(x,) = Z'(G),
then any pseudo-inner derivation of F'[|G] is inner. In particular, this applies
when G is a finitely generated group.

Proof. Part (i) is immediate from the preceding formula for ad, X and
part (ii) follows from

"

G=2U U(G\C())
1

and the fact that supp y meets each of these summands in a finite sct. |

In general, F'[G] can admit pseudo-inner derivations which are not
inner. For example, let G be free abelian on the infinitely many generators
X{sX3,..., ¥}, Y2, ... and assume that F° contains an element A of infinite
multiplicative order. Define F'[G] to be the Laurent polynomial ring in
the variables ¥,, ¥, subject to the relations

X5, = Ayx foralli=1,2,...

and with all other generators commuting. Then it is easy to see that
Z(G) =1, so F'[G] is simple. Furthermore, notice that if § is any inner
derivation of F’'[G], then the elements ¥, are eventually constant for 4.

%

Thus the element y= Y7 | X, € F'[G] determines a pseudo-inner
derivation ad_, which is not inner.
THEOREM 2.2.  Let F'[G] be a twisted group algebra of the abelian group

G over the field F. Then any F-derivation of F'[G] is uniquely the sum of a
central and a pseudo-inner derivation.
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Proof. Let @ be an F-derivation of F'[G] and, for each x € G, write
A(¥)x~" = £, a,(x)g where each a, is a map from G to F. Equivalently,

#(%) = Ta,(x)gx

and, of course, for each x only finitely many zzg(x) can be nonzero.
Let x, v, g € G and consider the gxy terms in

t(x,y)d(xy) = 9(%3) = o(X)j + x(¥).
Since G is abelian, we obtain
t(x,y)a ()8 = a,(x)gXy + ka,(y)&y
and hence
a,(xy)gxy = a,(x)gxy +a,(y)A(x,8)gxy.
In other words,
a () = a,(x) +a,(y)A(x.8)

for all x,y,g € G.
In particular, if g € Z, then a (xy) = a,(x) + a,(y) and it follows that
the map 6: G — F'[Z]" given by

0(x) = ) a(x)g

geZ

is a group homomorphism. Thus 8 determines a central derivation 4, of
F[G].
On the other hand, suppose g € Z and let x,y € G\ C(,(g). Then

a (x) +a,(y)A(x,g) = a,(xy)
=a,(yx) = a(y) +a,(x)A(y.g)
so we obtain
a ()1 = A(y,g)) = a,(»(1 — AM(x,8)).
Since A(x, g) and A(y, g) are not equal to 1, it follows that

a(x)  ayy)

1= A(x,8)  1—-Ay8)
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and thus these fractions depend only upon g. Writing ¢, € F for this
common value, we have a,(x) =c (1 — Mx, g)) for all x € G\ C((g).
Furthermore, if x,y € G\ C[,(g), then

a,(xy) = a,(x) +a,(y)Ax,g)
co(1 = A(x,8)) +c (1 = A(y,8))A(x,8)
=, (1= A(x, 8)A(y, 8)) = ¢, (1 — A2y, 8)).

But any element of C(g) is a suitable product of two such elements of
G\ C(;(g), and therefore we conclude that

a,(x) = c (1 = A(x,8))

for all x € G.
Now define y € F'T G ] by

y= Y ¢&

gezZ
Then

[v.%8] = X co(1 = Mx,8))8x = ) a,(x)gx
gEZ geZ

and, since

G(X) = 6(x)E = ). a,(x)F,
ge’z
we conclude that (%) = §,(x) + ad, X for all x € G. Thus 7 = 4, + ad,
is indeed the sum of a central and a pseudo-inner derivation. Finally, the
uniqueness of this decomposition follows immediately from the fact that
any central derivation maps ¥ to F'[Zx], while any pseudo-inner deriva-
tion sends ¥ to the complementary subspace F'(G\ Z)x]. |

For any F-algebra R, let Der, R denote the Lie algebra of F-deriva-
tions of R. Then we have

COROLLARY 2.3.  Let F'[G] be given with G a finitely generated commuta-
tive group. Then every F-derivation of F'[G] is uniquely the sum of a central
and an inner derivation. If in addition Z'(G) = 1, then every F-derivation of
F'{G1 is uniquely the sum of a scalar and an inner derivation. Furthermore, in
this case,

[Der, F'[G], Der, F'[G]] = InDer F'[G]

is a simple Lie algebra.
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Proof. 'The first part is an immediate consequence of the preceding
theorem and Lemma 2.1(ii). Now suppose in addition that Z(G) = 1, so
that the central derivations of F'[G] are scalar. Since InDer F'[G]<Der
F'[G] and since any two scalar derivations commute, we have

[er, F'[G], Der, F'[G] C InDer F'[G]
Finally, InDer F'[G] = #(G) is a simple Lie algebra, by Theorem 1.4, and
(@) is clearly nonabelian when G # 1. Thus the result follows. [

Next we consider Der, F/[H] when H is a subsemigroup of G. As we
will see, it is quite possible for pseudo-inner derivations of F'[G] to
stabilize F'[H] and yet not be pseudo-inner on F[H] In other words,
there can exist elements y € F'[L G ] with ad, F'[H] € F'[H], but such
that ad,, does not agree with ad; on F'[H]for any & € F'[[ H]]. However,
there is at least one case when this cannot occur.

LeMMA 2.4, Let H be a subsemigroup of G and assume that

NH"= forallge G\H.
n=1
Then any pseudo-inner derivation of F'[G] which stabilizes F' H] determines

a pseudo-inner derivation of F'[H].

Proof. lLet y= % ¢, ¥ € F'[[ G] define a pseudo-inner derivation of
F'[G] stabilizing F'[H]. Fix g € suppy. The goal is to show that either
g € H or g € C,;,(H). This will yield the result because, in the latter case,
the g-term of y has no effect on the restriction of ad, to F'[H]

Let 4 be any element of H. Since

ad h =Y c (1 —Mh,x))%h € F'[H],
it follows that either h € C{(g) or h € g7'H = Hg"'. Thus H ¢ CL(g)

U Hg~' and, by induction, we have H c C{,(g) U Hg " for all n > 1.
Indeed, if the latter inclusion holds for some n, then

HcCL(g) UHE™" < Ci(g) U (Ci(g) UHg )g™”
— Cii(g) U Hg "D

since g € Ci(g). As a consequence,

HcCy(g) v

o)
n=1
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Finally, if ¢ € H, then N,_, Hg™" = J by hypothesis. Then H < C/;(g)

n=1

and the lemma is proved. |

COROLLARY 2.5. Let F'[G] be given with Z'(G) =1 and let H be a
subsemigroup of G generating G as a group.

(i) Any F-derivation of F'[H] is uniquely the sum of a scalar deriva-
tion and the restriction of a pseudo-inner derivation of F'[G].

