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Abstract. While we were graduate students, Marty Isaacs and I worked to-
gether on the character theory of finite groups, studying in particular the
character degrees of finite p-groups. Somewhat later, my interests turned to
ring theory and infinite group theory. On the other hand, Marty continued
with character theory and soon became a leader in the field. Indeed, he has
had a superb career as a researcher, teacher and expositor. In celebration of
this, it is my pleasure to discuss three open problems that connect character
theory to the ring-theoretic structure of group rings. The problems are fairly
old and may now be solvable given the present state of the subject. A general

reference for character theory is of course Marty’s book [6], while [10] affords
a general reference for group rings.

1. Character Regular p-Groups

As is well known, the degrees of the irreducible complex characters of a finite
p-group G are all powers of p, and we write e(G) = e if the largest such character
degree is equal to pe. It is presumably a hopeless task to try to characterize the
p-groups G with e(G) equal to a specific number e, but it is possible that certain
of these groups, the ones that do not have a maximal subgroup M with e(M) =
e− 1, do in fact exhibit some interesting structure. One possible tool to study this
situation is based on the following

Definition 1.1. If e(G) = e, then G is said to be character regular precisely

when G is faithfully embedded in the totality of its irreducible representations of

degree pe, or equivalently when
⋂

χ(1)=pe

kerχ = 1.

One can use this concept, for example, to obtain information on the center of
certain subgroups of G. Specifically, we have
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Lemma 1.2. Let H⊳G be p-groups with e(H) = e(G). If H is character regular,

then Z(H) ⊆ Z(G).

Proof. If h ∈ Z(H) and g ∈ G, then the commutator x = [h, g] is contained
in H since H ⊳ G. Now let χ be any irreducible character of H of degree pe, where
e = e(H), and let X be its corresponding representation. Since e(G) is also equal
to e, it follows that χ is the restriction of a character χ′ of G with corresponding
representation X′. Now X(h) is a scalar matrix, so the same is true of X′(h). Hence
X′(x) = [X′(h), X′(g)] = 1, and x ∈ H ∩ kerχ′ = kerχ. Since χ is an arbitrary
character with χ(1) = pe, x is contained in the kernels of all characters of H of
largest degree. In particular, since H is character regular, we conclude that x = 1
and hence that [h, g] = 1. But g ∈ G is arbitrary, so h ∈ Z(G), as required. �

As it turns out, not all p-groups are character regular. Indeed, we have [8]

Lemma 1.3. For any e ≥ p, there exists a p-group G with e(G) = e that is not

character regular.

Proof. Let H1, H2, . . . , He be e nonabelian groups of order p3 and let H be
the direct product H = H1 × H2 × · · · × He. Since e(Hi) = 1, it is clear that H
has character degrees pk for k = 0, 1, . . . , e, and hence e(H) = e. Furthermore, if
W denotes the center of H , then W = W1 ×W2 × · · · ×We, where Wi is the center
of Hi and has order p.

Now let Z be an elementary abelian group of order p2, so that Z has p + 1
subgroups of order p, say Z0, Z1, . . . , Zp. Since e ≥ p, we can define a homomor-
phism θ : W → Z so that θ(Wi) = Zi for i = 1, 2, . . . , p − 1 and θ(Wi) = Zp for
i = p, p + 1, . . . , e. If N = ker θ, then N is a central and hence normal subgroup of
H , and we let G = H/N . Clearly W/N = Z is the center of G, and we now show
that e(G) = e and that Z0 =

⋂
χ(1)=pe kerχ.

To this end, for i = 0, 1, . . . , p, let Ni = θ−1(Zi). Then the Ni are the p + 1
subgroups of W of index p that contain N . Observe that Ni = NWi for i =
1, 2, . . . , p − 1 and that Np = NWi for i = p, p + 1, . . . , e. Now suppose χ is a
character of H with W ∩ kerχ = N0. Then χ is a product χ = χ1χ2 · · ·χe, where
χi is an irreducible character of Hi. Furthermore, Wi is not contained in the kernel
of χi, since otherwise kerχ contains N0Wi = N , a contradiction. Thus each χi has
degree p, so χ has degree pe. Since kerχ ⊇ N , χ corresponds to a character of
G = H/N and hence e(G) = e.