(i) If N,_,Hg "= forall g € G\ H, then any F-derivation of
F'[H] is uniquely the sum of a scalar and a pseudo-inner derivation.

(iii) If G is finitely generated, then the pseudo-inner derivations in (i)
and (ii) are necessarily inner.

Proof.  Since Z'(G) = 1, Proposition 1.5 implies that any F-derivation
of F'[H] extends uniquely to an F-derivation of F[G]. Part (i) now
follows from Theorem 2.2 and part (ii) from the previous lemma. Of
course, (iii) is a consequence of Lemma 2.1Gi). |

Interesting concrete examples of (ii) and (iii) above are contained in the
following generalizations of [KPS, Theorem 1.2].

COROLLARY 2.6. Let G be the free abelian group on the generators
{x,[i €.7}. For some subset 7 of the index set .7, let H=H, be the
subsemigroup of G generated by all x; and those xj" with j € 7. Suppose
F'[G] is a wwisted group algebra with Z'(G) = 1. Then any F-derivation of
F'[H) is uniquely the sum of a scalar and a pseudo-inner derivation. Further-
more, if .5 is a finite set, then the preceding pseudo-inner derivation is

necessarily inser.

Proof.  We need only show that H satisfies the hypothesis of part (ii) of
the previous corollary. To this end, note that H = H, is the set of all
monomials in the generators, x;*' such that the exponent of x; is nonneg-
ative whenever i € #\ ¥. Now suppose that g € G and that N},_, Hg™"
+ . If wis a fixed element of this intersection, then wg” € H for all
n = 1, and it follows that the exponent of x, in g must be nonnega-

result. 1

We close this section with two examples which show that some assump-
tion on the embedding of H in G is required for the conclusion of Lemma
2.4 to hold. In both cases, let G = (x,y) be free abelian on the two
generators x,y and let F'[G] be the skew Laurent polynomial ring
Flx, 7, % ',y 'l with ¥y = A3 for some A € F’ of infinite multiplicative
order. Then it is easy to see that Z'(G) = 1, so F'[G]is a simple ring.

Now let H, be the subsemigroup of G generated by x,y, z°, and z°
where z = xy'. Note that z7 and z° generate all powers of z of degree
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> 2, and therefore H, consists of all products x“y”z" with a,b = 0 and
with n = 0 or n > 2. From this it is clear that z € H|. On the other hand,
it is easy to check that the product of z with any generator of H, is
contained in H,, and therefore zH} C H,. As a consequence, the inner
derivation ad. of F[G] stabilizes F'[H,]. Furthermore, since Z'(G) = 1,
the restriction of ad, to F'[H,] is not an inner derivation. Thus the

As a second example, take H, to be the subsemigroup of G generated
by y and all xy ™" with # > 0. Equivalently, H, is the set of all x“y” such
that a > 1 whenever b < 0. In particular, if w = y~', then w &€ H, and in
fact no positive power of w is contained in H,. Again, the product of w
with any generator of H, is contained in H,, so wHf ¢ H,. Thus ad is
an inner derivation of F'[G] which stabilizes F'[H,], but ad is not inner
in its action on F'[H,].

3. NONSCALAR AUTOMORPHISMS

In this section we consider the F-antomorphisms of twisted group
algebras F'[G] with G abelian. To start with, let a: G = F" be a
multiplicative homomorphism so that .a(xy) = a(x)aly) for all x,y € G.
Then the F-linear operator 8, on F'[G] given by 6, (x) = a(x)x is easily
seen to define an F-automorphism of the algebra. Indeed, if x,y € G,
then

Il

8,(1(x,y)y) = t(x,y) a(xy)xy
=a(x)Xa(y)y = 6,(X)6,(¥).

0. (%¥)

We call any such 6, obtained in this way a scalar automorphism of F'[G],
and we let ScAut F'[G] denote the set of all such scalar automorphisms.
Obviously,

ScAut F'[G] = Hom(G, F’).

In the following, we will mainly be concerned with skew polynomial and
skew Laurent polynomial rings. Thus it makes sense to assume that G is
torsion free.

LeEMMA 3.1, If G is torsion-free abelian, then .w = Aut, F'[G] stabilizes
the group & of trivial units of F'[G). Thus "= ScAut F'[G] is a normal
subgroup of & with & /. isomorphic to a subgroup of Aut G.

Proof. Since G is torsion-free abelian, it is an ordered group, and
hence all units of F/[G] are trivial. Thus & = Aut, F'[G] stabilizes the
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group & of trivial units of F'{G], and of course & fixes F' <4 ¥ element-
wise. As a consequence, .& acts as automorphisms on &/F'= G and this
vields a homomorphism y: & — Aut G. Certainly, .%" = ScAut/F[G] is
contained in the kernel of y. Conversely, if 8 € ker x, then clearly
8(x) = a(x)x for some function a: G — F'. Furthermore, since 6 is an
F-automorphism, it follows easily that « is a multiplicative homomor-
phism. Thus 8 =6 €.%, so &= ker y and & /% is isomorphic to a
subgroup of Aut G. |

The goal now is to determine the nonscalar automorphisms of F'[G]. In
other words, we wish to find &/ /% as a subgroup of Aut G. As it turns out,
this is a fairly hopeless problem, but we indicate a few special cases where
the computation can be done.

ProposiTION 3.2. Let R = Fix,, %,,..., X,] be a skew polynomial ring
with X,%; = X, ;X;%, for all i,j, and assume that its corresponding skew
Laurent polynomial ring S is simple. Then every F-automorphism 6 of R is
given by 0(X|) = kX, where k; € F" and where o is a permutation of the
subscripts {1,2, ..., n}. Furthermore, every n-tuple (k,, k,, ..., k,) of nonzero
scalars can occur in this way, and the permutation o occurs if and only if

A= Aviin v () forall i, .

Proof. 1f G is the free abelian group on the generators x, x,,..., x,,
then obviously S = F'[G] is a suitable twisted group algebra. Furthermore,
R = F'[H] where H is the subsemigroup of G generated by x|, x,,..., x,,.
By assumption, S is simple and hence Z'(G) = 1 by Lemma 1.2. Thus, by
Proposition 1.5, any F-automorphism of R extends uniquely to an F-auto-
morphism of §. The previous lemma now implies that 6 stabilizes the
group & of trivial units of S, and therefore @ stabilizes £ N F'[H] =7 =
{ah|a € F, h € H}. In particular, § permutes the atoms of #/F = H,
and consequently # is of the required form. Furthermore, by applying 6 to
the equation ¥, ¥, = A, ;X x;, we see that A, ; = A, ,(;, for all 4, /.

Conversely, it is clear that if o is as above and if (k,, k,,...,k,) €
(F)" is any n-tuple, then 6(x,) = k%, determines an F-automorphism
of R. 1

We remark that the system of equations A, ; = A, ,;, given above can
be described matrix theoretically. Indeed, if 8,4.‘,0-)] is the n X n permuta-
tion matrix corresponding to o, then the system is easily seen to be

equivalent to the matrix product

[Smrm“)‘i.f][‘Si-umlr = [Ai-f]'

As usual, let F'[G]be given with G an abelian group. We recall that the
function A: G X G — F’ is defined by ¥y = Mux, y)yx for all x,y € G.
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Moreover, A(x, yz) = A(x, y)A(x, z) and My, x) = Xx, y)~! forall x,y,z
e G. For convenience, we let A = A(G) be the subgroup of F' generated
by all such A(x, y).

LEMMA 3.3.  Let G be a free abelian group of rank n.

() A= A(G) is a finitely generated abelian group with at most
n(n — 1)/2 generators.

(i) If A, is the torsion subgroup of A and |A,| = k, then F'[G*] is a
characteristic subalgebra of F'[G] with A(G*) torsion free. Furthermore,
F'[G] is a free right and left F'|G*}-module of finite rank k", and F[G] is
simple if and only if F'[G*] is simple.

(iii) Ler o € Aut G. Then o lifts to an algebra automorphism of F'[G]
if and only if Mx,y) = Mo(x), o(y)) forallx,y € G.

Proof. () If G = <{x,x,,...,x,>, then the multiplicative properties
of A imply that the elements A(x;, x;) with i <j generate A.

(ii) Since A is finitely generated, A, is indeed a subgroup of finite
order. Let [A, | = k and let G* = {g* |g € G}, so that G* is a subgroup of
G of index k”. As a consequence, F'[G]is a free right and left F[G*]-
module of rank &”. Furthermore, by Lemma 3. 1 F'{G*]is a characteristic
subalgebra of F[G]. Next, observe that Ax*, yE) = A, v)" e A% Thus
since A*” is a torsion-free subgroup of A, we conclude that A(G*) € A*
also torsion free. Finally, suppose Z'(G) = | and let x € Z'(G*). Then
1 = Mux,G*) = Mx*,G), so x* = 1 and hence x = 1. Conversely, suppose
ZY(G*) =1 and let y € Z'(G). Then y* € Z(G*), so y* = 1 and again
y = 1. Lemma 1.1(ii) now yields the result.

(iti} Let o € Aut (. Suppose first that ¢ lifts to an F-automorphism ¢
of F'[G]. Thus 8(x) = a(x)o(x) for some function a: G — F, and by
applying 6 to the formula Xy = A(x, y)y¥%, we conclude immediately that
Mx,y) = Mo (x), o(y)). Conversely, suppose that A is a o-stable map. Let
X, Xa,..., %, be a free generating set for G, and let y, = o(x;) for all i.
Then y,,y,,...,¥, is also a free generating set and, by assumption,
A= Mx;, x,) = /\(y,-,yj) for all /,j. Observe that F'[G] is the skew
Laurent polynomial ring in X, x,,..., X, with ¥;x; = A, ;¥;x;, and it is
also the skew Laurent polynomial ring in y,,¥,,...,¥, with relations
Viy = ,}y 3. Thus there exists an F-automorphism ¢ of F'[G] with
(15( X)) =y forall i, and ¢ is the required lifting of o. |

In view of part (ii) above, it is crucial to study those twisted group
algebras F'[G] with A(G) torsion free. As a start, we offer an alternate
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interpretation of part (iii) of the preceding lemma. For convenience, let us
write

NsAut F'[G]} = Aut, F'[G]/ScAut F'[G]

for the group of nonscalar automorphisms of F{G} By Lemma 3.1,
NsAutF'[G] is isomorphic to a subgroup of Aut G. Furthermore, since
AMx,y) = Mx~',y" Y for all x,y € G, it follows from Lemma 3.3(iii) that
NsAut F'[G] always contains the inverse map on G.

TueoreM 3.4, Let F'[G] be a twisted group algebra with G a free abelian
group of rank n, and write

A(G) = {f) X {fy) X XD
as a finite direct product of the cyclic groups {f;> = Z/m,Z. If

Alx,y) = fitefpee e fotet o forall x, y € G,
then each exponent map e¢;: G X G — Z/mZ is a bilinear skew-symmetric
form on G (viewed additively), and Z'(G) = N, rad e;. Furthermore, if
Sp,(Z, ¢} denotes the simplectic subgroup of GL,(Z) which preserves the
Sform e, then

NsAut F'[G] = N, Sp,(Z,¢).

Proof. The multiplicative properties of A imply that each ¢;: G X G —
Z/m,Z is a bilinear skew-symmetric form on G (viewed additively).
Furthermore, g € Z'(G) if and only if Mg, G) = 1 and hence if and only if
e(g,G) = 0 for all /. In other words, Z'(G) = N, rad e,. Finally, note that
Aut G = GL ,(Z), the group of n X n invertible integer matrices. Further-
more, an automorphism o of G stabilizes A if and only if it preserves each
form e,. Thus Lemma 3.2Gii) yields the result. |

We close this section with a few special cases of interest. To start with,
we assume that A(G) is small and we extend [KPS, Theorem 1.5].

COROLLARY 3.5. Let F'[G] be given with G free abelian of rank n.
) If A(G) =1, then F'[G] = FIG] and NsAut F'{G] = Aut G =
GL.(Z).

(i) If AMG) = {f> = Z/mZ is cyclic, then NsAut F'[G] = Sp,(Z,¢)
where ¢: G X G — Z/mZ is the skew-symmetric bilinear form associated
with A. Furthermore, if F'[G] is simple, then m = 0 and the form e is
nonsingular. In particular, n must be an even integer.
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This is an immediate consequence of Theorem 3.4 and requires no
additional proof. Note that if
_ 0 1
M= [—1 0]*
then, by [N, Theorem IV.1], any nonsingular skew-symmetric Z-bilinear

form is equivalent, via a change of basis, to the form determined by the
block diagonal matrix

diag(d,M,d,M,....d,M).

Here the d, are positive integers with d,]d,,, for all i. Furthermore,
differcnt forms of the same degree can give rise to distinct symplectic
subgroups of the general linear group. Next, we consider the other extreme
where A(G) is as large as possible. For convenience, we say that x is a
generator of G if it is part of a free generating set.

COROLLARY 3.6.  Let F'[(G] be a wwisted group algebra with G free abelian
of rank n > 3. If A(G) is free abelian of rank (n — 1)/2, then NsAut

F'IG] = {1, 1} where 7: x — x~" is the inverse map on G.

Proof. Let x and y be generators of G and suppose that A(x,G) =
Ay, G). We claim that y = x or x~'. To this end, choose a free generating
set x, x,,...,x, for G with x = x;, and let X,%; = A; ;%;X,. Then A(G) is
generated by the n(n — 1)/2 elements A, ; € F* with i <j. Thus, by
assumption, these A, ; must constitute a free generating set for A = A(G).
Observe that Mx,G) = (A, |k =2,3,...,n), and write y = x"x§* ---
x,. Fix { = 2, and using n = 3 choosec a subscript j # 1,i. Then My, G) =
Mx,,G) contains the product Ay, x;) =TT, A}r,. But A{; is a factor here,
and both subscripts are distinct from 1. Thus / # j implies that a;, = ( for
all such i. In other words, y = x{" = x“: and since y is a generator of G,
we conclude that a, = +1.