Conversely, let χ be a character of G of degree pe and view χ as a character of
H . Again χ is a product χ = χ1χ2 · · ·χe and, since χ(1) = pe, it follows that each
χi has degree p. Thus Wi is not contained in kerχi and hence Wi is not contained
in kerχ. But, we know that W ∩ kerχ must be one of the p + 1 subgroups of W
of index p that contain N . Since kerχ cannot contain N1, N2, . . . , or Np, it follows
that kerχ ⊇ N0. Viewed in G, this says that kerχ ⊇ N0/N = Z0 and we conclude
easily that Z0 =

⋂
χ(1)=pe kerχ, as claimed. �

This leads to the problem we pose in this section, namely

Problem 1.4. Let G be a finite p-group with e(G) = e. If p > e, must G be

character regular?

This is known to be the case at least for e = 1 and 2. Furthermore, one can
show that if e(G) = e, then the subgroup

⋂
χ(1)=pe kerχ has order bounded by a
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function of pe. Indeed, this is a special case of a result concerning arbitrary finite
groups [9]. As will be apparent, the proof of the latter is totally ring theoretic.

Proposition 1.5. Let G be an arbitrary finite group having an irreducible

character of degree ≥ n. Then
⋂

χ(1)≥n kerχ has order at most (2n − 2)!.

Proof. For each integer k ≥ 1, let

sk(x1, x2, . . . , xk) =
∑

σ∈Sym
k

(−)σxσ(1)xσ(2) · · ·xσ(k)

denote the standard polynomial over the complex numbers K in the k noncommut-
ing variables x1, x2, . . . , xk. Observe that sk is linear in each of its variables, and a
result of Amitsur and Levitzki [1] asserts that the full matrix ring Mℓ(K) satisfies
s2k = 0 if and only if ℓ ≤ k. In other words, if we evaluate s2k on any 2k elements
of Mℓ(K), then we always obtain 0 precisely when ℓ ≤ k.

Now the complex group ring K[G] is a direct sum of full matrix rings over K
and, since G has an irreducible representation of degree ≥ n, it is clear that K[G]
does not vanish on s2n−2. In particular, by the multilinearity of the polynomial,
there exist group elements g1, g2, . . . , g2n−2 ∈ G such that

0 6= α = s2n−2(g1, g2, . . . , g2n−2) ∈ K[G].

The definition of s2n−2 as a sum over σ ∈ Sym2n−2 implies that α has support
size ≤ (2n − 2)!. In other words, at most (2n − 2)! group elements have nonzero
coefficients in the representation of α ∈ K[G] as a K-linear sum of group elements.
Furthermore, by the Amitsur-Levitzki result, α projects to 0 in the direct summand
of K[G] consisting of all matrix rings of degree < n.

Now write N =
⋂

χ(1)≥n kerχ. If x ∈ N , then by definition, 1 − x projects

to 0 in the direct summand of K[G] consisting of all matrix rings of degree ≥ n.
In particular, α(1 − x) = 0 and hence α = αx. It follows that if S ⊆ G denotes
the support of α, then S = Sx and hence N permutes the elements of S via right
multiplication. But this multiplication action is semiregular, so we conclude that
|N | ≤ |S| ≤ (2n − 2)! and the proposition is proved. �

At this point, it is not clear how or if the above argument can be extended. One
could look for a multilinear polynomial identity for Mn(K) with a small number
of monomials, but these do not exist. On the other hand, if we are willing to
increase the number of monomials, we could replace s2n−2 by a central polynomial
for Mn(K). This is a polynomial in noncommuting variables that maps Mn(K)
nontrivially to its center, and as a consequence is a polynomial identity for all matrix
rings of smaller degree. With such a central polynomial, we would then be able
to find an element α as above that is central in K[G], but this centrality does not
seem to be of use here. Presumably, Problem 1.4 will require a character-theoretic
proof of some sort assuming the conjecture turns out to be correct.