Now let o € NsAut F'[G] € Aut G. If x is a generator of G, then so is
o(x). Furthermore, Lemma 3.3(iii) implies that A(x,G) = Mo (x),G).
Thus, by the result of the previous paragraph, we see that o(x) =x or
x~'. Consequently, every element of G is an eigenvector for o with
eigenvalue equal to +1, and hence o is either the identity or the inverse
map on G. |}

Finally, we consider a few small values of n. If n =1 then A(G) = I,
and if n =2 then A(G) is cyclic. Thus these cases are covered by
Corollary 3.5. Now let 7 = 3 and suppose in addition that A = A(G) is
torsion free. In view of Corollary 3.5 we can assume that A is not cyclic,
and Corollary 3.6 handles the case where A has three generators. The only
other possibility is that A(G) = Z X Z, and we discuss this case below.
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ProrosiTiON 3.7.  Let F'{G] be given with G free abelian of rank 3, and
assume that NMG) = Z X Z. Then G has a free generating set x|, x5, xy with
Mx,, x5) = 1, and NsAut F'[G] consists of those o € Aut G with

o(x) =xi, o(xy) =x3, (r(x3)=x{‘x§’x§

foralla,b € Z and ¢ = +1.
Proof. Let A(G) = {f,) X {f,) and, as in Theorem 3.4, write

A(x,y) = o) forall x,y € G.

Since n is odd and e, is a skew-symmetric bilinear form, it follows that
rade, = {g € G|e(g,G) = 0} is a nontrivial pure subgroup of G. Thus
there exists a generator x; € G with ¢,(x,,G) = 0. Write G = {x,) XY,
and consider the group homomorphism &: Y — Z given by y = e,(x, y).
Since Y has rank 2, it follows that ker £ is a nontrivial pure subgroup of Y.
Thus there exists a free generating set x|, x,, x; of G with ¢,(x,, x,) = 0.
But e(x,, x,) is also 0, so A(x,, x,) = 1.

As usual, let XX, = A, ;X;%, for all i, j. Since A, , = 1 and A(G) is free
abelian of rank 2, it follows that A(G) = (A, ;) X (A, ;). Again, we have

Ax,y) = A0 A8 forall x,y € G,

where e| and e, are suitable skew-symmetric bilinear forms. Note that
rad €| = (x,) and rad e}, = {x,).
Now let o & NsAut F'[G]. Since o preserves both ¢, and €, by
Theorem 3.4, it follows that ¢ must stabilize their respective radicals.
ay b€

Hence o(x,) = x5, o(x,) = x52, and of course o(x;) = x{x{x§ for suit-
able integer exponents. But
Avs = A(xg, x5) = Ao (x), 0(x3))
= )\(xf',x‘,‘xgxﬂ = Af'S,

so €€ = 1. Hence €, = € = +1, and similarly €, = ¢ = +1. Conversely, if
o is as above with €, = €, = € = + 1, then o preserves A, and therefore
o € NsAut F'[G] by Lemma 3.3Gii).

We remark that the group NsAut F/[G] above can be described as the
set of all 3 X 3 matrices of the form

€e 0 a
0 € b
0 0 €

with a,b& Z and e = +1.
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4. BLOCK ALGEBRAS AND DERIVATIONS

Our next task is to study a minor modification of the Block algebra as
defined in [B]. As we will see in the next section, there is a close relation
between these Lie algebras and the algebras ¥(G) considered previously.

Let GG be an abelian multiplicative group, let F be a field, and suppose
that e: G X G — F is a skew-symmetric bilinear form. Specifically, this
means that e satisfies

e(x,yz) =e(x,y) +e(x,z2)
e(xy,z) =e(x,z) +e(y,2)
e(x,x) =0

for all x,y,z € G. Of course, we also have e(x,y) = —e(y, x). Now let
F[G]be the ordinary group ring with F-basis G, and define an operation
[, ] FIG] X F[G] - F[G] linearly by

[x.y] =e(x,y)xy forall x,y € G.
Notice that [x, x] = 0 and that
[[x.].2] = e(x, 3)e(9. 20z = (e(x, y)e(y. 2)
—e(z,x)e(x,y))xyz

for x,y,z € G. Thus the Jacobi identity is satisfied, and F,[G] is a Lie
algebra. Of course the associative multiplication in F[G] is not at all
related to the Lie structure here. Nevertheless, this multiplication exists
and does come into play.

For convenience, we carry over the same notation used in the preceding
study of twisted group algebras. Thus, for example, we will speak about the
support of elements of F[G], and if X is any subset of G, then we let

FlX]={a€F[G]|suppacX}.
Furthermore, we sct

Z(G)y=rade={geC

¢(g,G) =0=¢(G.g))
and, for any x € G, we write
Co(x) ={g€Gle(g.x) =0=e(x,8)}.

These are of course both subgroups of G.
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LEMMA 4.1. Lete: G X G — F be a skew-symmetric bilinear form and let
L = F[G). Then Z(L) = F[Z)where Z = Z (G), and [L, L) = FIG\ Z].
In particular, L = Z(L) ® [L, LY and [L, L] = InDer L.

Proof. lLet a =Y a.x € F[G]=L. Then a € Z(L) if and only if

0=[a,g]l= Yalx.g]l=Yae(x.g)xg

for all g € G, and hence if and only if supp « C Z.

Next let x,y € G with xy € Z. Then e(x, y) = e(x, xy) — e(x,x) = 0,
so [x, y] = 0. Consequently, no member of [L, L} can have a supporting
clement in Z, and hence [L, L] € FIG \ Z]. Conversely, suppose g € G \
Z, and choose h € G with e(h, g) # 0. Then we have

[h,h'g) =e(h,h 'g)g =e(h.g)g

and therefore Fg c [L, L). In other words, [L, L] = FIG \ Z] and, since
F[Gl=FlZ]® F[G \ Z], the result follows. [

If G* is the set of nonidentity elements of G, then the preceding lemma
implies that F[G*]is a Lie subalgebra of F,[G]. We call this the Block
algebra associated with the form e, and we denote it by #(G). Thus (G)
is a slightly simpler version of the algebra studied in [B], but it is not quite
a special case. In particular, the following result is analogous to [B,
Theorem 1), but is not a consequence of it.

THEOREM 4.2. Let #(G) be the Block algebra associated with ¢: G X
G — F, and assume that (G| = 3. Then #8(G) is a simple Lie algebra if and
only if ZLG) = 1.

Proof. Llet L = F[G], write B =4%(G), and note that dim, B = 2
since |G} = 3. Thus, if B is simple, then B = [B, B] and hence Z (G) = 1
by Lemma 4.1.

Conversely, assume that Z (G) = 1, and let I be a nonzero Lie ideal of
B. If m is the minimal support size of the nonzero elements of 7, then our
first goal is to show that m = 1. To this end, let « = L., a,x; be any
element of I of support size m. If g € C,(x,), then [g, a] € I has support
size less than m and therefore this element must be 0. Consequently,
e(g, x;) =0 for all i and all such g. In particular, since x, € C(x)), it
follows that e(x,x,) = 0 for all i, and thus e(x;, x,) = 0 for all i, j. Now
suppose that g € G\ C,(x ). Then [g, ] €I and

m

[g.a]= Yae(g x)ex,

i=1

is nonzero, so this Lie commutator must have support size m. Therefore,
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by the above argument, the supporting elements of (g, a] satisfy
0 =c(gr; g,) =e(g,8) +e(g,x) +elx,8) +elx,x)

=e(g.x;) —e(g.x) =e(g. 4%, ")
for all /, j and all such g. But this equation also holds when g € C (x)), so
we conclude that e(G, x,x;") = 0. In other words, x,x;' € Z,(G) = 1 and
therefore x, = x; for all i, j. Since the x; are distinct, it follows that
m=1.

We now know that / contains Fz for some z € G*. Furthermore, if
y € G\ C(2), then the formula for [y, z] implies that / contains Fyz. But
yz is a typical element of X = G\ C,(z), so I contains F,[X]. Finally,
observe that X generates (G as a group. In particular, if g is any element
of G*, then e(g, X) cannot equal 0. Thus there exists x € X with
g & C.(x), and the preceding argument now implies that Fg € I. Conse-
quently, f = B and B is a simple Lie algebra. 1§

We remark that if |G| = 2, then dim, <(G) = 1 so &(G) is Lie simple
independent of the nature of e.

Again, let e: G X G — F be a skew-symmetric bilinear form on the
abelian group G and let F,[G]be its associated Lie algebra. Our next goal
is to study the derivations of F,[G]. For convenience, write Z = Z (G) so
that Z(F[G]) = F,[Z]. As will be apparent, there are two types of F-de-
rivations of F,[G] which are of particular interest; these are the central
and the pseudo-inner derivations which we define below.

Let 8: G — F[Z]" be an almost linear map from the multiplicative
group G to the additive group F[Z]*. By this we mean that @ satisfies
#(xy) = 6(x) + 6(y) at least for those x,y € G with e(x, y) # 0. Obvi-
ously, this is equivalent to the assertion that

e(x,y)0(xy) =e(x,y)6(x) +e(x,y)o(y) forall x,y € G.
Now given such a map 6, we define the F-linear operator ¢ = g, by
d{(x) = 6(x)x for all x € G. Then it is easy to see that 4 is an F-deriva-
tion of F[G]. Indeed, let x, y € G and observe that 8(x) € F.[Z] implies
that e(g, y) = e(x, y) for all g in the support of 3(x) = 8(x)x. It follows
that

[0(x),y] = [6(x)x.y] = e(x,y)6(x) 1y,
and similarly [x, #(y)] = e(x, y)8(y)xy. Thus
[o(x).y] + [x,0()] = e(x. y)(6(x) + 0(y)) 2y = e(x.y) 0(2) 1y

= d(e(x,y)xy) = a([x,¥])
and ¢ is a derivation, as claimed. Furthermore, note that 4(x) € F[Zx]
for all x € . We call any such ¢ obtained in this way a central derivation.



SKEW POLYNOMIAL RINGS 437

Next let F.[[ G] denote the set of all possibly infinite formal sums

y=1Y,c,g with g€ G and ¢, € F. Then F,[[G] is no longer a Lie
algebra, but it can be used to determine certain derivations of F,[G].
Specifically, if y is as given, then we can define ad,: F[G]— F,[G]
linearly by

ad, x = Telg.x] = Lee(g.x)gx
g 14

for all x € G. Note that the Jacobi identity applied to each summand of y
yields

ad,[x,y] = [ad, x,y] + [x,ad, y]

for all x,y € G. In particular, if y has the additional property that
ad, x € FIG] for all such x, then ad_: F[G] - FJIG) determines an
F-derivation of the Lie algebra. We call any such derivation of F,[G]
obtained in this manner a pseudo-inner derivation. Since the elements of
Z N supp y have no effect on the map ad,, we may always suppose that
Z N suppy = <. Clearly, ad, x € F[(G\ Z)x] for all x € G. The follow-
ing is the obvious analog of Lemma 2.1 and the proof is virtually identical.

LEMMA 43. Letye F.ILGT.

(i) ad, is a pseudo-inner derivation if and only if

(G\C,(x)) N suppy

is finite for all x € G.

(ii)  If G has finitely many elements x, x,,...,x, with N7 C,(x) =
Z (G), then any pseudo-inner derivation of F,[G) is inner. In particular, this
applies when G is a finitely generated group.

In general, F,[G] can admit pseudo-inner derivations which are not
inner. For example, let G be free abelian on the infinitely many generators
X(sX3,-+s Y(s Va2, ... and define the skew-symmetric form e: G X G —» F
so that e(x;,y,) = §; ; and e(x;, x;) = 0 = e(y,, y;) for all i, j. Then clearly
Z (G) =1, so B(G) is simple. Furthermore, notice that if J is any inner
derivation of F,[G], then the elements y, are eventually constant for 4.

Thus the element y=27 ,x, € F,LG] determines a pseudo-inner

derivation ad,, which is not inner.
We will show in Theorem 4.5 why these derivations are of importance.
But first we require the following technical resuit.
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LEMMA 4.4.  Let g be a fixed element of G\ Z (G) and suppose that the

function - G — F satisfies the identity
e(xg.y)f(x) +e(x, @) f(y) =e(x,y)f(xy) forall x,y €G.
If f(¢) = 0 for some elements v € G\ Cg), then f(x) =0 forall x € G.
Proof. First let y =x"' in the above identity. Since e(g,x ') =
—e(g, x) = e(x, g) and e(x, y) = 0, we obtain
e(x,8)f(x) +e(x,g)f(x ') = 0.

Thus when e(x, g) # 0, we have f(x~') = —f(x). In particular, since
e(r,g) # 0 and f(r) = 0, it follows that f(r~') = 0.

Now suppose, by way of contradiction, that f(w) # 0 for some w € G.
Then, setting x = ¢ and y = w in the given identity yields

e(v,gw)f(w) =e(v,w)f(ew)

since f(v) = 0. Similarly, letting x = ¢~' and y = vw, we obtain

e(vow)f(w) = (v, gw) fliw)
since e(v !, gew) = —e(v, gw), e(v” ', tw) = —e(r,w), and f(rr~ ') = 0.
Next, we subtract the latter displayed equation from the former. This
yields

e(r,g)f(w) = —e(r,8)f(ew)
and, since e(v, g) # 0, it follows that f(rw) = — f(w). Finally, by substitut-
ing this value for f(ew), the previous subtrahend simplifies to
e(r,gw?)f(w) = 0.