2. Simple Twisted Group Algebras

Let G be a finite group and let K be a field. Then a twisted group algebra KtG
is an associative K-algebra having basis G = {g | g ∈ G} and with multiplication
given by x y = µx,y xy for all x, y ∈ G, where µx,y ∈ K•. For example, if all
µx,y = 1, then KtG = K[G] is the ordinary group algebra. It is easy to check that
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the associativity of KtG is equivalent to the map µ : G×G → K• being a 2-cocycle
on G, but associativity is the more natural condition to work with.

Twisted group algebras are of course related to projective representations of
groups. Indeed, if X : KtG → Mn(K) is an irreducible representation, then the
formula X(x)X(y) = µx,y X(xy) describes a projective representation of G. Al-
ternatively, suppose H is a group with a cyclic central subgroup Z and suppose
λ : Z → K• is a faithful linear character of Z. Then we can use λ to identify Z
with the subgroup λ(Z) ⊆ K•. Indeed, if I is the ideal of K[H ] generated by all
z − λ(z), with z ∈ Z, then K[H ]/I is easily seen to be a twisted group algebra of
G = H/Z. The converse, however, is not true in general unless we assume K to be
algebraically closed.

Lemma 2.1. Let KtG be a twisted group algebra of the finite group G over an

algebraically closed field K. Then there exists a finite group H, with central cyclic

subgroup Z, such that G ∼= H/Z. Furthermore, there is a faithful linear character

λ : Z → K• such that KtG ∼= K[H ]/I, where I is the ideal of K[H ] generated by

the elements z − λ(z) for all z ∈ Z.

Proof. Let G = {kx | x ∈ G, k ∈ K•} be the group of trivial units of KtG.
Then the map G → G given by kx 7→ x is a group epimorphism with kernel Z = K•.
In other words, G/Z ∼= G and, since Z is central in G, the group G is center-by-
finite. A result of Schur [11] now implies that the commutator subgroup G′ is finite.
To proceed further, we need K to be algebraically closed.

For each x ∈ G, we know that xo(x) ∈ Z, where o(x) is the order of x. Hence,

since K is algebraically closed, we can choose a ∈ K with ao(x) = xo(x). It follows
that x̃ = a−1x ∈ G has finite order o(x), and we let H be the subgroup of G

generated by all x̃, one for each x ∈ G. Then H is finitely generated by elements of
finite order and, since H ′ ⊆ G′ is finite, it follows that H is a finite subgroup of G.
Furthermore, H maps onto G via the map of the preceding paragraph, and hence
H/Z ∼= G where Z = H ∩ Z.

Certainly Z is cyclic, since it is a finite subgroup of K•, and indeed the embed-
ding λ : Z → K• is a faithful linear character of Z. Furthermore, the embedding
H → G gives rise to an epimorphism K[H ] → KtG, and the kernel I of this map
contains the elements z − λ(z) for all z ∈ Z. In fact, I is generated by all z − λ(z)
since any transversal for Z in H has a linearly independent image in KtG. �

Some version of the algebraically closed assumption is certainly needed in the
above. To see this, suppose G = 〈g〉 is cyclic of order n > 1 and let K be the field
of rational numbers. Then K[x]/(xn − 2) is isomorphic to a twisted group algebra
of G, with g corresponding to the image of the variable x. Note that gn = 2 so,
since K is the rational field, no scalar multiple of g can have finite order in G. In
particular, KtG cannot be a natural homomorphic image of the group ring K[H ]
for any finite group H .

While we have the above notation in mind, let us point out the following ob-
servation that is usually proved by cohomological considerations.

Lemma 2.2. If K is an algebraically closed field of characteristic p and if G
is a finite p-group, then any twisted group algebra KtG is naturally isomorphic to

K[G].