In other words, f(w) = 0 implies that f(ew) # 0 and that

0=c(v.gw’) =e(r,8) + 2e(r,w).

Note that e(r, g) # 0, so the latter equation implies that 2e(o,w) # 0.

In particular, F does not have characteristic 2, and

e(r,gw ) =e(v,g) — 2e(v,w) # 0.

The work of the previous paragraph now implies that f(w™') = (. In
particular, f(w ') # —f(w), so the work of the first paragraph yields
e(w, g) = 0. Finally, set x = rw and y = w™! in the original identity. Since
flw™ ') = f(¢) = 0, this yields

e(ewg,w™ "} f(ew) =0
and hence 0 = e(ewg,w ') = e(w, vg) since f(rw) # 0. But we have just
shown that e(w, g) = 0, so e(w, ) = e(w, 1g) — e(w, g} = 0 and this con-
tradicts 2e(e,w) # 0. Thus f(w) = 0, and the result follows. |}
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We can now quickly prove

THEOREM 4.5.  Let F[G] be the Lie algebra associated with the skew-sym-
metric bilinear form e: G X G — F. Then any F-derivation of F|[G] is
uniquely the sum of a central and a pseudo-inner derivation.

Proof. Let ¢ be an F-derivation of F,[G] and, for each x € G, write
ax)x™' =L, a,(x)g where each a, is a map from G to F. Equivalently,

d(x) = Ya(x)gx

and, of course, for each x only finitely many ag(x) can be nonzero.
Let x,y, g € G and consider the gy coefficients in

[o(x).y] + [x, 0(»)] = d([x,¥]) = e(x.y)d ().
Since G is abelian, we obtain
e(xg,y)a,(x) +e(x,gv)a,(y) =e(x,y)a, (%),

the identity of the previous lemma.
Suppose first that g € Z (G) = Z. Then the above equation becomes

e(x,y)a(x) +e(x,y)a(y) =e(x,y)a,(xy)
and it follows that the map 6: G — F,[Z]* given by
B(x) = L a,(x)g

ge’Z

is almost linear. Thus 6 determines a central derivation 4, of F[G].

On the other hand, suppose g € G\ Z and choose an clement ¢, €
G\ C,g). Then e(g, z'g) # 0, so there exists a field element c, €F with
a(t,) = c,e(g,v,). Now define the function f,: G — F by

fo(x) =a,(x) —c.e(g,x) forall x € G,

so that f,(r,) = 0. Since the identity for the function a, can be rewritten
as

e(g.y)a,(x) —e(g,x)a(y) =e(x,y)(a,(y) —a,(x) —a,y)),

it is trivial to see that this equation is also satisfied by the map x — ¢(g, x)
and hence by the function f,. Thus the previous lemma applies to this
situation, and we conclude that fX is identically 0. In other words,
ag(x) =c.e(g, x) for all x € G.
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Now define y € F,[ G ] by

y= ) &

LEZ

Then

ad, x = ) c.e(g,x)gr= 3, a,(x)g
LEL ge”Z

and, since

dy(x) = 6(x)x = 3 a,(x)gx,
geZ

we conclude that d(x) = 3,(x) + ad, x for all x € G. Thus ¢ = 4, + ad,
is indeed the sum of a central and a pseudo-inner derivation. Finally, the
uniqueness of this decomposition follows immediately from the fact that
any central derivation maps x to F,[Zx], while any pseudo-inner derivation
sends x to the complementary subspace F[(G\ Z)x]. |

As a consequence of this and Lemma 4.3(ii) we have

COROLLARY 4.6. Let F[G] be the Lie algebra associated with the skew-
symmetric bilinear form e: G X G — F. If G is finitely generated, then any
F-derivation of F,[G] is uniquely the sum of a central and an inner derivation.

Since any derivation of the Block algebra 4#(G) extends to a derivation
of F[G] by Lemma 4.1, the above two results also yield the structure of
Der,. 4#(G). Note that these results differ somewhat from [B, Theorem 2]
in that psuedo-inner derivations which are not inner do not seem to arise
in the latter context.

5. DEFORMATIONS

In this final section we consider two distinct topics. The first concerns
almost linear maps like the ones used to describe the central derivations of
F[G] Specifically, let e: G X G — F be a skew-symmetric bilinear form
and let IV be an additive abelian group. Then we say that the map 6:
G — V is almost linear if 6(xy) = 0(x) + 6(y) at least for those x,y € G
with e(x, y) # 0. Obviously, any group homomorphism is almost linear.
Furthermore, if 6 vanishes off rad e, then again it is an almost linear map.
As we see below, these are the prototype examples at least when char F #
2. Note that, if char F # 2, then G/C,(x) € F* has no element of order
2, and hence € (x) cannot have index 2 in G.
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THEOREM 5.1.  Suppose e: G X G — F is a skew-symmetric bilinear form,
and let 8: G — V be an almost linear map. If no C(x) has index 2 in G,
then 0 is the sum of a group homomorphism and a function which vanishes
off rad e. In particular, this applies when char F # 2,

Proof.  'We can assume that Z = Z (G) = rad e is a proper subgroup of
G. We will show that 6 can be modified on Z in such a way that it
becomes a group homomorphism on G. This will, of course, yield the
result.

We first claim that 8(xy) = 6(x) + 6(y) whenever x, y, and xy are all
elements outside Z. Since this equality follows directly from the definition
of almost linear when e(x, y) # 0, we can assume in the course of this
proof that e(x, y) = 0. Now observe that C (x), C.(y), and C,(xy) are
proper subgroups of G which are not of index 2. Thus G properly contains
C.(x)u C,(y) U C,(xy), and we can choose an clement a € G which is
outside this union. Since a & C_(x), we have e(a, x) # 0 and hence

0(a) + 6(x) = 8(ax).

Next, since a & C,(y) and e(x, y) = 0, we have e(ax, y) = e(a, y) # 0 and
hence

6(ax) + 0(y) = 6(axy).
Finally, a & C,(xy) yields

O(axy) = 0(a) + 6(xy),

and by adding the above three displayed equations and canceling like
terms, we obtain the required formula.

Next, we show that if x,y,u,v € G\Z with xy = uv € Z, then
0(x) + 6(y) = 0(u) + 6(v). To this end, observe that xy € Z implies that
C,(x) = C(y), and similarly C (u) = C(¢). In particular, e(x, y) = 0 and
we can choose an element a € G with a & C,(x) U C,(u). Now
a ¢ C (x) implies that

6(a) + 6(x) = 6(ax).

Furthermore, since a &€ C(x) = C(y) and e(x,y) = 0, we have
elax, y) = e(a, y) # 0 and hence

6(ax) + 6(y) = 6(aw).

By adding the previous two displayed equations and canceling the 6(ax)
term, we obtain

6(x) + 0(y) = 6(axy) — 8(a).
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Similarly,
O(u) + 6(v) = 8(aur) — 6(a),

and since xy = uv, this second claim is proved.

Recall that Z # G. Thus if z is any element of the radical Z, then we
can write z = xy with x,y € G\ Z. Furthermore, for all such choices of
x, y, the result of the preceding paragraph implies that the sum 8(x) + 0(y)
is always the same. Therefore, we can redefine 6(z) to equal the common
value of this sum. Having done this, we now know from all thc work we
have done so far that

0(x) + 6(y) = 6(xy)
whenever x,y & Z.

[t remains to verify this linearity condition when just one of x or y is in
Z, and then when both are in Z. To start with, assume that x € Z and that
y & Z, and choose @ € G\ C,(y). Then e(xa™',y), e(a, y), and e(a, ay)
are all nonzero, so xa ', a, ay € Z. Thus, since (xa~ ')a = x € Z, we have
B(x) = 8(xa™") + 6(a), and therefore

6(x)+ 0(y) =0(xa ') + 8(a) + 6(y)
= 0(xa ') + 0(ay) = 8(xa 'ay) = 6(xy),

since a,y & Z and xa ', ay € Z. Consequently, this case is proved.
Finally, suppose x, y € Z and write x = w with u, 0 € Z. Then

O(x) + 0(y) = 0(u) + 6(v) + 6(y) = 0(u) + 08(vy),
since ¢+ &€ Z. Furthermore, 1 &€ Z, so

O(u) + 0(vy) = 6(ury) = 6(xy)
and, with this, the theorem is proved. |

When it applies, the previous result obviously yields a more precise
description of the central derivations of F,([G], and hence of all the
F-derivations. Thus, it has numerous corollaries, but we only offer the
following immediate consequence of Lemma 4.1 and Theorems 4.5 and
5.1

COROLLARY 5.2.  Let L = F[G] be given and assume that no C (x) has
index 2 in G. Then any F-derivation of [L, L] = InDer L is the sum of a
psevdo-inner derivation and a central derivation determined by a group
homomorphism 8: G — F[Z]*. In particular, this applies when char F + 2.

If Z(G) =1, then [L, L} = %(G). Thus the above describes the struc-
ture of Der, £#(G) when the Block algebra is Lie simple.
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We remark that the preceding two results are not true in general
without the hypothesis on the subgroups C,(x). For example, let F = GF(2)
and say that the multiplicative group X is a hyperbolic plane if X is
elementary abelian of order 4, and e(x, y) = | for all distinct nonidentity
clements x, y of X. Now let G = A X B be the elementary abelian group
of order 16 with 4 and B hyperbolic planes and with e(A4, B) = 0. In
other words, if G is viewed additively as a 4-dimensional F-vector space,
then e: G X G — F is the nonsingular skew-symmetric bilinear form
determined by the matrix

60 -1 0 0
1 0 0 0
0 0 0 -1
0 0 1 0

We claim now that if X C G is a hyperbolic plane, then either X N 4 #
1 or XN B # 1. Indeed, suppose by way of contradiction that these
intersections are both equal to 1. Then, writing the three nonidentity
elements of X = {1, x|, x,, x;} in terms of their 4 and B components, we
must have x, = a;b; with the q; distinct elements of A* = A4\ I and with
the b, distinct members of B*. In particular,

e(x,,x,) =e(ab,,a,b,) =e(a,,a,) +e(b,,b)=1+1=0,

and this contradicts the assumption on X.
Now define 6#: G — F by

0, ifgeAUB
9 =
(8) { 1, otherwise

Then certainly 6 is not the sum of a group homomorphism and a function
which vanishes off Z ,(G) = 1. Nevertheless, we claim that 6 is almost
linear. To this end, observe that if x,y € G with e(x, y) # 0, then x, y,
and xy are the three nonidentity elements of a hyperbolic plane X. Thus,
since char F = 2, it follows that 8 is almost linear if and only if the values
of # on any such X* add to 0. Now, if X = 4 or X = B, then the sum of
the # values is simply 0 + 0 + 0 = 0. On the other hand, in the remaining
cases, we know at least that X N4 # 1 or X N B # 1. Moreover, since
e(A, B) = 0, it is clear that both these intersections cannot be nontrivial.
Thus X contains precisely one nonidentity element of 4 U B, and two
nonidentity elements of G\ (A4 U B), and the sum of the three 6 values is
0+ 1+ 1=0, as required.

Thus ¢ is almost linear, and it gives rise to a central derivation 4, of
F.IG). Indeed, according to the definition of # and 4,, the clements of
A U B are constants for this derivation, while the elements of G\ (4 U B)
are fixed points.
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Our final topic concerns an interesting relation between certain twisted
group algebras F/[G] and the Lie algebra F,[G]. In this situation, F = C
is the field of complex numbers, and of course G is an abelian multiplica-
tive group. Note that, if g # 1 is a positive real number and if u is
complex, then ¢g* = 1 and only if the real part of u is 0 and the complex
part of u is an integer multiple of 27/In g. In particular, if g“ = 1 for a
fixed «# and uncountably many ¢, then u = 0.

Now let ¢: G X G — C be an additive 2-cocycle, that is, a function
satisfying

c(x,y)y te(xwy,z) =c(x,yz) +c(v,2) forall x,v,z € G.

Then, for any positive real number ¢, it follows that ¢ (x,y) =g~ is a
multiplicative 2-cycle on G, and hence ¢, determines a twisted group
algebra which we denote by C'[G],. By definition, C'[G], has a basis &
with

¥y =t,(x,y)y =gy forall x,y € G.
Furthermore, since G is abelian, we have
xy = A(x,y)¥x forall x,y € G,
where
A5 2) = 1,(x,3) /1,3, x) = gren e,

For convenience, write e(x,y) = c(x,y) — c(y, x), so that e(x,y)=
—ely, x). Furthermore, since )\q(x, yz) = Aq(x,y)/\q(x, z), this multiplica-
tive property of A, implies that

e(x,¥z) _ e(x . yi+e(x.z)
q =9

’

and since this equation holds for uncountably many g, we have
e(x,yz) =e(x,y) +e(x,z) forall x,y,z € G.

Thus e: G X G — C is a skew-symmetric bilinear form. Let #(G), be the
Lie algebra C‘[G#]q, and let »8(G) = C,[G*] be the Block algebra associ-
ated with e.

THEOREM 5.3. Given the above assumptions and notation, we have:

() The Lie algebras #(G), with q # | are a deformation of 8(G).
(i) If Z(G), is Lie simple for some q, then 8(G) is a simple Lie
algebra.