Proof. Notice that H/Z ∼= G, so H is also nilpotent. In particular, we can
write H = P × Q, where P is its Sylow p-subgroup and Q its p-complement.
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Obviously P maps onto G, so we can assume that H = P . But then Z is isomorphic
to a p-subgroup of K•, so Z = 1 and KtG ∼= K[H ] ∼= K[G]. �

Of course, ordinary group algebras are never simple since they always have
a proper augmentation ideal. But twisted group algebras can be simple and the
question of interest here is

Problem 2.3. When is a twisted group algebra KtG simple? In particular, is

G necessarily a solvable group?

If K is an algebraically closed field of characteristic 0, then Lemma 2.1 and its
notation imply that KtG is simple if and only if the group H is of central type.
In other words, this occurs if and only if H has a unique irreducible character χ
whose restriction χZ to Z has λ as a constituent. From a ring-theoretic point of
view, this is why groups of central type are so interesting. Furthermore, we know
from the fundamental paper [5] of Howlett and Isaacs that groups of central type
are necessarily solvable. Thus G = H/Z is also solvable.

Recall that a K-algebra A is said to be central simple if A is simple and has
center K. As is well known, if A is central simple, then so is any F -algebra F ⊗K A,
where F is a field extension of K. In particular, if KtG is central simple and if K

is the algebraic closure of K, then K ⊗K KtG = K
t
G is also simple and the above

yields

Proposition 2.4. If K is a field of characteristic 0 and KtG is central simple,

then G is solvable.

So the real problem in extending [5] to arbitrary characteristic 0 fields is the
presence of additional central elements. Now it is easy to describe the center of any
twisted group algebra. To this end, given KtG and x ∈ G, we define

C
t
G(x) = {y ∈ G | x y = y x}.

Then it is clear that Ct
G(x) is a subgroup of G contained in the centralizer CG(x).

Indeed, if g ∈ CG(x), then g x = τ(g)x g, where τ : CG(x) → K• is a linear
character with kernel Ct

G(x). If Ct
G(x) = CG(x), then the conjugacy class of x is

said to be special, and it is easy to see that the center of KtG is the K-linear span
of the class sums of all such special classes.

Of course, if KtG is simple, then its center F is a finite field extension of K,
and the behavior of F under further field extensions of K is well known. We offer
a quick proof below.

Lemma 2.5. Let F/K be a finite separable extension of fields and let L ⊇ F
contain the Galois closure of F . Then L ⊗K F = L1 ⊕ L2 ⊕ · · · ⊕Ln, a direct sum

of n = |F : K| copies of L. Furthermore, the embedding of F into this direct sum

is given by a 7→ σ1(a)⊕ σ2(a)⊕ · · · ⊕ σn(a), where σ1, σ2, . . . , σn : F → L are the n
distinct K-linear embeddings of F into L.

Proof. The primitive element theorem tells us that F = K[α], and we let
g(x) be the minimal monic polynomial of α over K. Then F ∼= K[x]/(g(x)), so
L ⊗K F ∼= L[x]/(g(x)). But g(x) splits in L as

∏n

i=1(x − αi), so L[x]/(g(x)) ∼=
L1 ⊕ L2 ⊕ · · · ⊕ Ln, as required. Furthermore, since the image of x in Li is αi, the
embedding of F is determined by α 7→ α1 ⊕ α2 ⊕ · · · ⊕ αn. �
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As a consequence, we see that if KtG is simple, with charK = 0, and if K

is the algebraic closure of K, then K
t
G = K ⊗K KtG is a direct sum of full

matrix rings over K that correspond to a full set of Galois conjugate projective
representations of G. In terms of the lifted group H , where H/Z ∼= G, this says
that the irreducible characters of H that extend the linear character λ : Z → K• are
all Galois conjugate. So one wonders whether the methods of [5] can be extended
to handle this situation.

We briefly mention what happens in characteristic p. To start with, any simple
algebra is certainly semisimple, so the following is relevant.

Lemma 2.6. Let KtG be a semisimple twisted group algebra.

i. If H is a subgroup of G, then KtH is semisimple.

ii. If K has characteristic p > 0 and if P is a Sylow p-subgroup of G, then

KtP is a purely inseparable field extension of K. It follows that G has a

normal p-complement.

Proof. (i) First note that there is a K-linear projection map θ : KtG → KtH
given by θ(x) = x if x ∈ H and θ(x) = 0 if x ∈ G \ H . It is easy to see that θ
is a (KtH, KtH)-bimodule homomorphism. Next, observe for a finite dimensional
K-algebra A, semisimplicity is equivalent to von Neumann regularity. The latter,
of course, asserts that for all α ∈ A, there exists α′ ∈ A with αα′α = α. Finally,
let α ∈ KtH . Since KtG is semisimple, there exists α′ ∈ KtG with αα′α = α.
Applying the bimodule map θ now yields α = θ(α) = θ(αα′α) = α θ(α′)α, and
consequently KtH is semisimple.

(ii) In view of (i), we know that KtP is semisimple. Furthermore, by Lemma 2.2,

K
t
P ∼= K[P ], where K is the algebraic closure of K. If I denotes the copy of the

augmentation ideal of K[P ] in KtP , then K
t
P/I ∼= K and I is nilpotent. Thus,

since KtP is semisimple, we have KtP ∩ I = 0 and consequently KtP embeds in

K
t
P/I ∼= K. It follows that KtP is isomorphic to a subfield of K containing K.

Since it is generated by the various x, with x ∈ P , and since xo(x) ∈ K, we see that
KtP is purely inseparable over K.

Finally, let g ∈ NG(P ). Then conjugation by g induces a field automorphism
of KtP fixing K. But KtP is purely inseparable over K, so this automorphism
must be trivial. Clearly this implies that NG(P ) = CG(P ) and hence that G has a
normal p-complement. �

It is a well known character-theoretic result that Hall subgroups of groups
of central type are also of central type. Since the proof of this fact merely uses
dimensions of modules, it carries over to twisted group algebras over any field. We
include the simple argument.

Lemma 2.7. Let KtG be a simple twisted group algebra and let H be a Hall

π-subgroup of G. Then KtH is also simple.

Proof. Since KtG is simple, its regular module R(G) is equal to aV , where the
simple module V occurs with multiplicity a. Furthermore, since KtH is semisimple,
we have R(H) = bW +U , where the simple KtH-module W occurs with multiplicity
b and where U denotes a sum of other simple modules. The goal is to show that
U = 0. Now KtG is a free KtH-module of rank |G : H |, so restricting to KtH
yields |G : H | (bW + U) = |G : H |R(H) = R(G)H = aVH . It follows that a divides
|G : H | b, so |a|π divides b, since |G : H | is a π′ number.



CHARACTER THEORY AND GROUP RINGS 7

Next, module induction tells us that WG = cV for some multiplicity c. Thus,
by dimension considerations, we have c dimV = dimWG = |G : H | dimW , so
dimV divides |G : H | dimW and hence | dimV |π divides dim W . We conclude
that |H | = |G|π = |a dimV |π divides b dimW . But b dimW + dim U = |H |, so we
must have U = 0 and hence KtH is simple. �

Finally, if KtG is simple and K has characteristic p > 0, then we know that
G has a normal complement N . Furthermore, the preceding lemma implies that
KtN is also simple. Since the ordinary and modular character theory of N agree,
modular simplicity of KtN surely lifts to the characteristic 0 case. Thus, there may
be nothing new to say in characteristic p.