(ii))  If B(G) is a simple Lie algebra and G is a countable group, then
G), is Lie simple for almost all q.
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Proof. (i) Let x,y € G* and let g # 1 be a positive real number.
Then, by working in Y(G)q c C’[G]q, we have

[%.7] =35 — 38 = (¢°* = ¢°> )y
Consequently, if we change the basis by setting x, = x/(g — 1), then

qc(.r,.V) _ qr()'.X)

[Xq,yq]= q_l (x)))q
But
o(x.y) _ oy, x)
lim ﬂ—-—_—q— =c(x,y) —c(y,x) =e(x,y),
q——»] q ]

so it follows that [x,, y,] = e(x, yXxy), for g = 1. Since [x, y] = e(x, y)xy
in #(G), the Lie algebras 5’(G)q are, by definition, a deformation of
B(G).

(i) Suppose that £(G), is a simple Lie algebra for some q. Then, as
we observed in the first section, either Z’(G)q =1, or |G|=2 and
dim. #(G), = 1. In the latter case, we have dim, B(G) = 1, so B(G) is
Lie simple. On the other hand, if Z'(G), = 1, then Z (G) = 1. Indeed, if
g € Z (G), then e(g,G) = 0,50 A,(g,G) = q**“ = 1and g € Z'(G), =
1. The result now follows from Theorem 4.2.

(iii) Conversely, suppose that G is a countable group and that #(G) is
a simple Lie algebra. Then, by Theorem 4.2, either Z(G) = 1, or |G| = 2
and dim. %#(G) = 1. In the latter case, we have dimo 2(G), = | and
hence #(G), is Lie simple for all g. On the other hand, if Z (G) = 1, then
Z'(G), = 1 for almost all g. Indeed, suppose Z'(G), # 1 for some g, and
let g be a nonidentity element of this subgroup. Then g & Z (G), so we
can further choose i € G with e(g, h) # 0. Now g € Z'(G), implies that

= Aq(g,h) =q“®" so the real part of e(g,h) must be 0, and the
imaginary part is nonzero and an integer multiple of 27 /In q. Conse-
quently, there are only countably many possibilities for g as a function of
the pair g, 4. But there are only countably many choices for g and 4, so it
follows that Z’(G)q = ] for almost all g, and Theorem 1.4 yields the resuit.

This extends a remark in [KPS). As we will see, part (iii) above is not
true, in general, without the countability assumption. For this, we first
need

LEMMA 5.4. Suppose A, u: G — C* are group homomorphisms. Then
the map ¢: G X G = C given by ¢(x,y) = Xx)uly) forall x,y € G is an
additive 2-cocycle.
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Proof. For x,y,z € G, we have
c(x,y) + ey, z) = Mx)p(y) + A()u(z)
Mx)p(y) + Mx)u(z) + AMy)p(z2)
A x)p(yz) + A(y)pu(z)
=c(x,yz) +c(y. 2),

and the result follows. [

As a consequence, we have

PROPOSITION 5.5. Let G be an abelian group and let C be the complex
field.

() Suppose e: G X G — C is a skew-symmetric bilinear form. Then
there exists an additive 2-cocycle c: G X G — C with

c(x,y) —c(y,x) =e(x,y) forallx,y € G.

In particular, if C G is given, then there exists a deformation G), of the
Block algebra B(G) = C [G*].

(il)  Suppose C'[G] is a twisted group algebra with G free abelian. Then,
for any positive real number q # 1, there exists an additive 2-cocycle c:
G X G — C such that C'[Gl = C ‘[G]q. In other words, with an appropriate
diagonal change of basis, the twisting function t: G X G — C’ satisfies

tx,y) =t,(x,y) =q""> foralix,y € G.

In particular, the Lie algebra #(G), = C'[G*]is a deformation of a suitable
Block algebra.

Proof. (1) Assume that e: G X G — C is given. The goal is to con-
struct a suitable additive 2-cocycle c. To start with, it clearly suffices to
consider GG/Z (G), and thus we may assume that e is nonsingular. In
particular, GG is torsion free, and therefore G embeds in the rational vector
space 0 ® G. Since e clearly extends to a Q-bilinear form on @ ® G, we
may now suppose that G is a Q-vector space with basis {x,|i € 7}. For
each i €7, let u;: G —» Q7 c C* be the coordinate function correspond-
ing to the basis element x,.. Then y; is a @-linear functional and, for each
x € G, only finitely many u,(x) can be nonzero.

Linearly order the index set ., and define

((xy) = Telx x)m(m(y) forallx,y€G.

a<h

Then it follows from the previous lemma and the comments of the first
paragraph that ¢: G X G — C is an additive 2-cocycle with c(x;, x;) =
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0 =e(x;, x). Furthermore, if i</, then c(x; x;)=e(x;, x;) and
c(x;, x,) = 0. Thus
c(x;,x;) —c(x;,x;) =e(x;,x;)
and
c(x;, x;) —c(x;,x;) = —e(x;,x;) =e(x;,x,).
Since the maps e(x,y) and c(x,y) — c(y, x) are Q-bilinear functions
which agree on a basis, it follows that they must be identical.

(ii)) Let g # 1 be a fixed positive real number. If {x, |/ €.5} is a free
generating set for G, then C'[G] is the skew Laurent polynomial ring in

the variables %' with relations X, X; = A, ;X;x,. Of course, A, =1 and
A, = A;l. Linearly order the index set .# and, for each i < j, choose a
complex number e, ; with A, ; = ¢“~. In addition, set ¢;; = —¢, ; and

¢, ;= 0. Then cleafly A; ;=g for all i,j. Now definc the skew-
symmetric bilincar form e: G X G — C by e(x;, x;) = ¢, ; for all i, j. Then
part (i) above implies that «#(G) = C[G*] has a deformation 2(G), =
C'[G#]q. Furthermore, note that C'[G], is also a skew Laurent polynomial
ring in the variables %', and that these new variables satisfy

¥y =t % ¥ — 4% v 7 — o
Xx, =q XX, = 47X, )\,»'j X

Thus C'[G] = C'[G]

Finally, we construct an uncountable example to show that Theorem
5.3(iii) requires the countability hypothesis. Let .# be the set of positive
real numbers different from 1, and let G be the free abelian group on the
frec generating set {x, |/ €.5}. Define ¢: G X G — C to be the skew-sym-
metric bilinear form determined by

2/ =1 /Ini,  ifi=1

0, otherwise.

as required. |1

([’

()(Xl’xj) = {

Then, by part (i) of the preceding proposition, #(G) = C,[G*] has a
deformation (G), = C’[G#]q, where ¢ runs through the positive real
numbers. Note that, if g = 1, then C’[G]q = C[G] and Z’(G)q =G # 1.
In addition, if g # 1, then ¢ €. and we have

t(x,,x;) =g =1 forall j € 5

since ¢*7V-'/"¢ = 1. Thus x, € Z'(G), here, and it follows that
Z'(G), # | for all positive real numbers g. Consequently, ¥(G), is never
Lie simple. On the other hand, e is clearly nonsingular, so £#(G) is Lie
simple by Theorem 4.2.
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