3. The Number of Irreducible Representations

If K is the field of complex numbers, or any algebraically closed field of charac-
teristic 0, then we know that the number n of irreducible representations of K[G] is
equal to the dimension of the center of the algebra and hence equal to the number
of conjugacy classes of the group G. Furthermore, the class equation then yields

1 =
1

c1
+

1

c2
+ · · · +

1

cn

where ci is the order of the centralizer of an element in the ith conjugacy class.
In particular, if the first class corresponds to the identity element, then c1 = |G|.
As Landau [7] pointed out, if we are given n, then equations as above have only
finitely many positive integer solutions c1, c2, . . . , cn, and as a consequence one has

Proposition 3.1. If K is the field of complex numbers and if K[G] has pre-

cisely n irreducible representations, then |G| is bounded by a function of n.

The above proof is elementary, but it is an accident of number theory. On
the other hand, it can presumably be replaced by a very much harder argument
using the classification of the finite simple groups [3]. For example, suppose that
G 6= 1 has precisely n conjugacy classes, and let us further assume that G has no
nonidentity finite solvable normal subgroup. Then the socle H of G is a finite direct
product H = H1 ×H2 × · · · ×Hk of nonabelian simple groups Hi, and G permutes
these factors by conjugation. In particular, if 1 6= hi ∈ Hi, then the k elements
h1, h1h2, h1h2h3, . . . cannot be G-conjugate and hence k ≤ n. Furthermore, if x and
y are nonidentity elements of the same Hi and if xg = y, then g must normalize Hi

and hence this conjugation corresponds to the action of an element of Aut(Hi).
In other words, if we can use the classification of finite simple groups to bound

the order of a simple group in terms of the number of conjugacy classes it contains in
its automorphism group, then we can bound each |Hi| and hence |H |. Since G acts
faithfully by conjugation on H , this therefore bounds |G|. Furthermore, solvable
normal subgroups of G can be handled using the following simple observation.

Lemma 3.2. Let G have precisely n conjugacy classes and let 1 6= A ⊳ G. Then

G/A has at most n − 1 classes. Furthermore, if A is abelian, then |A| ≤ n |G/A|.

Proof. We have G =
⋃n

i=1 Ci, a union of n conjugacy classes and hence

G = G/A =
⋃n

i=1 Ci. Of course, in the latter union there may be overlap and
indeed any class contained in A is merged with the identity class. Finally, if A
is abelian, then the classes contained in A are precisely the orbits in A under the
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conjugation action of G/A. Since each orbit has size ≤ |G/A| and since there are
at most n classes in A, we have |A| ≤ n |G/A|, as required. �

A priori, there seems to be little virtue in the latter argument. But if we change
the problem to deal with fields of characteristic p, then the simple number-theoretic
observation no longer applies. As was proved by Brauer [2], if K is an algebraically
closed field of characteristic p > 0, then the number of irreducible representations
of K[G] is precisely the number of p-regular classes in G. So we pose the following

Problem 3.3. Let G have precisely n irreducible representations over an alge-

braically closed field of characteristic p > 0. How much of the structure of G can

be bounded by a function of n, possibly depending upon p?

Note that the irreducible representations of G in characteristic p are pre-
cisely the irreducible representations of G/Op(G). Thus, we cannot hope to bound
|Op(G)| in the above context. But there are more examples of interest. To start
with, let q be a Fermat prime, so that q = 1 + 2m. Then the cyclic group Z2m

of order 2m acts on Zq, and we can form the semidirect product G = Zq ⋊ Z2m .
Here, we are taking p = 2, and it is easy to see that there are just n = 2 classes in
G that are 2-regular. Thus, n = 2, p = 2 and O2(G) = 1. But the order of G is
big and so is the order of O2′(G) = Zq. In particular, if there exist infinitely many
Fermat primes, then we cannot hope to bound |Op′(G)| as a function of n and p,
when Op(G) = 1.

We can use other prime equations to get similar examples for all primes p. To
this end, fix the integer d and suppose q is a prime power of the form q = 1 + dpm.
Then Zpm acts faithfully on Eq, an elementary abelian group of order q, and we
can form the semidirect product G = Eq ⋊ Zpm . Here, it is easy to see that there
are just n = d + 1 classes in G that are p-regular, and of course Op(G) = 1. Again
the order of G is big and so is the order of Op′(G) = Eq. Thus, if the equation
q = 1 + dpm has infinitely many solutions with q a prime power, then we cannot
hope to bound |Op,p′(G)/Op(G)| as a function of n and p.

Now, let us return to positive results and a consideration of nonabelian simple
groups. For example, if G = Altm with m > 6, then we know that Aut(G) = Symm,
and consequently elements of G are conjugate in Aut(G) if and only if they have the
same cycle structure. In particular, cycles of odd length 1, 3, 5, . . . are contained in
G and are not conjugate in Aut(G). Furthermore, if we account for the relatively
sparse number of cycles with length divisible by p, we see that G contains at least
m/4 conjugacy classes in Aut(G) consisting of p-regular elements. The following
result is due to Guralnick [4]. Part of its proof uses the obvious fact that elements
of different order in G cannot be conjugate in Aut(G).

Theorem 3.4. Let G be a finite nonabelian simple group and let p be a prime.

Suppose G contains at most n conjugacy classes of Aut(G) that are p-regular. Then

|G| is bounded by a fixed function of n that does not depend upon p.

Proof. (Sketch) We can of course ignore the finitely many sporadic groups,
so we need only assume that G is alternating or a Chevalley group. We already
discussed the alternating groups, but it is best to mention another approach here.
Indeed, if G = Altm, then there can be at most n primes that are less than or equal
to m. Hence the prime number theorem bounds m and |G|.

Now let G be a Chevalley group of rank r over a field of size q. To start with,
we bound the rank r. For this, note that if r ≥ 8, then the Weyl group of G involves
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Symm, where m = r or r + 1. But then m! divides |G|, so there can be at most n
primes that are ≤ m. Again, the prime number theorem bounds m and hence r.
Since r can now be fixed, it suffices to consider a specific family of simple groups
of specific rank and bound the field size q. Here we note that |Aut(G)|/|G| is at
most c· log q, for some constant c, so it suffices to show that the number of p-regular
classes of G grows, as a function of q, more quickly than log q.

To this end, suppose first that G contains a copy of SL2(q) or of PSL2(q). If q
is even, then it follows that G contains cyclic subgroups of relatively prime orders
q − 1 and q + 1. On the other hand, if q is odd, then G contains cyclic subgroups
of relatively prime orders (q − 1)/2 and (q + 1)/2. We conclude that G has a cyclic
subgroup C of order prime to both p and q, and with |C| ≥ (q−1)/2. Now embed C
in a maximal torus T of G. Then the number of NG(T )-conjugacy classes contained
in C is at least (q − 1)/2|W |, where W = NG(T )/T has order bounded by the size
of the Weyl group of G. Furthermore, it follows from the BN -pair description of G
that any two semisimple elements in a given maximal torus T are conjugate in G
if and only if they are conjugate in NG(T ). We conclude that G contains at least
(q − 1)/2|W | classes of p-regular elements, and this linear function of q certainly
increases more quickly than a logarithmic function.

Finally, using Dynkin diagrams, it is easy to verify that the only groups that
do not contain a copy of SL2(q) or of PSL2(q) are the Suzuki groups. Indeed,
since |Sz(q)| is prime to 3, these groups cannot possibly contain such linear groups.
Nevertheless, one can check that the Suzuki groups have tori of relatively prime
orders and of size linear in q. Thus the result follows in this case also. �

As a consequence of the above and the methods discussed previously, we obtain
the following partial answer to Problem 3.3. Here, of course, S/O

p′

(S) is the largest
homomorphic image of S that is a p′-group.

Corollary 3.5. Let the finite group G have precisely n irreducible represen-

tations over an algebraically closed field of characteristic p > 0. If S is the largest

normal solvable subgroup of G, then |G/Op′

(S)| is bounded by a fixed function of

n, independent of p.

It remains to be seen whether this result can be improved. Finally, I would like
to thank Prof. Guralnick for allowing me to include his Theorem 3.4 in this paper.
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